1
|
Muffels IJJ, Kozicz T, Perlstein EO, Morava E. The Therapeutic Future for Congenital Disorders of Glycosylation. J Inherit Metab Dis 2025; 48:e70011. [PMID: 40064184 DOI: 10.1002/jimd.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025]
Abstract
The past decade, novel treatment options for congenital disorders of glycosylation (CDG) have advanced rapidly. Innovative therapies, targeting both the root cause, the affected metabolic pathways, and resulting manifestations, have transitioned from the research stage to practical applications. However, with novel therapeutic abilities, novel challenges await, specifically when it concerns the large number of clinical trials that need to be performed in order to treat all 190 genetic defects that cause CDG known to date. The present paper aims to provide an overview of how the CDG field can keep advancing its therapeutic strategies over the coming years with these challenges in mind. We focus on three important pillars that may shape the future of CDG: the use of disease models, clinical trial readiness, and the possibility to make individualized treatments scalable to the entire CDG cohort.
Collapse
Affiliation(s)
- I J J Muffels
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - T Kozicz
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Anatomy, University of Pecs Medical School, Pecs, Hungary
| | | | - E Morava
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Biophysics, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
2
|
Maeda M, Arakawa M, Saito K. Disease-Associated Factors at the Endoplasmic Reticulum-Golgi Interface. Traffic 2025; 26:e70001. [PMID: 40047103 PMCID: PMC11883524 DOI: 10.1111/tra.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025]
Abstract
The endoplasmic reticulum (ER)-Golgi interface is essential for directing the transport of proteins synthesized in the ER to the Golgi apparatus via the ER-Golgi intermediate compartment, as well as for recycling proteins back to the ER. This transport is facilitated by various components, including COPI and COPII coat protein complexes and the transport protein particle complex. Recently, the ER-Golgi transport pathway has gained attention due to emerging evidence of nonvesicular transport mechanisms and the regulation of trafficking through liquid-liquid phase separation. Numerous diseases have been linked to mutations in proteins localized at the ER-Golgi interface, highlighting the need for comprehensive analysis of these conditions. This review examines the disease phenotypes associated with dysfunctional ER-Golgi transport factors and explores their cellular effects, providing insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Masashi Arakawa
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Kota Saito
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| |
Collapse
|
3
|
Chang G, Yang F, Ying L, Zhang Q, Feng B, Chen Y, Ding Y, Yu T, Yao R, Lin K, Li J, Wang X. A novel ARCN1 splice-site variant in a Chinese girl with central precocious puberty, intrauterine growth restriction, microcephaly, and microretrognathia. BMC Pediatr 2024; 24:838. [PMID: 39731039 PMCID: PMC11674155 DOI: 10.1186/s12887-024-05329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024] Open
Abstract
The ARCN1 gene encodes the delta subunit of the coatomer protein complex I (COPI), which is essential for mediating protein transport from the Golgi complex to the endoplasmic reticulum. Variants in ARCN1 are associated with clinical features such as microcephaly, microretrognathia, intrauterine growth restriction, short rhizomelic stature, and developmental delays. We present a case of a patient exhibiting intrauterine growth restriction, preterm birth, microcephaly, micrognathia, and central precocious puberty. Whole-exome sequencing identified a novel splice-site variant, NM_001655.5: c.1241 + 1G > A, in the ARCN1 gene. To our knowledge, this is the first documented case of ARCN1-related syndrome associated with central precocious puberty, contributing to the understanding of the disease phenotype.
Collapse
Affiliation(s)
- Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
- Department of Clinical Research Ward, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fan Yang
- Department of Clinical Research Ward, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Biyun Feng
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostics laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostics laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Kana Lin
- Department of Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
4
|
Tobias ES, Lucas-Herald AK, Sagar D, Montezano AC, Rios FJ, De Lucca Camargo L, Hamilton G, Gazdagh G, Diver LA, Williams N, Herzyk P, Touyz RM, Greenfield A, McGowan R, Ahmed SF. SEC31A may be associated with pituitary hormone deficiency and gonadal dysgenesis. Endocrine 2024; 84:345-349. [PMID: 38400880 DOI: 10.1007/s12020-024-03701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/14/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Disorders/differences of sex development (DSD) result from variants in many different human genes but, frequently, have no detectable molecular cause. METHODS Detailed clinical and genetic phenotyping was conducted on a family with three children. A Sec31a animal model and functional studies were used to investigate the significance of the findings. RESULTS By trio whole-exome DNA sequencing we detected a heterozygous de novo nonsense SEC31A variant, in three children of healthy non-consanguineous parents. The children had different combinations of disorders that included complete gonadal dysgenesis and multiple pituitary hormone deficiency. SEC31A encodes a component of the COPII coat protein complex, necessary for intracellular anterograde vesicle-mediated transport between the endoplasmic reticulum (ER) and Golgi. CRISPR-Cas9 targeted knockout of the orthologous Sec31a gene region resulted in early embryonic lethality in homozygous mice. mRNA expression of ER-stress genes ATF4 and CHOP was increased in the children, suggesting defective protein transport. The pLI score of the gene, from gnomAD data, is 0.02. CONCLUSIONS SEC31A might underlie a previously unrecognised clinical syndrome comprising gonadal dysgenesis, multiple pituitary hormone deficiencies, dysmorphic features and developmental delay. However, a variant that remains undetected, in a different gene, may alternatively be causal in this family.
Collapse
Affiliation(s)
- Edward S Tobias
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK.
- Academic Unit of Medical Genetics and Clinical Pathology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| | - Angela K Lucas-Herald
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - Danielle Sagar
- MRC Mammalian Genetics Unit, Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
| | - Livia De Lucca Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Graham Hamilton
- Glasgow Polyomics, College of Medical Veterinary and Life Sciences, Garscube Estate, Switchback Rd, Glasgow, G61 1BD, UK
| | - Gabriella Gazdagh
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
- Academic Unit of Medical Genetics and Clinical Pathology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Louise A Diver
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Nicola Williams
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Pawel Herzyk
- Glasgow Polyomics, College of Medical Veterinary and Life Sciences, Garscube Estate, Switchback Rd, Glasgow, G61 1BD, UK
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow, G12 8TA, UK
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Andy Greenfield
- MRC Mammalian Genetics Unit, Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
- Nuffield Department of Women's & Reproductive Health, Institute of Reproductive Sciences, University of Oxford, Oxford, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Laboratory Medicine Building, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow, G51 4TF, UK
| |
Collapse
|
5
|
Houck CA, Koopmans M, Nikkels PGJ. The Radiological and Histological Phenotype of Skeletal Abnormalities in Fetal ARCN1-Related Syndrome. Pediatr Dev Pathol 2024; 27:176-180. [PMID: 38044464 PMCID: PMC11015707 DOI: 10.1177/10935266231213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Mutations in ARCN1 give rise to a syndromic disorder with rhizomelic short stature with microretrognathia and developmental delay. ARCN1 encodes the delta subunit of the coat protein I complex, which is required for intracellular trafficking of collagen 1 and which may also be involved in the endoplasmic reticulum (ER) stress response. In this paper we describe for the first time the skeletal histological abnormalities in an 18-week-old fetus with an ARCN1 mutation, and we suggest that the skeletal phenotype in ARCN1-related syndrome has more resemblance with ER stress than with a defect in collagen 1 metabolism.
Collapse
Affiliation(s)
- Charlotte A. Houck
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marije Koopmans
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter G. J. Nikkels
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Sullivan JA, Spillmann RC, Schoch K, Walley N, Alkelai A, Stong N, Shea PR, Petrovski S, Jobanputra V, McConkie-Rosell A, Shashi V. The best of both worlds: Blending cutting-edge research with clinical processes for a productive exome clinic. Clin Genet 2024; 105:62-71. [PMID: 37853563 DOI: 10.1111/cge.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Genomic medicine has been transformed by next-generation sequencing (NGS), inclusive of exome sequencing (ES) and genome sequencing (GS). Currently, ES is offered widely in clinical settings, with a less prevalent alternative model consisting of hybrid programs that incorporate research ES along with clinical patient workflows. We were among the earliest to implement a hybrid ES clinic, have provided diagnoses to 45% of probands, and have identified several novel candidate genes. Our program is enabled by a cost-effective investment by the health system and is unique in encompassing all the processes that have been variably included in other hybrid/clinical programs. These include careful patient selection, utilization of a phenotype-agnostic bioinformatics pipeline followed by manual curation of variants and phenotype integration by clinicians, close collaborations between the clinicians and the bioinformatician, pursuit of interesting variants, communication of results to patients in categories that are predicated upon the certainty of a diagnosis, and tracking changes in results over time and the underlying mechanisms for such changes. Due to its effectiveness, scalability to GS and its resource efficiency, specific elements of our paradigm can be incorporated into existing clinical settings, or the entire hybrid model can be implemented within health systems that have genomic medicine programs, to provide NGS in a scientifically rigorous, yet pragmatic setting.
Collapse
Affiliation(s)
- Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Kelly Schoch
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Nicole Walley
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Genomics and Bioinformatics Analysis Resource, Columbia University, New York, New York, USA
| | - Slavè Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Allyn McConkie-Rosell
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| |
Collapse
|