1
|
Buchanan J, Goranitis I, Weymann D. The Health Economics of Genomic Technologies: A Growing Evidence Base on Value. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025; 23:331-335. [PMID: 40293671 PMCID: PMC12053066 DOI: 10.1007/s40258-025-00970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Affiliation(s)
- James Buchanan
- Health Economics and Policy Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
- National Institute for Health Research, Barts Biomedical Research Centre, Queen Mary University of London, London, UK.
| | - Ilias Goranitis
- Economics of Genomics and Precision Medicine Unit, Centre for Health Policy, The University of Melbourne, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, VIC, Australia
| | - Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| |
Collapse
|
2
|
Salisbury A, Ciardi J, Norman R, Smit AK, Cust AE, Low C, Caruana M, Gordon L, Canfell K, Steinberg J, Pearce A. Public Preferences for Genetic and Genomic Risk-Informed Chronic Disease Screening and Early Detection: A Systematic Review of Discrete Choice Experiments. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025; 23:395-408. [PMID: 38916649 PMCID: PMC12053130 DOI: 10.1007/s40258-024-00893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Genetic and genomic testing can provide valuable information on individuals' risk of chronic diseases, presenting an opportunity for risk-tailored disease screening to improve early detection and health outcomes. The acceptability, uptake and effectiveness of such programmes is dependent on public preferences for the programme features. This study aims to conduct a systematic review of discrete choice experiments assessing preferences for genetic/genomic risk-tailored chronic disease screening. METHODS PubMed, Embase, EconLit and Cochrane Library were searched in October 2023 for discrete choice experiment studies assessing preferences for genetic or genomic risk-tailored chronic disease screening. Eligible studies were double screened, extracted and synthesised through descriptive statistics and content analysis of themes. Bias was assessed using an existing quality checklist. RESULTS Twelve studies were included. Most studies focused on cancer screening (n = 10) and explored preferences for testing of rare, high-risk variants (n = 10), largely within a targeted population (e.g. subgroups with family history of disease). Two studies explored preferences for the use of polygenic risk scores (PRS) at a population level. Twenty-six programme attributes were identified, with most significantly impacting preferences. Survival, test accuracy and screening impact were most frequently reported as most important. Depending on the clinical context and programme attributes and levels, estimated uptake of hypothetical programmes varied from no participation to almost full participation (97%). CONCLUSION The uptake of potential programmes would strongly depend on specific programme features and the disease context. In particular, careful communication of potential survival benefits and likely genetic/genomic test accuracy might encourage uptake of genetic and genomic risk-tailored disease screening programmes. As the majority of the literature focused on high-risk variants and cancer screening, further research is required to understand preferences specific to PRS testing at a population level and targeted genomic testing for different disease contexts.
Collapse
Affiliation(s)
- Amber Salisbury
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia.
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia.
| | - Joshua Ciardi
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Amelia K Smit
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Anne E Cust
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Cynthia Low
- Lived Experience Expert, Adelaide, SA, Australia
| | - Michael Caruana
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Louisa Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Karen Canfell
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Alison Pearce
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Tsoulos N, Papadopoulou E, Agiannitopoulos K, Grigoriadis D, Tsaousis GN, Bouzarelou D, Gogas H, Troupis T, Venizelos V, Fountzilas E, Theochari M, Ziogas DC, Giassas S, Koumarianou A, Christopoulou A, Busby G, Nasioulas G, Markopoulos C. Polygenic Risk Score (PRS) Combined with NGS Panel Testing Increases Accuracy in Hereditary Breast Cancer Risk Estimation. Diagnostics (Basel) 2024; 14:1826. [PMID: 39202314 PMCID: PMC11353636 DOI: 10.3390/diagnostics14161826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Breast cancer (BC) is the most prominent tumor type among women, accounting for 32% of newly diagnosed cancer cases. BC risk factors include inherited germline pathogenic gene variants and family history of disease. However, the etiology of the disease remains occult in most cases. Therefore, in the absence of high-risk factors, a polygenic basis has been suggested to contribute to susceptibility. This information is utilized to calculate the Polygenic Risk Score (PRS) which is indicative of BC risk. This study aimed to evaluate retrospectively the clinical usefulness of PRS integration in BC risk calculation, utilizing a group of patients who have already been diagnosed with BC. The study comprised 105 breast cancer patients with hereditary genetic analysis results obtained by NGS. The selection included all testing results: high-risk gene-positive, intermediate/low-risk gene-positive, and negative. PRS results were obtained from an external laboratory (Allelica). PRS-based BC risk was computed both with and without considering additional risk factors, including gene status and family history. A significantly different PRS percentile distribution consistent with higher BC risk was observed in our cohort compared to the general population. Higher PRS-based BC risks were detected in younger patients and in those with FH of cancers. Among patients with a pathogenic germline variant detected, reduced PRS values were observed, while the BC risk was mainly determined by a monogenic etiology. Upon comprehensive analysis encompassing FH, gene status, and PRS, it was determined that 41.90% (44/105) of the patients demonstrated an elevated susceptibility for BC. Moreover, 63.63% of the patients with FH of BC and without an inherited pathogenic genetic variant detected showed increased BC risk by incorporating the PRS result. Our results indicate a major utility of PRS calculation in women with FH in the absence of a monogenic etiology detected by NGS. By combining high-risk strategies, such as inherited disease analysis, with low-risk screening strategies, such as FH and PRS, breast cancer risk stratification can be improved. This would facilitate the development of more effective preventive measures and optimize the allocation of healthcare resources.
Collapse
Affiliation(s)
- Nikolaos Tsoulos
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Eirini Papadopoulou
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | | | - Dimitrios Grigoriadis
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Georgios N. Tsaousis
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Dimitra Bouzarelou
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (D.C.Z.)
| | - Theodore Troupis
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.T.); (C.M.)
| | | | - Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic, 54645 Thessaloniki, Greece;
| | - Maria Theochari
- Oncology Unit, “Hippokrateion” General Hospital of Athens, 11527 Athens, Greece;
| | - Dimitrios C. Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; (H.G.); (D.C.Z.)
| | - Stylianos Giassas
- Second Oncology Clinic IASO, General Maternity and Gynecology Clinic, 15123 Athens, Greece;
| | - Anna Koumarianou
- Hematology Oncology Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| | | | - George Busby
- Allelica Inc., 447 Broadway, New York, NY 10013, USA;
| | - George Nasioulas
- Genekor Medical S.A., 15344 Athens, Greece; (N.T.); (E.P.); (D.G.); (G.N.T.); (D.B.); (G.N.)
| | - Christos Markopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.T.); (C.M.)
| |
Collapse
|
4
|
Yang JS, Liu TY, Lu HF, Tsai SC, Liao WL, Chiu YJ, Wang YW, Tsai FJ. Genome‑wide association study and polygenic risk scores predict psoriasis and its shared phenotypes in Taiwan. Mol Med Rep 2024; 30:115. [PMID: 38757301 PMCID: PMC11106694 DOI: 10.3892/mmr.2024.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Psoriasis is a chronic inflammatory dermatological disease, and there is a lack of understanding of the genetic factors involved in psoriasis in Taiwan. To establish associations between genetic variations and psoriasis, a genome‑wide association study was performed in a cohort of 2,248 individuals with psoriasis and 67,440 individuals without psoriasis. Using the ingenuity pathway analysis software, biological networks were constructed. Human leukocyte antigen (HLA) diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)‑R software and chi‑square analysis. The present study aimed to assess the potential risks associated with psoriasis using a polygenic risk score (PRS) analysis. The genetic association between single nucleotide polymorphisms (SNPs) in psoriasis and various human diseases was assessed by phenome‑wide association study. METAL software was used to analyze datasets from China Medical University Hospital (CMUH) and BioBank Japan (BBJ). The results of the present study revealed 8,585 SNPs with a significance threshold of P<5x10‑8, located within 153 genes strongly associated with the psoriasis phenotype, particularly on chromosomes 5 and 6. This specific genomic region has been identified by analyzing the biological networks associated with numerous pathways, including immune responses and inflammatory signaling. HLA genotype analysis indicated a strong association between HLA‑A*02:07 and HLA‑C*06:02 in a Taiwanese population. Based on our PRS analysis, the risk of psoriasis associated with the SNPs identified in the present study was quantified. These SNPs are associated with various dermatological, circulatory, endocrine, metabolic, musculoskeletal, hematopoietic and infectious diseases. The meta‑analysis results indicated successful replication of a study conducted on psoriasis in the BBJ. Several genetic loci are significantly associated with susceptibility to psoriasis in Taiwanese individuals. The present study contributes to our understanding of the genetic determinants that play a role in susceptibility to psoriasis. Furthermore, it provides valuable insights into the underlying etiology of psoriasis in the Taiwanese community.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Center for Personalized Medicine, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Yu-Wen Wang
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Department of Pediatric Genetics, China Medical University Children's Hospital, Taichung 404327, Taiwan, R.O.C
- Department of Medical Genetics, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| |
Collapse
|
5
|
Yang DW, Miller JA, Xue WQ, Tang M, Lei L, Zheng Y, Diao H, Wang TM, Liao Y, Wu YX, Zheng XH, Zhou T, Li XZ, Zhang PF, Chen XY, Yu X, Li F, Ji M, Sun Y, He YQ, Jia WH. Polygenic risk-stratified screening for nasopharyngeal carcinoma in high-risk endemic areas of China: a cost-effectiveness study. Front Public Health 2024; 12:1375533. [PMID: 38756891 PMCID: PMC11097958 DOI: 10.3389/fpubh.2024.1375533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) has an extremely high incidence rate in Southern China, resulting in a severe disease burden for the local population. Current EBV serologic screening is limited by false positives, and there is opportunity to integrate polygenic risk scores for personalized screening which may enhance cost-effectiveness and resource utilization. Methods A Markov model was developed based on epidemiological and genetic data specific to endemic areas of China, and further compared polygenic risk-stratified screening [subjects with a 10-year absolute risk (AR) greater than a threshold risk underwent EBV serological screening] to age-based screening (EBV serological screening for all subjects). For each initial screening age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69 years), a modeled cohort of 100,000 participants was screened until age 69, and then followed until age 79. Results Among subjects aged 30 to 54 years, polygenic risk-stratified screening strategies were more cost-effective than age-based screening strategies, and almost comprised the cost-effectiveness efficiency frontier. For men, screening strategies with a 1-year frequency and a 10-year absolute risk (AR) threshold of 0.7% or higher were cost-effective, with an incremental cost-effectiveness ratio (ICER) below the willingness to pay (¥203,810, twice the local per capita GDP). Specifically, the strategies with a 10-year AR threshold of 0.7% or 0.8% are the most cost-effective strategies, with an ICER ranging from ¥159,752 to ¥201,738 compared to lower-cost non-dominated strategies on the cost-effectiveness frontiers. The optimal strategies have a higher probability (29.4-35.8%) of being cost-effective compared to other strategies on the frontier. Additionally, they reduce the need for nasopharyngoscopies by 5.1-27.7% compared to optimal age-based strategies. Likewise, for women aged 30-54 years, the optimal strategy with a 0.3% threshold showed similar results. Among subjects aged 55 to 69 years, age-based screening strategies were more cost-effective for men, while no screening may be preferred for women. Conclusion Our economic evaluation found that the polygenic risk-stratified screening could improve the cost-effectiveness among individuals aged 30-54, providing valuable guidance for NPC prevention and control policies in endemic areas of China.
Collapse
Affiliation(s)
- Da-Wei Yang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jacob A. Miller
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Lin Lei
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yuming Zheng
- Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Hua Diao
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yu
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Ying Sun
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Gibson TM, Karyadi DM, Hartley SW, Arnold MA, Berrington de Gonzalez A, Conces MR, Howell RM, Kapoor V, Leisenring WM, Neglia JP, Sampson JN, Turcotte LM, Chanock SJ, Armstrong GT, Morton LM. Polygenic risk scores, radiation treatment exposures and subsequent cancer risk in childhood cancer survivors. Nat Med 2024; 30:690-698. [PMID: 38454124 PMCID: PMC11029534 DOI: 10.1038/s41591-024-02837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Survivors of childhood cancer are at increased risk for subsequent cancers attributable to the late effects of radiotherapy and other treatment exposures; thus, further understanding of the impact of genetic predisposition on risk is needed. Combining genotype data for 11,220 5-year survivors from the Childhood Cancer Survivor Study and the St Jude Lifetime Cohort, we found that cancer-specific polygenic risk scores (PRSs) derived from general population, genome-wide association study, cancer loci identified survivors of European ancestry at increased risk of subsequent basal cell carcinoma (odds ratio per s.d. of the PRS: OR = 1.37, 95% confidence interval (CI) = 1.29-1.46), female breast cancer (OR = 1.42, 95% CI = 1.27-1.58), thyroid cancer (OR = 1.48, 95% CI = 1.31-1.67), squamous cell carcinoma (OR = 1.20, 95% CI = 1.00-1.44) and melanoma (OR = 1.60, 95% CI = 1.31-1.96); however, the association for colorectal cancer was not significant (OR = 1.19, 95% CI = 0.94-1.52). An investigation of joint associations between PRSs and radiotherapy found more than additive increased risks of basal cell carcinoma, and breast and thyroid cancers. For survivors with radiotherapy exposure, the cumulative incidence of subsequent cancer by age 50 years was increased for those with high versus low PRS. These findings suggest a degree of shared genetic etiology for these malignancy types in the general population and survivors, which remains evident in the context of strong radiotherapy-related risk.
Collapse
Affiliation(s)
- Todd M Gibson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Danielle M Karyadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen W Hartley
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Arnold
- Department of Pathology, Children's Hospital of Colorado, University of Colorado, Denver, CO, USA
| | | | - Miriam R Conces
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Rebecca M Howell
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidushi Kapoor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy M Leisenring
- Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucie M Turcotte
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Xia C, Xu Y, Li H, He S, Chen W. Benefits and harms of polygenic risk scores in organised cancer screening programmes: a cost-effectiveness analysis. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 44:101012. [PMID: 38304718 PMCID: PMC10832505 DOI: 10.1016/j.lanwpc.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
Background While polygenic risk scores (PRS) could enable the streamlining of organised cancer screening programmes, its current discriminative ability is limited. We conducted a cost-effectiveness analysis to trade-off the benefits and harms of PRS-stratified cancer screening in China. Methods The validated National Cancer Center (NCC) modelling framework for six cancers (lung, liver, breast, gastric, colorectum, and oesophagus) was used to simulate cancer incidence, progression, stage-specific cancer detection, and risk of death. We estimated the number of cancer deaths averted, quality-adjusted life-years (QALY) gained, number needed to screen (NNS), overdiagnosis, and incremental cost-effectiveness ratio (ICER) of one-time PRS-stratified screening strategy (screening 25% of PRS-defined high-risk population) for a birth cohort at age 60 in 2025, compared with unstratified screening strategy (screening 25% of general population) and no screening strategy. We applied lifetime horizon, societal perspective, and 3% discount rate. An ICER less than $18,364 per QALY gained is considered cost-effective. Findings One-time cancer screening for population aged 60 was the most cost-effective strategy compared to screening at other ages. Compared with an unstratified screening strategy, the PRS-stratified screening strategy averted more cancer deaths (61,237 vs. 40,329), had a lower NNS to prevent one death (307 vs. 451), had a slightly higher overdiagnosis (14.1% vs. 13.8%), and associated with an additional 130,045 QALYs at an additional cost of $1942 million, over a lifetime horizon. The ICER for all six cancers combined was $14,930 per QALY gained, with the ICER varying from $7928 in colorectal cancer to $39,068 in liver cancer. ICER estimates were sensitive to changes in risk threshold and cost of PRS tools. Interpretation PRS-stratified screening strategy modestly improves clinical benefit and cost-effectiveness of organised cancer screening programmes. Reducing the costs of polygenic risk stratification is needed before PRS implementation. Funding The Chinese Academy of Medical Sciences, the Jing-jin-ji Special Projects for Basic Research Cooperation, and the Sanming Project of the Medicine in Shenzhen.
Collapse
Affiliation(s)
- Changfa Xia
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongjie Xu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Li
- Office of National Cancer Regional Medical Centre in Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyi He
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Xiang R, Kelemen M, Xu Y, Harris LW, Parkinson H, Inouye M, Lambert SA. Recent advances in polygenic scores: translation, equitability, methods and FAIR tools. Genome Med 2024; 16:33. [PMID: 38373998 PMCID: PMC10875792 DOI: 10.1186/s13073-024-01304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Polygenic scores (PGS) can be used for risk stratification by quantifying individuals' genetic predisposition to disease, and many potentially clinically useful applications have been proposed. Here, we review the latest potential benefits of PGS in the clinic and challenges to implementation. PGS could augment risk stratification through combined use with traditional risk factors (demographics, disease-specific risk factors, family history, etc.), to support diagnostic pathways, to predict groups with therapeutic benefits, and to increase the efficiency of clinical trials. However, there exist challenges to maximizing the clinical utility of PGS, including FAIR (Findable, Accessible, Interoperable, and Reusable) use and standardized sharing of the genomic data needed to develop and recalculate PGS, the equitable performance of PGS across populations and ancestries, the generation of robust and reproducible PGS calculations, and the responsible communication and interpretation of results. We outline how these challenges may be overcome analytically and with more diverse data as well as highlight sustained community efforts to achieve equitable, impactful, and responsible use of PGS in healthcare.
Collapse
Affiliation(s)
- Ruidong Xiang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin Kelemen
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Laura W Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
9
|
Schaeffer HD, Smelser DT, Rao HS, Haley JS, Long KC, Slipak SH, Carey DJ, Hoffman RL. Development of a Polygenic Risk Score to Predict Diverticulitis. Dis Colon Rectum 2024; 67:254-263. [PMID: 37844217 DOI: 10.1097/dcr.0000000000002943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND Despite its prevalence and associated morbidity, we remain limited in our ability to predict the course of a patient with diverticular disease. Although several clinical and genetic risk factors have been identified, we do not know how these factors relate to one another. OBJECTIVE Our aim was to determine whether a polygenic risk score could improve risk prediction for diverticulitis and recurrent diverticulitis compared with a model using only clinical factors. DESIGN This is an observational study. SETTING The study examines the predictive ability of a polygenic risk score for diverticulitis developed using prior genome-wide association studies and validated using the MyCode biobank. PATIENTS This study included patients of European ancestry in the Geisinger Health System who were enrolled in the MyCode Community Health biobanking program. MAIN OUTCOME MEASURES The ability of a polygenic risk score to predict diverticulosis, diverticulitis, and recurrent diverticulitis was the main outcome measure of this study. RESULTS A total of 60,861 patients were included, of whom 9912 (16.3%) had diverticulosis or diverticulitis (5015 with diverticulosis and 4897 with diverticulitis). When divided into deciles, our polygenic risk score stratified patients by risk of both diverticulosis and diverticulitis with a 2-fold difference in disease risk between the highest and lowest deciles for diverticulitis and a 4.8-fold difference for recurrent complicated diverticulitis. When compared with clinical factors alone, our polygenic risk score was able to improve risk prediction of recurrent diverticulitis. LIMITATIONS Our population is largely located in a single geographic region and were classified by disease status, using international classification of diseases codes. CONCLUSIONS This predictive model stratifies patients based on genetic risk for diverticular disease. The increased frequency of recurrent disease in our high-risk patients suggests that a polygenic risk score, in addition to other factors, may help guide the discussion regarding surgical intervention. See Video Abstract . DESARROLLO DE UNA PUNTUACIN DE RIESGO POLIGNICO PARA PREDECIR LA DIVERTICULITIS ANTECEDENTES:A pesar de su prevalencia y morbilidad asociada, nuestra capacidad para predecir el curso en un paciente con enfermedad diverticular sigue siendo limitada. Si bien se han identificado varios factores de riesgo clínicos y genéticos, no sabemos cómo se relacionan estos factores entre sí.OBJETIVO:Determinar si una puntuación de riesgo poligénico podría mejorar la predicción del riesgo de diverticulitis y diverticulitis recurrente en comparación con un modelo que utiliza solo factores clínicos.DISEÑO:Un estudio observacional que examina la capacidad predictiva de una puntuación de riesgo poligénico para la diverticulitis desarrollada usando estudios previos de asociación amplia del genoma y validada usando el biobanco MyCode.ÁMBITOS Y PACIENTES:Pacientes de ascendencia europea en el Sistema de Salud Geisinger que estaban inscritos en el programa de biobancos MyCode Community Health.PRINCIPALES MEDIDAS DE VALORACIÓN:La capacidad de una puntuación de riesgo poligénico para predecir diverticulosis, diverticulitis y diverticulitis recurrente.RESULTADOS:Se incluyeron un total de 60.861 pacientes, de los cuales 9.912 (16,3%) presentaban diverticulosis o diverticulitis (5.015 con diverticulosis y 4.897 con diverticulitis). Cuando se dividió en deciles, nuestra puntuación de riesgo poligénico estratificó a los pacientes según el riesgo de diverticulosis y diverticulitis con una diferencia de 2 veces en el riesgo de enfermedad entre los deciles más alto y más bajo para diverticulitis y una diferencia de 4,8 veces para diverticulitis complicada recurrente. En comparación con los factores clínicos solos, nuestra puntuación de riesgo poligénico pudo mejorar la predicción del riesgo de diverticulitis recurrente.LIMITACIONES:Nuestra población se encuentra en gran parte en una sola región geográfica y se clasificó por estado de enfermedad utilizando códigos de clasificación internacional de enfermedades.CONCLUSIONES:Este modelo predictivo estratifica a los pacientes en función del riesgo genético de enfermedad diverticular. La mayor frecuencia de enfermedad recurrente en nuestros pacientes de alto riesgo sugiere que un puntaje de riesgo poligénico, además de otros factores, puede ayudar a guiar la discusión sobre la intervención quirúrgica. (Traducción- Dr. Ingrid Melo ).
Collapse
Affiliation(s)
- H David Schaeffer
- Division of Colorectal Surgery, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| | - Diane T Smelser
- Department of Genomic Health, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| | - H Shanker Rao
- Department of Genomic Health, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| | - Jeremy S Haley
- Department of Genomic Health, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| | - Kevin C Long
- Division of Colorectal Surgery, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| | - Sasha H Slipak
- Division of Colorectal Surgery, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| | - David J Carey
- Department of Genomic Health, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| | - Rebecca L Hoffman
- Division of Colorectal Surgery, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, Pennsylvania
| |
Collapse
|
10
|
Zhao Z, Gu S, Yang Y, Wu W, Du L, Wang G, Dong H. A cost-effectiveness analysis of lung cancer screening with low-dose computed tomography and a polygenic risk score. BMC Cancer 2024; 24:73. [PMID: 38218803 PMCID: PMC10787978 DOI: 10.1186/s12885-023-11800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Several studies have proved that Polygenic Risk Score (PRS) is a potential candidate for realizing precision screening. The effectiveness of low-dose computed tomography (LDCT) screening for lung cancer has been proved to reduce lung cancer specific and overall mortality, but the cost-effectiveness of diverse screening strategies remained unclear. METHODS The comparative cost-effectiveness analysis used a Markov state-transition model to assess the potential effect and costs of the screening strategies incorporating PRS or not. A hypothetical cohort of 300,000 heavy smokers entered the study at age 50-74 years and were followed up until death or age 79 years. The model was run with a cycle length of 1 year. All the transition probabilities were validated and the performance value of PRS was extracted from published literature. A societal perspective was adopted and cost parameters were derived from databases of local medical insurance bureau. Sensitivity analyses and scenario analyses were conducted. RESULTS The strategy incorporating PRS was estimated to obtain an ICER of CNY 156,691.93 to CNY 221,741.84 per QALY gained compared with non-screening with the initial start age range across 50-74 years. The strategy that screened using LDCT alone from 70-74 years annually could obtain an ICER of CNY 80,880.85 per QALY gained, which was the most cost-effective strategy. The introduction of PRS as an extra eligible criteria was associated with making strategies cost-saving but also lose the capability of gaining more LYs compared with LDCT screening alone. CONCLUSION The PRS-based conjunctive screening strategy for lung cancer screening in China was not cost-effective using the willingness-to-pay threshold of 1 time Gross Domestic Product (GDP) per capita, and the optimal screening strategy for lung cancer still remains to be LDCT screening for now. Further optimization of the screening modality can be useful to consider adoption of PRS and prospective evaluation remains a research priority.
Collapse
Affiliation(s)
- Zixuan Zhao
- Department of Public Administration, School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyan Gu
- Center for Health Policy and Management Studies, School of Government, Nanjing University, Nanjing, China
| | - Yi Yang
- Department of Science and Education of the Fourth Affiliated Hospital, and Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijia Wu
- Department of Science and Education of the Fourth Affiliated Hospital, and Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingbin Du
- Department of Cancer Prevention, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences/Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou, China
| | - Gaoling Wang
- Department of Public Administration, School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hengjin Dong
- Department of Science and Education of the Fourth Affiliated Hospital, and Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Gallagher JH, Vassy JL, Clayman ML. Navigating the uncertainty of precision cancer screening: The role of shared decision-making. PEC INNOVATION 2023; 2:100127. [PMID: 37214512 PMCID: PMC10194244 DOI: 10.1016/j.pecinn.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 05/24/2023]
Abstract
Objective Describe how applying a shared decision making (SDM) lens to the implementation of new technologies can improve patient-centeredness. Methods This paper argues that the emergence of polygenic risk scores (PRS) for cancer screening presents an illustrative opportunity to include SDM when novel technologies enter clinical care. Results PRS are novel tools that indicate an individual's genetic risk of a given disease relative to the population. PRS are anticipated to help identify individuals most and least likely to benefit from screening. However, PRS have several types of uncertainty, including validity across populations, disparate computational methods, and inclusion of different genomic data across laboratories. Conclusion Implementing SDM alongside new technologies could prove useful for their ethical and patient-centered utilization. SDM's importance as an approach to decision-making will not diminish, as evidence, uncertainty, and patient values will remain intrinsic to the art and science of clinical care. Innovation SDM can help providers and patients navigate the considerable uncertainty inherent in implementing new technologies, enabling decision-making based on existing evidence and patient values.
Collapse
Affiliation(s)
- Joseph H. Gallagher
- Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Jason L. Vassy
- Center for Healthcare Organization and Implementation Research (CHOIR), Veterans Health Administration, Bedford MA and Boston MA, United States
- Harvard Medical School, Boston, MA United States
- Brigham and Women’s Hospital, Boston, MA, United States
- Population Precision Health, Ariadne Labs, Boston, MA, United States
| | - Marla L. Clayman
- Center for Healthcare Organization and Implementation Research (CHOIR), Veterans Health Administration, Bedford MA and Boston MA, United States
- UMass Chan School of Medicine, Department of Population and Quantitative Health Sciences, Worcester, MA, United States
| |
Collapse
|
12
|
Sullivan BA, Qin X, Redding TS, Weiss D, Upchurch J, Sims KJ, Dominitz JA, Stone A, Ear B, Williams CD, Lieberman DA, Hauser ER. Colorectal Cancer Polygenic Risk Score Is Associated With Screening Colonoscopy Findings but Not Follow-Up Outcomes. GASTRO HEP ADVANCES 2023; 3:151-161. [PMID: 39129957 PMCID: PMC11307447 DOI: 10.1016/j.gastha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Colorectal cancer (CRC) polygenic risk scores (PRS) may help personalize CRC prevention strategies. We investigated whether an existing PRS was associated with advanced neoplasia (AN) in a population undergoing screening and follow-up colonoscopy. Methods We evaluated 10-year outcomes in the Cooperative Studies Program #380 screening colonoscopy cohort, which includes a biorepository of selected individuals with baseline AN (defined as CRC or adenoma ≥10 mm or villous histology, or high-grade dysplasia) and matched individuals without AN. A PRS was constructed from 136 prespecified CRC-risk single nucleotide polymorphisms. Multivariate logistic regression was used to evaluate the PRS for associations with AN prevalence at baseline screening colonoscopy or incident AN in participants with at least one follow-up colonoscopy. Results The PRS was associated with AN risk at baseline screening colonoscopy (P = .004). Participants in the lowest PRS quintile had more than a 70% decreased risk of AN at baseline (odds ratio 0.29, 95% confidence interval 0.14-0.58; P < .001) compared to participants with a PRS in the middle quintile. Using a PRS cut-off of more than the first quintile to indicate need for colonoscopy as primary screening, the sensitivity for detecting AN at baseline is 91.8%. We did not observe a relationship between the PRS and incident AN during follow-up (P = .28). Conclusion A PRS could identify individuals at low risk for prevalent AN. Ongoing work will determine whether this PRS can identify a subset of individuals at sufficiently low risk who could safely delay or be reassured about noninvasive screening. Otherwise, more research is needed to augment these genetic tools to predict incident AN during long-term follow-up.
Collapse
Affiliation(s)
- Brian A. Sullivan
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - Xuejun Qin
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - Thomas S. Redding
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
| | - David Weiss
- Cooperative Studies Program Coordinating Center, Perry Point VA Medical Center, Perry Point, Maryland
| | - Julie Upchurch
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
| | - Kellie J. Sims
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
| | - Jason A. Dominitz
- Division of Gastroenterology, VA Puget Sound Health Care System, Seattle, Washington
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, Washington
| | - Anjanette Stone
- Cooperative Studies Program Pharmacogenomics Analysis Laboratory, Central Arkansas Veterans Health System, Little Rock, Arkansas
| | - Belinda Ear
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
| | - Christina D. Williams
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
- Division of Gastroenterology, Duke University, Durham, North Carolina
| | - David A. Lieberman
- Division of Gastroenterology, VA Portland Health Care System, Portland, Oregon
- Division of Gastroenterology, Oregon Health & Science University, Portland, Oregon
| | - Elizabeth R. Hauser
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina
- Division of Gastroenterology, Duke University, Durham, North Carolina
| |
Collapse
|
13
|
Chapman CR. Ethical, legal, and social implications of genetic risk prediction for multifactorial disease: a narrative review identifying concerns about interpretation and use of polygenic scores. J Community Genet 2023; 14:441-452. [PMID: 36529843 PMCID: PMC10576696 DOI: 10.1007/s12687-022-00625-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Advances in genomics have enabled the development of polygenic scores (PGS), sometimes called polygenic risk scores, in the context of multifactorial diseases and disorders such as cancer, cardiovascular disease, and schizophrenia. PGS estimate an individual's genetic predisposition, as compared to other members of a population, for conditions which are influenced by both genetic and environmental factors. There is significant interest in using genetic risk prediction afforded through PGS in public health, clinical care, and research settings, yet many acknowledge the need to thoughtfully consider and address ethical, legal, and social implications (ELSI). To contribute to this effort, this paper reports on a narrative review of the literature, with the aim of identifying and categorizing ELSI relating to genetic risk prediction in the context of multifactorial disease, which have been raised by scholars in the field. Ninety-two articles, spanning from 1977 to 2021, met the inclusion criteria for this study. Identified ELSI included potential benefits, challenges and risks that focused on concerns about interpretation and use, and ethical obligations to maximize benefits, minimize risks, promote justice, and support autonomy. This research will support geneticists, clinicians, genetic counselors, patients, patient advocates, and policymakers in recognizing and addressing ethical concerns associated with PGS; it will also guide future empirical and normative research.
Collapse
Affiliation(s)
- Carolyn Riley Chapman
- Department of Population Health (Division of Medical Ethics), NYU Grossman School of Medicine, New York, NY, USA.
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, Science Building, 435 E. 30th St, 8th Floor, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Lee J, Jukarainen S, Karvanen A, Dixon P, Davies NM, Smith GD, Natarajan P, Ganna A. Quantifying the causal impact of biological risk factors on healthcare costs. Nat Commun 2023; 14:5672. [PMID: 37704630 PMCID: PMC10499912 DOI: 10.1038/s41467-023-41394-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Understanding the causal impact that clinical risk factors have on healthcare-related costs is critical to evaluate healthcare interventions. Here, we used a genetically-informed design, Mendelian Randomization (MR), to infer the causal impact of 15 risk factors on annual total healthcare costs. We calculated healthcare costs for 373,160 participants from the FinnGen Study and replicated our results in 323,774 individuals from the United Kingdom and Netherlands. Robust causal effects were observed for waist circumference (WC), adult body mass index, and systolic blood pressure, in which a standard deviation increase corresponded to 22.78% [95% CI: 18.75-26.95], 13.64% [10.26-17.12], and 13.08% [8.84-17.48] increased healthcare costs, respectively. A lack of causal effects was observed for certain clinically relevant biomarkers, such as albumin, C-reactive protein, and vitamin D. Our results indicated that increased WC is a major contributor to annual total healthcare costs and more attention may be given to WC screening, surveillance, and mitigation.
Collapse
Affiliation(s)
- Jiwoo Lee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sakari Jukarainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Karvanen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Padraig Dixon
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Neil M Davies
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Rd, London, W1T 7NF, UK
- Department of Statistical Sciences, University College London, London, WC1E 6BT, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, BS8 2BN, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, BS8 2BN, Bristol, UK
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Abstract
Since the publication of the first genome-wide association study for cancer in 2007, thousands of common alleles that are associated with the risk of cancer have been identified. The relative risk associated with individual variants is small and of limited clinical significance. However, the combined effect of multiple risk variants as captured by polygenic scores (PGSs) may be much greater and therefore provide risk discrimination that is clinically useful. We review the considerable research efforts over the past 15 years for developing statistical methods for PGSs and their application in large-scale genome-wide association studies to develop PGSs for various cancers. We review the predictive performance of these PGSs and the multiple challenges currently limiting the clinical application of PGSs. Despite this, PGSs are beginning to be incorporated into clinical multifactorial risk prediction models to stratify risk in both clinical trials and clinical implementation studies.
Collapse
Affiliation(s)
- Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Stiller S, Drukewitz S, Lehmann K, Hentschel J, Strehlow V. Clinical Impact of Polygenic Risk Score for Breast Cancer Risk Prediction in 382 Individuals with Hereditary Breast and Ovarian Cancer Syndrome. Cancers (Basel) 2023; 15:3938. [PMID: 37568754 PMCID: PMC10417109 DOI: 10.3390/cancers15153938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Single nucleotide polymorphisms are currently not considered in breast cancer (BC) risk predictions used in daily practice of genetic counselling and clinical management of familial BC in Germany. This study aimed to assess the clinical value of incorporating a 313-variant-based polygenic risk score (PRS) into BC risk calculations in a cohort of German women with suspected hereditary breast and ovarian cancer syndrome (HBOC). Data from 382 individuals seeking counselling for HBOC were analysed. Risk calculations were performed using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm with and without the inclusion of the PRS. Changes in risk predictions and their impact on clinical management were evaluated. The PRS led to changes in risk stratification based on 10-year risk calculations in 13.6% of individuals. Furthermore, the inclusion of the PRS in BC risk predictions resulted in clinically significant changes in 12.0% of cases, impacting the prevention recommendations established by the German Consortium for Hereditary Breast and Ovarian Cancer. These findings support the implementation of the PRS in genetic counselling for personalized BC risk assessment.
Collapse
Affiliation(s)
- Sarah Stiller
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Stephan Drukewitz
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Kathleen Lehmann
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Campa D, Gentiluomo M, Stein A, Aoki MN, Oliverius M, Vodičková L, Jamroziak K, Theodoropoulos G, Pasquali C, Greenhalf W, Arcidiacono PG, Uzunoglu F, Pezzilli R, Luchini C, Puzzono M, Loos M, Giaccherini M, Katzke V, Mambrini A, Kiudeliene E, Federico KE, Johansen J, Hussein T, Mohelnikova-Duchonova B, van Eijck CHJ, Brenner H, Farinella R, Pérez JS, Lovecek M, Büchler MW, Hlavac V, Izbicki JR, Hackert T, Chammas R, Zerbi A, Lawlor R, Felici A, Götz M, Capurso G, Ginocchi L, Gazouli M, Kupcinskas J, Cavestro GM, Vodicka P, Moz S, Neoptolemos JP, Kunovsky L, Bojesen SE, Carrara S, Gioffreda D, Morkunas E, Abian O, Bunduc S, Basso D, Boggi U, Wlodarczyk B, Szentesi A, Vanella G, Chen I, Bijlsma MF, Kiudelis V, Landi S, Schöttker B, Corradi C, Giese N, Kaaks R, Peduzzi G, Hegyi P, Morelli L, Furbetta N, Soucek P, Latiano A, Talar-Wojnarowska R, Lindgaard SC, Dijk F, Milanetto AC, Tavano F, Cervena K, Erőss B, Testoni SG, Verhagen-Oldenampsen JHE, Małecka-Wojciesko E, Costello E, Salvia R, Maiello E, Ermini S, Sperti C, Holleczek B, Perri F, Skieceviciene J, Archibugi L, Lucchesi M, Rizzato C, Canzian F. The PANcreatic Disease ReseArch (PANDoRA) consortium: Ten years' experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol 2023; 186:104020. [PMID: 37164172 DOI: 10.1016/j.critrevonc.2023.104020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Pancreatic cancer has an incidence that almost matches its mortality. Only a small number of risk factors and 33 susceptibility loci have been identified. so Moreover, the relative rarity of pancreatic cancer poses significant hurdles for research aimed at increasing our knowledge of the genetic mechanisms contributing to the disease. Additionally, the inability to adequately power research questions prevents small monocentric studies from being successful. Several consortia have been established to pursue a better understanding of the genetic architecture of pancreatic cancers. The Pancreatic disease research (PANDoRA) consortium is the largest in Europe. PANDoRA is spread across 12 European countries, Brazil and Japan, bringing together 29 basic and clinical research groups. In the last ten years, PANDoRA has contributed to the discovery of 25 susceptibility loci, a feat that will be instrumental in stratifying the population by risk and optimizing preventive strategies.
Collapse
Affiliation(s)
- Daniele Campa
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy.
| | - Manuel Gentiluomo
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodičková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - George Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Claudio Pasquali
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - William Greenhalf
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | - Faik Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Verena Katzke
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mambrini
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Edita Kiudeliene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Julia Johansen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Tamás Hussein
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Juan Sainz Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Complejo Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain; Department of Immunology, University of Granada, Granada, Spain
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Rita Lawlor
- ARC-Net Research Center, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Alessio Felici
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Laura Ginocchi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Juozas Kupcinskas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Stefania Moz
- Azienda Ospedale-Università di Padova Medicina di Laboratorio, Padova, Italy
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lumir Kunovsky
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic; 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Stig E Bojesen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Egidijus Morkunas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olga Abian
- Instituto BIFI-Universidad de Zaragoza, Zaragoza, Spain
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Insitute, Bucharest, Romania
| | - Daniela Basso
- Dept. of Medicine, University of Padova Medicina di Laboratorio, Padova, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Barbara Wlodarczyk
- Dept of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Inna Chen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Maarten F Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vytautas Kiudelis
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Stefano Landi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Corradi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giulia Peduzzi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Péter Hegyi
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation University of Szeged, Szeged, Hungary
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Sidsel C Lindgaard
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Frederike Dijk
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Anna Caterina Milanetto
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bálint Erőss
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Sabrina G Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | | | | | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Cosimo Sperti
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 1, Padova, Italy
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Saarland Cancer Registry, Saarbrücken, Germany
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Jurgita Skieceviciene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Maurizio Lucchesi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Kim J, Haffty BG. Genetic Factors in the Screening and Imaging for Breast Cancer. Korean J Radiol 2023; 24:378-383. [PMID: 37056158 PMCID: PMC10157325 DOI: 10.3348/kjr.2023.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Jongmyung Kim
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School and Rutgers New Jersey Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Bruce George Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School and Rutgers New Jersey Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
19
|
Kuo CY, Wu JW, Yeh JH, Wang WL, Tu CH, Chiu HM, Liao WC. Implementing precision medicine in endoscopy practice. J Gastroenterol Hepatol 2022; 37:1455-1468. [PMID: 35778863 DOI: 10.1111/jgh.15933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
In contrast to the "one-size-fits-all" approach, precision medicine focuses on providing health care tailored to individual variabilities. Implementing precision medicine in endoscopy practice involves selecting the appropriate procedures among the endoscopic armamentarium in the diagnosis and management of patients in a logical sequence, jointly considering the pretest probabilities of possible diagnoses, patients' comorbidities and preference, and risk-benefit ratio of the individual procedures given the clinical scenario. The aim of this review is to summarize evidence-supported strategies and measures that may enhance precision medicine in general endoscopy practice.
Collapse
Affiliation(s)
- Chen-Ya Kuo
- Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Jer-Wei Wu
- Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Jen-Hao Yeh
- Department of Internal Medicine, E-DA Dachang Hospital, Kaohsiung, Taiwan
| | - Wen-Lun Wang
- Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Hung Tu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Chih Liao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|