1
|
Kaster L, Hillis E, Oh IY, Aravamuthan BR, Lanzotti VC, Vickstrom CR, Gurnett CA, Payne PRO, Gupta A. Automated extraction of functional biomarkers of verbal and ambulatory ability from multi-institutional clinical notes using large language models. J Neurodev Disord 2025; 17:24. [PMID: 40307685 PMCID: PMC12042395 DOI: 10.1186/s11689-025-09612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/12/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Functional biomarkers in neurodevelopmental disorders, such as verbal and ambulatory abilities, are essential for clinical care and research activities. Treatment planning, intervention monitoring, and identifying comorbid conditions in individuals with intellectual and developmental disabilities (IDDs) rely on standardized assessments of these abilities. However, traditional assessments impose a burden on patients and providers, often leading to longitudinal inconsistencies and inequities due to evolving guidelines and associated time-cost. Therefore, this study aimed to develop an automated approach to classify verbal and ambulatory abilities from EHR data of IDD and cerebral palsy (CP) patients. Application of large language models (LLMs) to clinical notes, which are rich in longitudinal data, may provide a low-burden pipeline for extracting functional biomarkers efficiently and accurately. METHODS Data from the multi-institutional National Brain Gene Registry (BGR) and a CP clinic cohort were utilized, comprising 3,245 notes from 125 individuals and 5,462 clinical notes from 260 individuals, respectively. Employing three LLMs-GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4 Omni-we provided the models with a clinical note and utilized a detailed conversational format to prompt the models to answer: "Does the individual use any words?" and "Can the individual walk without aid?" These responses were evaluated against ground-truth abilities, which were established using neurobehavioral assessments collected for each dataset. RESULTS LLM pipelines demonstrated high accuracy (weighted-F1 scores > .90) in predicting ambulatory ability for both cohorts, likely due to the consistent use of Gross Motor Functional Classification System (GMFCS) as a consistent ground-truth standard. However, verbal ability predictions were more accurate in the BGR cohort, likely due to higher adherence between the prompt and ground-truth assessment questions. While LLMs can be computationally expensive, analysis of our protocol affirmed the cost effectiveness when applied to select notes from the EHR. CONCLUSIONS LLMs are effective at extracting functional biomarkers from EHR data and broadly generalizable across variable note-taking practices and institutions. Individual verbal and ambulatory ability were accurately extracted, supporting the method's ability to streamline workflows by offering automated, efficient data extraction for patient care and research. Future studies are needed to extend this methodology to additional populations and to demonstrate more granular functional data classification.
Collapse
Affiliation(s)
- Levi Kaster
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ethan Hillis
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Inez Y Oh
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bhooma R Aravamuthan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Virginia C Lanzotti
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Casey R Vickstrom
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Philip R O Payne
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Aditi Gupta
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Möller B, Becker LL, Saffari A, Afenjar A, Coci EG, Williamson R, Ward-Melver C, Gibaud M, Sedláčková L, Laššuthová P, Libá Z, Vlčková M, William N, Klee EW, Gavrilova RH, Lévy J, Capri Y, Scavina M, Körner RW, Valivullah Z, Weiß C, Möller GM, Frazier Z, Roberts A, Gener B, Scala M, Striano P, Zara F, Thiel M, Sinnema M, Kamsteeg EJ, Donkervoort S, Duboc V, Zaafrane-Khachnaoui K, Elkhateeb N, Selim L, Margot H, Marin V, Beneteau C, Isidor B, Cogne B, Keren B, Küsters B, Beggs AH, Sveden A, Chopra M, Genetti CA, Nicolai J, Dötsch J, Koy A, Bönnemann CG, von der Hagen M, von Kleist-Retzow JC, Voermans NC, Jungbluth H, Dafsari HS. The expanding clinical and genetic spectrum of DYNC1H1-related disorders. Brain 2025; 148:597-612. [PMID: 38848546 PMCID: PMC11788221 DOI: 10.1093/brain/awae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Intracellular trafficking involves an intricate machinery of motor complexes, including the dynein complex, to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains, as well as cytoplasmic light and intermediate chains, have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of neurodevelopmental disorder manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.
Collapse
Affiliation(s)
- Birk Möller
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Lena-Luise Becker
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute for Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Afshin Saffari
- Heidelberg University, Medical Faculty Heidelberg, University Hospital Heidelberg, Center for Pediatrics and Adolescent Medicine, Department of Pediatrics I, Division of Child Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Alexandra Afenjar
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Intellectual Disabilities of Rare Causes, Department of Genetics and Medical Embryology, Sorbonne University, Trousseau Hospital Paris, 75012 Paris, France
| | - Emanuele G Coci
- Department of Paediatrics, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Marc Gibaud
- Service de pédiatrie, CHU de Nantes, 44000 Nantes, France
| | - Lucie Sedláčková
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Petra Laššuthová
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Zuzana Libá
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Markéta Vlčková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Nancy William
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | - Eric W Klee
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ralitza H Gavrilova
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Yline Capri
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Mena Scavina
- Division of Neurology, Nemours Children’s Health, Wilmington, Delaware 19803, USA
| | - Robert Walter Körner
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute Harvard, Cambridge, MA 02142, USA
| | - Claudia Weiß
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Greta Marit Möller
- Berlin University of Applied Sciences and Technology, 10587 Berlin, Germany
| | - Zoë Frazier
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amy Roberts
- Center for Cardiovascular Genetics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biobizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Moritz Thiel
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronique Duboc
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Khaoula Zaafrane-Khachnaoui
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Trust, Cambridge CB2 3EH, UK
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Laila Selim
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Henri Margot
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Victor Marin
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Claire Beneteau
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Bertrand Isidor
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Benjamin Cogne
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Boris Keren
- Genetic Department, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Benno Küsters
- Department of Pathology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Abigail Sveden
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Maya Chopra
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maja von der Hagen
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nicol C Voermans
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
5
|
Baldridge D, Kaster L, Sancimino C, Srivastava S, Molholm S, Gupta A, Oh I, Lanzotti V, Grewal D, Riggs ER, Savatt JM, Hauck R, Sveden A, Constantino JN, Piven J, Gurnett CA, Chopra M, Hazlett H, Payne PRO. The Brain Gene Registry: a data snapshot. J Neurodev Disord 2024; 16:17. [PMID: 38632549 PMCID: PMC11022437 DOI: 10.1186/s11689-024-09530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Monogenic disorders account for a large proportion of population-attributable risk for neurodevelopmental disabilities. However, the data necessary to infer a causal relationship between a given genetic variant and a particular neurodevelopmental disorder is often lacking. Recognizing this scientific roadblock, 13 Intellectual and Developmental Disabilities Research Centers (IDDRCs) formed a consortium to create the Brain Gene Registry (BGR), a repository pairing clinical genetic data with phenotypic data from participants with variants in putative brain genes. Phenotypic profiles are assembled from the electronic health record (EHR) and a battery of remotely administered standardized assessments collectively referred to as the Rapid Neurobehavioral Assessment Protocol (RNAP), which include cognitive, neurologic, and neuropsychiatric assessments, as well as assessments for attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Co-enrollment of BGR participants in the Clinical Genome Resource's (ClinGen's) GenomeConnect enables display of variant information in ClinVar. The BGR currently contains data on 479 participants who are 55% male, 6% Asian, 6% Black or African American, 76% white, and 12% Hispanic/Latine. Over 200 genes are represented in the BGR, with 12 or more participants harboring variants in each of these genes: CACNA1A, DNMT3A, SLC6A1, SETD5, and MYT1L. More than 30% of variants are de novo and 43% are classified as variants of uncertain significance (VUSs). Mean standard scores on cognitive or developmental screens are below average for the BGR cohort. EHR data reveal developmental delay as the earliest and most common diagnosis in this sample, followed by speech and language disorders, ASD, and ADHD. BGR data has already been used to accelerate gene-disease validity curation of 36 genes evaluated by ClinGen's BGR Intellectual Disability (ID)-Autism (ASD) Gene Curation Expert Panel. In summary, the BGR is a resource for use by stakeholders interested in advancing translational research for brain genes and continues to recruit participants with clinically reported variants to establish a rich and well-characterized national resource to promote research on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Levi Kaster
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Catherine Sancimino
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | - Sophie Molholm
- Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Gupta
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Inez Oh
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Virginia Lanzotti
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daleep Grewal
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Erin Rooney Riggs
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | | | - Rachel Hauck
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Abigail Sveden
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | - John N Constantino
- Division of Behavioral and Mental Health, Departments of Psychiatry and Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Joseph Piven
- The Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maya Chopra
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | - Heather Hazlett
- The Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Philip R O Payne
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|