1
|
Tafavvoghi M, Bongo LA, Shvetsov N, Busund LTR, Møllersen K. Publicly available datasets of breast histopathology H&E whole-slide images: A scoping review. J Pathol Inform 2024; 15:100363. [PMID: 38405160 PMCID: PMC10884505 DOI: 10.1016/j.jpi.2024.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Advancements in digital pathology and computing resources have made a significant impact in the field of computational pathology for breast cancer diagnosis and treatment. However, access to high-quality labeled histopathological images of breast cancer is a big challenge that limits the development of accurate and robust deep learning models. In this scoping review, we identified the publicly available datasets of breast H&E-stained whole-slide images (WSIs) that can be used to develop deep learning algorithms. We systematically searched 9 scientific literature databases and 9 research data repositories and found 17 publicly available datasets containing 10 385 H&E WSIs of breast cancer. Moreover, we reported image metadata and characteristics for each dataset to assist researchers in selecting proper datasets for specific tasks in breast cancer computational pathology. In addition, we compiled 2 lists of breast H&E patches and private datasets as supplementary resources for researchers. Notably, only 28% of the included articles utilized multiple datasets, and only 14% used an external validation set, suggesting that the performance of other developed models may be susceptible to overestimation. The TCGA-BRCA was used in 52% of the selected studies. This dataset has a considerable selection bias that can impact the robustness and generalizability of the trained algorithms. There is also a lack of consistent metadata reporting of breast WSI datasets that can be an issue in developing accurate deep learning models, indicating the necessity of establishing explicit guidelines for documenting breast WSI dataset characteristics and metadata.
Collapse
Affiliation(s)
- Masoud Tafavvoghi
- Department of Community Medicine, Uit The Arctic University of Norway, Tromsø, Norway
| | - Lars Ailo Bongo
- Department of Computer Science, Uit The Arctic University of Norway, Tromsø, Norway
| | - Nikita Shvetsov
- Department of Computer Science, Uit The Arctic University of Norway, Tromsø, Norway
| | | | - Kajsa Møllersen
- Department of Community Medicine, Uit The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Wang Z, Peng H, Wan J, Song A. Identification of histopathological classification and establishment of prognostic indicators of gastric adenocarcinoma based on deep learning algorithm. Med Mol Morphol 2024; 57:286-298. [PMID: 39088070 PMCID: PMC11543764 DOI: 10.1007/s00795-024-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
The aim of this study is to establish a deep learning (DL) model to predict the pathological type of gastric adenocarcinoma cancer based on whole-slide images(WSIs). We downloaded 356 histopathological images of gastric adenocarcinoma (STAD) patients from The Cancer Genome Atlas database and randomly divided them into the training set, validation set and test set (8:1:1). Additionally, 80 H&E-stained WSIs of STAD were collected for external validation. The CLAM tool was used to cut the WSIs and further construct the model by DL algorithm, achieving an accuracy of over 90% in identifying and predicting histopathological subtypes. External validation results demonstrated the model had a certain generalization ability. Moreover, DL features were extracted from the model to further investigate the differences in immune infiltration and patient prognosis between the two subtypes. The DL model can accurately predict the pathological classification of STAD patients, and provide certain reference value for clinical diagnosis. The nomogram combining DL-signature, gene-signature and clinical features can be used as a prognostic classifier for clinical decision-making and treatment.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430101, Hubei, China
| | - Hui Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430101, Hubei, China
| | - Jie Wan
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430101, Hubei, China
| | - Anping Song
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430101, Hubei, China.
- Department of Oncology, Tongji Hospital Sino-French New City Branch, Caidian District, No.288 Xintian Avenue, Wuhan, 430101, Hubei, China.
| |
Collapse
|
3
|
Mondol RK, Millar EKA, Graham PH, Browne L, Sowmya A, Meijering E. hist2RNA: An Efficient Deep Learning Architecture to Predict Gene Expression from Breast Cancer Histopathology Images. Cancers (Basel) 2023; 15:2569. [PMID: 37174035 PMCID: PMC10177559 DOI: 10.3390/cancers15092569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Gene expression can be used to subtype breast cancer with improved prediction of risk of recurrence and treatment responsiveness over that obtained using routine immunohistochemistry (IHC). However, in the clinic, molecular profiling is primarily used for ER+ breast cancer, which is costly, tissue destructive, requires specialised platforms, and takes several weeks to obtain a result. Deep learning algorithms can effectively extract morphological patterns in digital histopathology images to predict molecular phenotypes quickly and cost-effectively. We propose a new, computationally efficient approach called hist2RNA inspired by bulk RNA sequencing techniques to predict the expression of 138 genes (incorporated from 6 commercially available molecular profiling tests), including luminal PAM50 subtype, from hematoxylin and eosin (H&E)-stained whole slide images (WSIs). The training phase involves the aggregation of extracted features for each patient from a pretrained model to predict gene expression at the patient level using annotated H&E images from The Cancer Genome Atlas (TCGA, n = 335). We demonstrate successful gene prediction on a held-out test set (n = 160, corr = 0.82 across patients, corr = 0.29 across genes) and perform exploratory analysis on an external tissue microarray (TMA) dataset (n = 498) with known IHC and survival information. Our model is able to predict gene expression and luminal PAM50 subtype (Luminal A versus Luminal B) on the TMA dataset with prognostic significance for overall survival in univariate analysis (c-index = 0.56, hazard ratio = 2.16 (95% CI 1.12-3.06), p < 5 × 10-3), and independent significance in multivariate analysis incorporating standard clinicopathological variables (c-index = 0.65, hazard ratio = 1.87 (95% CI 1.30-2.68), p < 5 × 10-3). The proposed strategy achieves superior performance while requiring less training time, resulting in less energy consumption and computational cost compared to patch-based models. Additionally, hist2RNA predicts gene expression that has potential to determine luminal molecular subtypes which correlates with overall survival, without the need for expensive molecular testing.
Collapse
Affiliation(s)
- Raktim Kumar Mondol
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW 2052, Australia; (R.K.M.); (A.S.)
| | - Ewan K. A. Millar
- Department of Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia;
- St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia;
- Faculty of Medicine and Health Sciences, Sydney Western University, Campbelltown, NSW 2560, Australia
- University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter H. Graham
- St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia;
- Cancer Care Centre, St George Hospital, Sydney, NSW 2217, Australia;
| | - Lois Browne
- Cancer Care Centre, St George Hospital, Sydney, NSW 2217, Australia;
| | - Arcot Sowmya
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW 2052, Australia; (R.K.M.); (A.S.)
| | - Erik Meijering
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW 2052, Australia; (R.K.M.); (A.S.)
| |
Collapse
|
4
|
Mandair D, Reis-Filho JS, Ashworth A. Biological insights and novel biomarker discovery through deep learning approaches in breast cancer histopathology. NPJ Breast Cancer 2023; 9:21. [PMID: 37024522 PMCID: PMC10079681 DOI: 10.1038/s41523-023-00518-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Breast cancer remains a highly prevalent disease with considerable inter- and intra-tumoral heterogeneity complicating prognostication and treatment decisions. The utilization and depth of genomic, transcriptomic and proteomic data for cancer has exploded over recent times and the addition of spatial context to this information, by understanding the correlating morphologic and spatial patterns of cells in tissue samples, has created an exciting frontier of research, histo-genomics. At the same time, deep learning (DL), a class of machine learning algorithms employing artificial neural networks, has rapidly progressed in the last decade with a confluence of technical developments - including the advent of modern graphic processing units (GPU), allowing efficient implementation of increasingly complex architectures at scale; advances in the theoretical and practical design of network architectures; and access to larger datasets for training - all leading to sweeping advances in image classification and object detection. In this review, we examine recent developments in the application of DL in breast cancer histology with particular emphasis of those producing biologic insights or novel biomarkers, spanning the extraction of genomic information to the use of stroma to predict cancer recurrence, with the aim of suggesting avenues for further advancing this exciting field.
Collapse
Affiliation(s)
- Divneet Mandair
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | | | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Wen Z, Wang S, Yang DM, Xie Y, Chen M, Bishop J, Xiao G. Deep learning in digital pathology for personalized treatment plans of cancer patients. Semin Diagn Pathol 2023; 40:109-119. [PMID: 36890029 DOI: 10.1053/j.semdp.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin Bishop
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Buvaneswari B, Vijayaraj J, Satheesh Kumar B. Histopathological image-based breast cancer detection employing 3D-convolutional neural network feature extraction and Stochastic Diffusion Kernel Recursive Neural Networks classification. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2022.2161148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- B. Buvaneswari
- Department of Information Technology, Panimalar Engineering College, Chennai, India
| | - J. Vijayaraj
- Department of Artificial Intelligence and Data Science, Easwari Engineering College, Chennai, India
| | - B. Satheesh Kumar
- Department of Computer Science and Engineering, School of Computing Science and Engineering, Galgotias University, Greater Noida, India
| |
Collapse
|
7
|
Kim I, Kang K, Song Y, Kim TJ. Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics (Basel) 2022; 12:2794. [PMID: 36428854 PMCID: PMC9688959 DOI: 10.3390/diagnostics12112794] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Given the recent success of artificial intelligence (AI) in computer vision applications, many pathologists anticipate that AI will be able to assist them in a variety of digital pathology tasks. Simultaneously, tremendous advancements in deep learning have enabled a synergy with artificial intelligence (AI), allowing for image-based diagnosis on the background of digital pathology. There are efforts for developing AI-based tools to save pathologists time and eliminate errors. Here, we describe the elements in the development of computational pathology (CPATH), its applicability to AI development, and the challenges it faces, such as algorithm validation and interpretability, computing systems, reimbursement, ethics, and regulations. Furthermore, we present an overview of novel AI-based approaches that could be integrated into pathology laboratory workflows.
Collapse
Affiliation(s)
- Inho Kim
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Kyungmin Kang
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Youngjae Song
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
8
|
Qiao Y, Zhao L, Luo C, Luo Y, Wu Y, Li S, Bu D, Zhao Y. Multi-modality artificial intelligence in digital pathology. Brief Bioinform 2022; 23:6702380. [PMID: 36124675 PMCID: PMC9677480 DOI: 10.1093/bib/bbac367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianhe Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| | - Chunlong Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengtong Li
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| |
Collapse
|
9
|
Wu Y, Cheng M, Huang S, Pei Z, Zuo Y, Liu J, Yang K, Zhu Q, Zhang J, Hong H, Zhang D, Huang K, Cheng L, Shao W. Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications. Cancers (Basel) 2022; 14:1199. [PMID: 35267505 PMCID: PMC8909166 DOI: 10.3390/cancers14051199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
With the remarkable success of digital histopathology, we have witnessed a rapid expansion of the use of computational methods for the analysis of digital pathology and biopsy image patches. However, the unprecedented scale and heterogeneous patterns of histopathological images have presented critical computational bottlenecks requiring new computational histopathology tools. Recently, deep learning technology has been extremely successful in the field of computer vision, which has also boosted considerable interest in digital pathology applications. Deep learning and its extensions have opened several avenues to tackle many challenging histopathological image analysis problems including color normalization, image segmentation, and the diagnosis/prognosis of human cancers. In this paper, we provide a comprehensive up-to-date review of the deep learning methods for digital H&E-stained pathology image analysis. Specifically, we first describe recent literature that uses deep learning for color normalization, which is one essential research direction for H&E-stained histopathological image analysis. Followed by the discussion of color normalization, we review applications of the deep learning method for various H&E-stained image analysis tasks such as nuclei and tissue segmentation. We also summarize several key clinical studies that use deep learning for the diagnosis and prognosis of human cancers from H&E-stained histopathological images. Finally, online resources and open research problems on pathological image analysis are also provided in this review for the convenience of researchers who are interested in this exciting field.
Collapse
Affiliation(s)
- Yawen Wu
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Michael Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.C.); (J.Z.); (K.H.)
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
| | - Shuo Huang
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Zongxiang Pei
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Yingli Zuo
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Jianxin Liu
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Kai Yang
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Qi Zhu
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Jie Zhang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.C.); (J.Z.); (K.H.)
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, China;
| | - Daoqiang Zhang
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.C.); (J.Z.); (K.H.)
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
| | - Liang Cheng
- Departments of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wei Shao
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (Y.W.); (S.H.); (Z.P.); (Y.Z.); (J.L.); (K.Y.); (Q.Z.); (D.Z.)
| |
Collapse
|