1
|
Lou Y, Dong C, Jiang Q, He Z, Yang S. Protein succinylation mechanisms and potential targeted therapies in urinary disease. Cell Signal 2025; 131:111744. [PMID: 40090556 DOI: 10.1016/j.cellsig.2025.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Succinylation is a relatively common post-translational modification. It occurs in the cytoplasm, mitochondria, and the nucleus, where its essential precursor, succinyl-CoA, is present, allowing for the modification of non-histone and histone proteins. In normal cells, succinylation levels are carefully regulated to sustain a dynamic balance, necessitating the involvement of various regulatory mechanisms, including non-enzymatic reactions, succinyltransferases, and desuccinylases. Among these regulatory factors, sirtuin 5, the first identified desuccinylase, plays a significant role and has been extensively researched. The level of succinylation has a significant effect on multiple metabolic pathways, including the tricarboxylic acid cycle, redox balance, and fatty acid metabolism. Dysregulated succinylation can contribute to the progression or exacerbation of various urinary diseases. Succinylation predominantly affects disease progression by altering the expression of key genes and modulating the activity of enzymes involved in vital metabolic processes. Desuccinylases primarily affect enzymes associated with Warburg's effect, thereby affecting the energy supply of tumor cells, while succinyltransferases can regulate gene transcription to alter cell phenotype, thereby involving the development of urinary diseases. Considering these effects, targeting succinylation-related enzymes to regulate metabolic pathways or gene expression may offer a promising therapeutic strategy for treating urinary diseases.
Collapse
Affiliation(s)
- Yuanquan Lou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
2
|
Wang C, Yu X, Yu X, Xiao H, Song Y, Wang X, Zheng H, Chen K, An Y, Zhou Z, Guo X, Wang F. Gut flora-derived succinate exacerbates Allergic Airway Inflammation by promoting protein succinylation. Redox Biol 2025; 82:103623. [PMID: 40174477 PMCID: PMC11999320 DOI: 10.1016/j.redox.2025.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Allergic airway inflammation (AAI) is a prevalent respiratory disorder that affects a vast number of individuals globally. There exists a complex interplay among inflammation, immune responses, and metabolic processes, which is of paramount importance in the pathogenesis of AAI. Metabolic dysregulation and protein translational modification (PTM) are well-recognized hallmarks of diseases, playing pivotal roles in the onset and progression of numerous ailments. However, the role of gut microbiota metabolites in the development of AAI, as well as their influence on PTM modifications within this disease context, have not been thoroughly explored and investigated thus far. In AAI patients, succinate was identified as a key metabolite, positively correlated with certain immune parameters and IgE levels, and having good diagnostic value. In AAI mice, gut bacteria were the main source of high succinate levels. Mendelian randomization showed succinate as a risk factor for asthma. Exogenous succinate worsened AAI in mice, increasing airway resistance and inflammatory factor levels. Protein succinylation in AAI mice lungs differed significantly from normal mice, with up-regulated proteins in metabolic pathways. FMT alleviated AAI symptoms by reducing succinate and protein succinylation levels. In vitro, succinate promoted protein succinylation in BEAS-2B cells, and SOD2 was identified as a key succinylated protein, with the K68 site crucial for its modification and enzyme activity regulation. Gut flora-derived succinate exacerbates AAI in mice by increasing lung protein succinylation, and FMT can reverse this. These findings offer new insights into AAI mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education of China, China
| | - Xin Yu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Hui Xiao
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuemeng Song
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xinlei Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kai Chen
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China
| | - Xiaoping Guo
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education of China, China; JLU-USYD Joint Research Center for Respiratory Diseases, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China.
| |
Collapse
|
3
|
Xie Y, Cai N, Liu X, He L, Ma Y, Yan C, Liang J, Ouyang SH, Luo A, He Y, Lu J, Ao D, Liu J, Ye Z, Liu B, He RR, Li W. SIRT5: a potential target for discovering bioactive natural products. J Nat Med 2025; 79:441-464. [PMID: 39979670 PMCID: PMC12058867 DOI: 10.1007/s11418-024-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 02/22/2025]
Abstract
Silent information regulator 5 (SIRT5) is the fifth member of the sirtuin family, which is mainly expressed in mitochondrial matrix. SIRT5 plays a key role in metabolism and antioxidant responses, and is an important regulator for maintaining intracellular homeostasis. Given its involvement in multiple cellular processes, dysregulation of SIRT5 activity is associated with a variety of diseases. This review explores the structural characteristics of SIRT5 that influence its substrate specificity, highlights recent research advances, and summarizes its four key enzymatic activities along with their corresponding substrates in disease contexts. We also discuss the natural products that modulate SIRT5 activity and identify potential targets of SIRT5 through virtual docking, which may provide new therapeutic avenues. Although the mechanism of SIRT5 in diseases needs to be further elucidated and deglutathionylation activities are still at an early stage, targeting SIRT5 and its substrates holds significant promise for the development of novel therapeutics.
Collapse
Affiliation(s)
- Yuwei Xie
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaohua Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liangliang He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Yiming Ma
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Changyu Yan
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Juan Liang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Ao Luo
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yingzhi He
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jia Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhonglv Ye
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
4
|
Wang J, Yuan T, Yang B, He Q, Zhu H. SDH defective cancers: molecular mechanisms and treatment strategies. Cell Biol Toxicol 2025; 41:74. [PMID: 40285898 PMCID: PMC12033202 DOI: 10.1007/s10565-025-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Succinate dehydrogenase (SDH), considered as the linkage between tricarboxylic acid cycle (TCA cycle) and electron transport chain, plays a vital role in adenosine triphosphate (ATP) production and cell physiology. SDH deficiency is a notable characteristic in many cancers. Recent studies have pinpointed the dysregulation of SDH can directly result its decreased catalytic activity and the accumulation of oncometabolite succinate, promoting tumor progression in different perspectives. This article expounds the various types of SDH deficiency in tumors and the corresponding pathological features. In addition, we discuss the mechanisms through which defective SDH fosters carcinogenesis, pioneering a categorization of these mechanisms as being either succinate-dependent or independent. Since SDH-deficient and cumulative succinate are regarded as the typical features of some cancers, like gastrointestinal stromal tumors, pheochromocytomas and paragangliomas, we summarize the presented medical management of SDH-deficient tumor patients in clinical and preclinical, identifying the potential strategies for future cancer therapeutics.
Collapse
Affiliation(s)
- Jiaer Wang
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310000, China
| | - Tao Yuan
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China
| | - Bo Yang
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Qiaojun He
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Hong Zhu
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
5
|
Yuan W, Lu G, Zhao Y, He X, Liao S, Wang Z, Lei X, Xie Z, Yang X, Tang S, Tang G, Deng X. Intranuclear TCA and mitochondrial overload: The nascent sprout of tumors metabolism. Cancer Lett 2025; 613:217527. [PMID: 39909232 DOI: 10.1016/j.canlet.2025.217527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Abnormal glucose metabolism in tumors is a well-known form of metabolic reprogramming in tumor cells, the most representative of which, the Warburg effect, has been widely studied and discussed since its discovery. However, contradictions in a large number of studies and suboptimal efficacy of drugs targeting glycolysis have prompted us to further deepen our understanding of glucose metabolism in tumors. Here, we review recent studies on mitochondrial overload, nuclear localization of metabolizing enzymes, and intranuclear TCA (nTCA) in the context of the anomalies produced by inhibition of the Warburg effect. We provide plausible explanations for many of the contradictory points in the existing studies, including the causes of the Warburg effect. Furthermore, we provide a detailed prospective discussion of these studies in the context of these new findings, providing new ideas for the use of nTCA and mitochondrial overload in tumor therapy.
Collapse
Affiliation(s)
- Weixi Yuan
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guozhong Lu
- 922nd Hospital of Hengyang, 421001, Hunan, China
| | - Yin Zhao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang He
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Senyi Liao
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyong Lei
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Zhizhong Xie
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Pharmacy, Xiangnan University, Chenzhou, 423000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery Systems (2018TP1044), Hunan, 410007, China.
| | - Guotao Tang
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Tian H, Ge Y, Yu J, Chen X, Wang H, Cai X, Shan Z, Zuo L, Liu Y. CPT1A mediates succinylation of LDHA at K318 site promoteing metabolic reprogramming in NK/T-cell lymphoma nasal type. Cell Biol Toxicol 2025; 41:42. [PMID: 39934546 PMCID: PMC11814014 DOI: 10.1007/s10565-025-09994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Carnitine palmitoyltransferase 1A (CPT1A), a succinylating enzyme, is highly expressed in various malignant tumors and promotes tumor progression. Succinylation is a posttranslational modification that has been reported in various diseases, but its role in NK/T-Cell lymphoma nasal type (ENKTL-NT) remains underexplored. In this study, bioinformatics analysis showed that glycolytic is a major metabolic pathway in ENKTL-NT as the expression of many glycolytic related kinases are increased. CPT1A probably mediates glycolytic process, as indicated by GO-enrichment analysis. Studies showed that CPT1A was upregulated in ENKTL-NT tissues, and that high CPT1A expression was associated with poor prognosis of ENKTL-NT. CPT1A promoted the proliferation, colony formation, invasion and glycolytic process of ENKTL-NT cells and suppresses apoptosis. Mechanistically, CPT1A promotes succinylation of LDHA at lysine 318 (K318), which increase the protein stability and the final protein level of LDHA. Both knockdown and mutation (K318R) of LDHA abolished the cancer-promoting effects of CPT1A in ENKTL-NT. In all, this study reveals the mechanism underlying the cancer-promoting effects of CPT1A via inducing LDHA succinylation and metabolic reprogramming in ENKTL-NT. These findings might provide potential targets for the diagnosis or therapy of ENKTL-NT.
Collapse
Affiliation(s)
- Hao Tian
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yi Ge
- Department of Stomatology, Hengyang Central Hospital, Yanfeng District, No.12, Yancheng Road, Hengyang, 421001, Hunan, China
| | - Jianjun Yu
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xing Chen
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Honghan Wang
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xu Cai
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhenfeng Shan
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Liang Zuo
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yan Liu
- Department of Head & Neck Surgery, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
7
|
Ke Z, Shen K, Wang L, Xu H, Pan X, Qian Z, Wen Y, Lv T, Zhang X, Song Y. Emerging roles of mitochondrial sirtuin SIRT5 in succinylation modification and cancer development. Front Immunol 2025; 16:1531246. [PMID: 39944690 PMCID: PMC11814216 DOI: 10.3389/fimmu.2025.1531246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Succinylation represents an emerging class of post-translational modifications (PTMs), characterized by the enzymatic or non-enzymatic transfer of a negatively charged four-carbon succinyl group to the ϵ-amino group of lysine residues, mediated by succinyl-coenzyme A. Recent studies have highlighted the involvement of succinylation in various diseases, particularly cancer progression. Sirtuin 5 (SIRT5), a member of the sirtuin family, has been extensively studied for its robust desuccinylase activity, alongside its deacetylase function. To date, only a limited number of SIRT5 substrates have been identified. These substrates mediate diverse physiological processes such as glucose oxidation, fatty acid oxidation, ammonia detoxification, reactive oxygen species scavenging, anti-apoptosis, and inflammatory responses. The regulation of these activities can occur through either the same enzymatic activity acting on different substrates or distinct enzymatic activities targeting the same substrate. Aberrant expression of SIRT5 has been closely linked to tumorigenesis and disease progression; however, its role remains controversial. SIRT5 exhibits dual functionalities: it can promote tumor proliferation, metastasis, drug resistance, and metabolic reprogramming, thereby acting as an oncogene; conversely, it can also inhibit tumor cell growth and induce apoptosis, functioning as a tumor suppressor gene. This review aims to provide a comprehensive overview of the current research status of SIRT5. We discuss its structural characteristics and regulatory mechanisms, compare its functions with other sirtuin family members, and elucidate the mechanisms regulating SIRT5 activity. Specifically, we focus on the role of succinylation modification mediated by SIRT5 in tumor progression, highlighting how desuccinylation by SIRT5 modulates tumor development and delineating the underlying mechanisms involved.
Collapse
Affiliation(s)
- Zhangmin Ke
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Kaikai Shen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Hao Xu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Zhenjue Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Yuting Wen
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Li D, Zhang L, Gong Q, Deng H, Luo C, Zhou T, Huang W, Xu Y. The role of myocardial energy metabolism perturbations in diabetic cardiomyopathy: from the perspective of novel protein post-translational modifications. Clin Epigenetics 2025; 17:15. [PMID: 39865334 PMCID: PMC11765930 DOI: 10.1186/s13148-025-01814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes. This review examines the epigenetic pathogenesis of DbCM, primarily focusing on myocardial energy metabolism perturbations and novel PTMs associated with them. It provides a detailed analysis of the mechanisms of these novel PTMs in DbCM to enhance the understanding of DbCM pathophysiology and establish a theoretical foundation for the development of new treatment strategies for DbCM.
Collapse
Affiliation(s)
- Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Li Zhang
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Department of Du's Orthopedic Surgery, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China
| | - Qiming Gong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Nephrology, Youjiang Medical College for Nationalities Affiliated Hospital, Youjiang, 533000, Guangxi, China
- Guangxi Key Laboratory of Basic Medical Research Support for Immune Related Diseases, Youjiang Medical University for Nationalities, Youjiang, 533000, Guangxi, China
| | - Huilan Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Changfang Luo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Zheng Z, Xiao P, Kuang J, Wang Z, Wang X, Huang D, Guo Y, Zhou L, Yang Y, Ding S, Zheng C, Wang Y, Fu S, Deng X. Unlocking the Hidden Potential of Cancer Therapy Targeting Lysine Succinylation. J Cancer 2025; 16:821-834. [PMID: 39781339 PMCID: PMC11705062 DOI: 10.7150/jca.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
Lysine succinylation is an emerging post-translational modification of proteins. It involves the addition of the succinyl group to lysine residues of target proteins through both enzymatic and non-enzymatic pathways. This modification can alter the structure of the target protein, which, in turn, impacts protein activity and function and is involved in a wide range of diseases. In the field of cancer biology, lysine succinylation has been shown to exert a substantial influence on metabolic reprogramming of tumor cells, regulation of gene expression, and activation of oncogenic signaling pathways. Furthermore, lysine succinylation modulates the activity of immune cells, thereby affecting the immune evasion of tumor cells. Notably, researchers are currently developing inhibitors and activators of lysine succinylation which can inhibit tumor cell proliferation, migration, and metastasis, with potential usefulness in future clinical practice. This article provides an overview of the biological functions of lysine succinylation in cancer and its potential applications in cancer treatment, offering a novel perspective for future cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan 410013, China
| |
Collapse
|
10
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Chouhan S, Muhammad N, Usmani D, Khan TH, Kumar A. Molecular Sentinels: Unveiling the Role of Sirtuins in Prostate Cancer Progression. Int J Mol Sci 2024; 26:183. [PMID: 39796040 PMCID: PMC11720558 DOI: 10.3390/ijms26010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context. It reveals their multifaceted impact on hallmark cancer processes, including sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, resisting cell death, inducing angiogenesis, and enabling replicative immortality. SIRT1, for example, fosters chemoresistance and castration-resistant prostate cancer through metabolic reprogramming, immune modulation, androgen receptor signaling, and enhanced DNA repair. SIRT3 and SIRT4 suppress oncogenic pathways by regulating cancer metabolism, while SIRT2 and SIRT6 influence tumor aggressiveness and androgen receptor sensitivity, with SIRT6 promoting metastatic potential. Notably, SIRT5 oscillates between oncogenic and tumor-suppressive roles by regulating key metabolic enzymes; whereas, SIRT7 drives PCa proliferation and metabolic stress adaptation through its chromatin and nucleolar regulatory functions. Furthermore, we provide a comprehensive summary of the roles of individual sirtuins, highlighting their potential as biomarkers in PCa and exploring their therapeutic implications. By examining each of these specific mechanisms through which sirtuins impact PCa, this review underscores the potential of sirtuin modulation to address gaps in managing advanced PCa. Understanding sirtuins' regulatory effects could redefine therapeutic approaches, promoting precision strategies that enhance treatment efficacy and improve outcomes for patients with aggressive disease.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H. Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
12
|
Bai H, Li Z, Weng Y, Cui F, Chen W. Integrated analysis of single-cell RNA-seq and bulk RNA-seq revealed key genes for bone metastasis and chemoresistance in prostate cancer. Genes Genomics 2024; 46:1445-1460. [PMID: 39395905 DOI: 10.1007/s13258-024-01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a serious malignancy. The main causes of PCa aggravation and death are unexplained resistance to chemotherapy and bone metastases. OBJECTIVE This study aimed to investigate the molecular mechanisms associated with the dynamic processes of progression, bone metastasis, and chemoresistance in PCa. METHODS Through comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data, Gene Expression Omnibus (GEO) tumor progression and metastasis-related genes were identified. These genes were subjected to lasso regression modeling using the Cancer Genome Atlas (TCGA) database. Tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR (RT-qPCR) were used to evaluate osteoclast differentiation. CellMiner was used to confirm the effect of LDHA on chemoresistance. Finally, the relationship between LDHA and chemoresistance was verified using doxorubicin-resistant PCa cell lines. RESULTS 7928 genes were identified as genes related to tumor progression and metastasis. Of these, 7 genes were found to be associated with PCa prognosis. The scRNA-seq and TCGA data showed that the expression of LDHA was higher in tumors and associated with poor prognosis of PCa. In addition, upregulation of LDHA in PCa cells induces osteoclast differentiation. Additionally, high LDHA expression was associated with resistance to Epirubicin, Elliptinium acetate, and doxorubicin. Cellular experiments demonstrated that LDHA knockdown inhibited doxorubicin resistance in PCa cells. CONCLUSIONS LDHA may play a potential contributory role in PCa initiation and development, bone metastasis, and chemoresistance. LDHA is a key target for the treatment of PCa.
Collapse
Affiliation(s)
- Hongai Bai
- Clinical Trial Department, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Zhenyue Li
- Pharmacy Department, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Yueyue Weng
- Pharmacy Department, Wenzhou Central Hospital, Wenzhou, People's Republic of China
| | - Facai Cui
- Department of Clinical Laboratory, Henan provincial people's hospital, The people's hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wenpu Chen
- Urology Surgery, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zheng Q, Xie Y, Xu L, Chen D, Wu J, Liu S, Wu L, Fang P, Xie F. LDHA as a predictive biomarker and its association with the infiltration of immune cells in pancreatic adenocarcinoma. J Gastrointest Oncol 2024; 15:1746-1759. [PMID: 39279982 PMCID: PMC11399852 DOI: 10.21037/jgo-24-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Lactate dehydrogenase A (LDHA) plays a crucial role in the final step of anaerobic glycolysis, converting L-lactate and NAD+ to pyruvate and nicotinamide adenine dinucleotide (NADH). Its high expression has been linked to tumorigenesis and patient survival in various human cancers. However, the full implications of LDHA's role and its correlation with clinicopathological features in pancreatic adenocarcinoma (PAAD) remain to be fully understood. This study was thus conducted to elucidate the specific functions of LDHA in PAAD, with the aim of providing more robust evidence for clinical diagnosis and treatment. METHODS In an extensive systems analysis, we searched through numerous databases, including The Cancer Genome Atlas (TCGA) and Oncomine. Our objective was to clarify the clinical implications and functional role of LDHA in PAAD. Bioinformatics was used to identify the biological function of LDHA expression and its correlation with tumor immune status. RESULTS Our analysis revealed that the LDHA gene is overexpressed in PAAD and that this upregulation was associated with a worse patient prognosis. Through gene set enrichment analysis, we found that LDHA's influence on PAAD is linked to signaling pathways involving Kirsten rat sarcoma viral oncogene homolog (K-Ras), transforming growth factor-β (TGF-β), and hypoxia inducible factor-1 (HIF-1). Mutation of K-Ras could upregulate its own expression and was positively correlated with LDHA expression. Moreover, our data demonstrated that LDHA expression was linked to immune infiltration and poor prognosis in PAAD, indicating its role in disease pathogenesis. Overexpression of LDHA may suppress tumor immunity, suggesting it as a potential target for the diagnosis and treatment of PAAD, thus providing new insights into managing this aggressive cancer. CONCLUSIONS Overall, our results showed that LDHA as a prognostic biomarker could serve as a novel target for future PAAD immunotherapy.
Collapse
Affiliation(s)
- Qiuqing Zheng
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luyin Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Delian Chen
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Jianfeng Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuxun Liu
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Lili Wu
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
| | - Peiwei Fang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fajun Xie
- Department of Medical Oncology, Taizhou Cancer Hospital, Taizhou, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
15
|
Zhuo Z, Wang Y, Xu Y. Advancements in research on lactate dehydrogenase A in urinary system tumors. BMC Urol 2024; 24:187. [PMID: 39215270 PMCID: PMC11363645 DOI: 10.1186/s12894-024-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Tumors of the urinary system, such as prostate cancer, bladder cancer, and renal cell carcinoma, are among the most prevalent types of tumors. They often remain asymptomatic in their early stages, with some patients experiencing recurrence or metastasis post-surgery, leading to disease progression. Lactate dehydrogenase A (LDHA) plays a crucial role in the glycolysis pathway and is closely associated with anaerobic glycolysis in urinary system tumors. Therefore, a comprehensive investigation into the intricate mechanism of LDHA in these tumors can establish a theoretical foundation for early diagnosis and advanced treatment. This review consolidates the current research and applications of LDHA in urinary system tumors, with the aim of providing researchers with a distinct perspective.
Collapse
Affiliation(s)
- Zhiyuan Zhuo
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yu Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yifan Xu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China.
| |
Collapse
|
16
|
Hao Y, Gu C, Luo W, Shen J, Xie F, Zhao Y, Song X, Han Z, He J. The role of protein post-translational modifications in prostate cancer. PeerJ 2024; 12:e17768. [PMID: 39148683 PMCID: PMC11326433 DOI: 10.7717/peerj.17768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in turn influences protein function, protein-protein interaction, and protein aggregation. These alterations, which include phosphorylation, glycosylation, ubiquitination, methylation, acetylation, lipidation, and lactylation, are significant biological events in the development of cancer, and play vital roles in numerous biological processes. The processes behind essential functions, the screening of clinical illness signs, and the identification of therapeutic targets all depend heavily on further research into the PTMs. This review outlines the influence of several PTM types on prostate cancer (PCa) diagnosis, therapy, and prognosis in an effort to shed fresh light on the molecular causes and progression of the disease.
Collapse
Affiliation(s)
- Yinghui Hao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenqiong Gu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Shen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Song
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zeping Han
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Zhang J, Huang X, Zhang T, Gu C, Zuo W, Fu L, Dong Y, Liu H. Antitumorigenic potential of Lactobacillus-derived extracellular vesicles: p53 succinylation and glycolytic reprogramming in intestinal epithelial cells via SIRT5 modulation. Cell Biol Toxicol 2024; 40:66. [PMID: 39110260 PMCID: PMC11306434 DOI: 10.1007/s10565-024-09897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Colorectal cancer progression involves complex cellular mechanisms. This study examines the effects of Lactobacillus plantarum-derived extracellular vesicles (LEVs) on the SIRT5/p53 axis, focusing on glycolytic metabolic reprogramming and abnormal proliferation in intestinal epithelial cells. METHODS LEVs were isolated from Lactobacillus plantarum and incubated with Caco-2 cells. Differential gene expression was analyzed through RNA sequencing and compared with TCGA-COAD data. Key target genes and pathways were identified using PPI network and pathway enrichment analysis. Various assays, including RT-qPCR, EdU staining, colony formation, flow cytometry, and Western blotting, were used to assess gene expression, cell proliferation, and metabolic changes. Co-immunoprecipitation confirmed the interaction between SIRT5 and p53, and animal models were employed to validate in vivo effects. RESULTS Bioinformatics analysis indicated the SIRT5/p53 axis as a critical pathway in LEVs' modulation of colorectal cancer. LEVs were found to inhibit colorectal cancer cell proliferation and glycolytic metabolism by downregulating SIRT5, influencing p53 desuccinylation. In vivo, LEVs regulated this axis, reducing tumor formation in mice. Clinical sample analysis showed that SIRT5 and p53 succinylation levels correlated with patient prognosis. CONCLUSION Lactobacillus-derived extracellular vesicles play a pivotal role in suppressing colonic tumor formation by modulating the SIRT5/p53 axis. This results in decreased glycolytic metabolic reprogramming and reduced proliferation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Spleen and Stomach Disease, Yubei District Hospital of Traditional Chinese Medicine, Chongqing, 401120, China
| | - Xiumei Huang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Tingting Zhang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Chongqi Gu
- Department of Pediatrics, Rongchang District People's Hospital, Chongqing, 402460, China
| | - Wei Zuo
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Lijuan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Yiping Dong
- Department of Digital Medicine, Department of Bioengineering and Imaging, Army Medical University, Chongqing, 400038, China
| | - Hao Liu
- Department of Pediatrics, Rongchang District People's Hospital, Chongqing, 402460, China.
| |
Collapse
|
18
|
Li X, Cui P, Zhao X, Liu Z, Qi Y, Liu B. Development and Validation of a Clinic Machine Learning Classifier for the Prediction of Risk Stratifications of Prostate Cancer Bone Metastasis Progression to Castration Resistance. Int J Gen Med 2024; 17:2821-2831. [PMID: 38919704 PMCID: PMC11198022 DOI: 10.2147/ijgm.s465031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Objective To explore the predictive factors and predictive model construction for the progression of prostate cancer bone metastasis to castration resistance. Methods Clinical data of 286 patients diagnosed with prostate cancer with bone metastasis, initially treated with endocrine therapy, and progressing to metastatic castration resistant prostate cancer (mCRPC) were collected. By comparing the differences in various factors between different groups with fast and slow occurrence of castration-resistant prostate cancer (CRPC). Kaplan-Meier survival analysis and COX multivariate risk proportional regression model were used to compare the differences in the time to progression to CRPC in different groups. The COX multivariate risk proportional regression model was used to evaluate the impact of candidate factors on the time to progression to CRPC and establish a predictive model. The accuracy of the model was then tested using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Results The median time for 286 mCRPC patients to progress to CRPC was 17 (9.5-28.0) months. Multivariate analysis showed that the lowest value of PSA (PSA nadir), the time when PSA dropped to its lowest value (timePSA), and the number of BM, and LDH were independent risk factors for rapid progression to CRPC. Based on the four independent risk factors mentioned above, a prediction model was established, with the optimal prediction model being a random forest with area under curve (AUC) of 0.946[95% CI: 0.901-0.991] and 0.927[95% CI: 0.864-0.990] in the training and validation cohort, respectively. Conclusion After endocrine therapy, the PSA nadir, timePSA, the number of BM, and LDH are the main risk factors for rapid progression to mCRPC in patients with prostate cancer bone metastases. Establishing a CRPC prediction model is helpful for early clinical intervention decision-making.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Peng Cui
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - XingXing Zhao
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Zhao Liu
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - YanXiang Qi
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Bo Liu
- Department of Gynaecological Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| |
Collapse
|
19
|
Hou X, Zhu L, Xu H, Shi J, Ji S. Dysregulation of protein succinylation and disease development. Front Mol Biosci 2024; 11:1407505. [PMID: 38882606 PMCID: PMC11176430 DOI: 10.3389/fmolb.2024.1407505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
As a novel post-translational modification of proteins, succinylation is widely present in both prokaryotes and eukaryotes. By regulating protein translocation and activity, particularly involved in regulation of gene expression, succinylation actively participates in diverse biological processes such as cell proliferation, differentiation and metabolism. Dysregulation of succinylation is closely related to many diseases. Consequently, it has increasingly attracted attention from basic and clinical researchers. For a thorough understanding of succinylation dysregulation and its implications for disease development, such as inflammation, tumors, cardiovascular and neurological diseases, this paper provides a comprehensive review of the research progress on abnormal succinylation. This understanding of association of dysregulation of succinylation with pathological processes will provide valuable directions for disease prevention/treatment strategies as well as drug development.
Collapse
Affiliation(s)
- Xiaoli Hou
- Center for Molecular Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Lijuan Zhu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Haiying Xu
- Center for Molecular Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Jie Shi
- Zhoukou Vocational and Technical College, Zhoukou, Henan, China
| | - Shaoping Ji
- Center for Molecular Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
20
|
Xia Q, Yu Y, Zhan G, Zhang X, Gao S, Han T, Zhao Y, Li X, Wang Y. The Sirtuin 5 Inhibitor MC3482 Ameliorates Microglia‑induced Neuroinflammation Following Ischaemic Stroke by Upregulating the Succinylation Level of Annexin-A1. J Neuroimmune Pharmacol 2024; 19:17. [PMID: 38717643 DOI: 10.1007/s11481-024-10117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/21/2024] [Indexed: 06/07/2024]
Abstract
In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.
Collapse
Affiliation(s)
- Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongbo Yu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Gao
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Tangrui Han
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yilin Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghong Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
21
|
Zhang J, Luo C, Long H. Sirtuin 5 regulates acute myeloid leukemia cell viability and apoptosis by succinylation modification of glycine decarboxylase. Open Life Sci 2024; 19:20220832. [PMID: 38585637 PMCID: PMC10997144 DOI: 10.1515/biol-2022-0832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024] Open
Abstract
Acute myeloid leukemia (AML) is a blood system malignancy where sirtuin 5 (SIRT5) is abnormally expressed in AML cell lines. This study aimed to investigate the SIRT5 effects on the viability and apoptosis of AML cell lines. The mRNA and protein expression levels of succinylation regulatory enzyme in clinical samples and AML cell lines were detected by real-time quantitative polymerase chain reaction and western blotting while cell viability was measured using cell counting kit-8 assay. The apoptosis rate was assessed with flow cytometry. The interaction between SIRT5 and glycine decarboxylase (GLDC) was determined by co-immunoprecipitation and immunofluorescence staining techniques. Results indicated higher mRNA and protein expression levels of SIRT5 in clinical AML samples of AML than in normal subjects. Similarly, cell viability was inhibited, and apoptosis was promoted by downregulating SIRT5, in addition to inhibition of SIRT5-mediated GLDC succinylation. Moreover, rescue experiment results showed that GLDC reversed the effects of SIRT5 knockdown on cell viability and apoptosis. These results, in combination with SIRT5 and GLDC interactions, suggested that SIRT5 was involved in mediating AML development through GLDC succinylation. SIRT5 inhibits GLDC succinylation to promote viability and inhibit apoptosis of AML cells, suggesting that SIRT5 encourages the development of AML.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| | - Cheng Luo
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| | - Haiying Long
- Department of Hematology, The Second Affiliated Hospital of Guizhou Medical University, No. 3, Kangfu Road, Kaili, Guizhou, 556000, China
| |
Collapse
|
22
|
Wang C, Cui W, Yu B, Zhou H, Cui Z, Guo P, Yu T, Feng Y. Role of succinylation modification in central nervous system diseases. Ageing Res Rev 2024; 95:102242. [PMID: 38387517 DOI: 10.1016/j.arr.2024.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Diseases of the central nervous system (CNS), including stroke, brain tumors, and neurodegenerative diseases, have a serious impact on human health worldwide, especially in elderly patients. The brain, which is one of the body's most metabolically dynamic organs, lacks fuel stores and therefore requires a continuous supply of energy substrates. Metabolic abnormalities are closely associated with the pathogenesis of CNS disorders. Post-translational modifications (PTMs) are essential regulatory mechanisms that affect the functions of almost all proteins. Succinylation, a broad-spectrum dynamic PTM, primarily occurs in mitochondria and plays a crucial regulatory role in various diseases. In addition to directly affecting various metabolic cycle pathways, succinylation serves as an efficient and rapid biological regulatory mechanism that establishes a connection between metabolism and proteins, thereby influencing cellular functions in CNS diseases. This review offers a comprehensive analysis of succinylation and its implications in the pathological mechanisms of CNS diseases. The objective is to outline novel strategies and targets for the prevention and treatment of CNS conditions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, Rizhao 276800, People's Republic of China
| | - Bing Yu
- Qingdao University, Qingdao 266000, People's Republic of China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Zhenwen Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
23
|
Kubatzky KF, Gao Y, Yu D. Post-translational modulation of cell signalling through protein succinylation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1260-1285. [PMID: 38213532 PMCID: PMC10776603 DOI: 10.37349/etat.2023.00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 01/13/2024] Open
Abstract
Cells need to adapt their activities to extra- and intracellular signalling cues. To translate a received extracellular signal, cells have specific receptors that transmit the signal to downstream proteins so that it can reach the nucleus to initiate or repress gene transcription. Post-translational modifications (PTMs) of proteins are reversible or irreversible chemical modifications that help to further modulate protein activity. The most commonly observed PTMs are the phosphorylation of serine, threonine, and tyrosine residues, followed by acetylation, glycosylation, and amidation. In addition to PTMs that involve the modification of a certain amino acid (phosphorylation, hydrophobic groups for membrane localisation, or chemical groups like acylation), or the conjugation of peptides (SUMOylation, NEDDylation), structural changes such as the formation of disulphide bridge, protein cleavage or splicing can also be classified as PTMs. Recently, it was discovered that metabolites from the tricarboxylic acid (TCA) cycle are not only intermediates that support cellular metabolism but can also modify lysine residues. This has been shown for acetate, succinate, and lactate, among others. Due to the importance of mitochondria for the overall fitness of organisms, the regulatory function of such PTMs is critical for protection from aging, neurodegeneration, or cardiovascular disease. Cancer cells and activated immune cells display a phenotype of accelerated metabolic activity known as the Warburg effect. This metabolic state is characterised by enhanced glycolysis, the use of the pentose phosphate pathway as well as a disruption of the TCA cycle, ultimately causing the accumulation of metabolites like citrate, succinate, and malate. Succinate can then serve as a signalling molecule by directly interacting with proteins, by binding to its G protein-coupled receptor 91 (GPR91) and by post-translationally modifying proteins through succinylation of lysine residues, respectively. This review is focus on the process of protein succinylation and its importance in health and disease.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yue Gao
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Dayoung Yu
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Rong Y, Dong F, Zhang G, Tang M, Zhao X, Zhang Y, Tao P, Cai H. The crosstalking of lactate-Histone lactylation and tumor. Proteomics Clin Appl 2023; 17:e2200102. [PMID: 36853081 DOI: 10.1002/prca.202200102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Lactate was once considered to be a by-product of energy metabolism, but its unique biological value was only gradually explored with the advent of the Warburg effect. As an end product of glycolysis, lactate can act as a substrate for energy metabolism, a signal transduction molecule, a regulator of the tumor microenvironment and immune cells, and a regulator of the deubiquitination of specific enzymes, and is involved in various biological aspects of tumor regulation, including energy shuttling, growth and invasion, angiogenesis and immune escape. Furthermore, we describe a novel lactate-dependent epigenetic modification, namely histone lactylation modification, and review the progress of its study in tumors, mainly involving the reprogramming of tumor phenotypes, regulation of related gene expression, mediation of the glycolytic process in tumor stem cells (CSCs) and influence on the tumor immune microenvironment. The study of epigenetic regulation of tumor genes by histone modification is still in its infancy, and we expect that by summarizing the effects of lactate and histone modification on tumor and related gene regulation, we will clarify the scientific significance of future histone modification studies and the problems to be solved, and open up new fields for targeted tumor therapy.
Collapse
Affiliation(s)
- Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Fengyuan Dong
- Geriatrics Department, Lianyungang First People's Hospital, Lianyugang, China
| | - Guiqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Mingzheng Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Xiashuang Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yan Zhang
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Pengxian Tao
- Cadre Ward of General Surgery Department, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
25
|
Deng SZ, Wu X, Tang J, Dai L, Cheng B. Integrative analysis of lysine acetylation-related genes and identification of a novel prognostic model for oral squamous cell carcinoma. Front Mol Biosci 2023; 10:1185832. [PMID: 37705968 PMCID: PMC10495994 DOI: 10.3389/fmolb.2023.1185832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction: Oral squamous cell carcinoma (OSCC), which accounts for a high proportion of oral cancers, is characterized by high aggressiveness and rising incidence. Lysine acetylation is associated with cancer pathogenesis. Lysine acetylation-related genes (LARGs) are therapeutic targets and potential prognostic indicators in various tumors, including oral squamous cell carcinoma. However, systematic bioinformatics analysis of the Lysine acetylation-related genes in Oral squamous cell carcinoma is still unexplored. Methods: We analyzed the expression of 33 Lysine acetylation-related genes in oral squamous cell carcinoma and the effects of their somatic mutations on oral squamous cell carcinoma prognosis. Consistent clustering analysis identified two lysine acetylation patterns and the differences between the two patterns were further evaluated. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to develop a lysine acetylation-related prognostic model using TCGA oral squamous cell carcinoma datasets, which was then validated using gene expression omnibus (GEO) dataset GSE41613. Results: Patients with lower risk scores had better prognoses, in both the overall cohort and within the subgroups These patients also had "hot" immune microenvironments and were more sensitive to immunotherapy. Disscussion: Our findings offer a new model for classifying oral squamous cell carcinoma and determining its prognosis and offer novel insights into oral squamous cell carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Shi-Zhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiezhang Tang
- Department of Burn and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Lin Dai
- Department of Stomatology, The First Hospital of Wuhan, Wuhan, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Shi L, Duan R, Sun Z, Jia Q, Wu W, Wang F, Liu J, Zhang H, Xue X. LncRNA GLTC targets LDHA for succinylation and enzymatic activity to promote progression and radioiodine resistance in papillary thyroid cancer. Cell Death Differ 2023; 30:1517-1532. [PMID: 37031273 PMCID: PMC10244348 DOI: 10.1038/s41418-023-01157-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) has been associated with the development and progression of many human cancers. Lactate dehydrogenase A (LDHA) enzymatic activity is also crucial for cancer development, including the development of papillary thyroid cancer (PTC). However, whether specific lncRNAs can regulate LDHA activity during cancer progression remains unclear. Through screening, we identified an LDHA-interacting lncRNA, GLTC, which is required for the increased aerobic glycolysis and cell viability in PTC. GLTC was significantly upregulated in PTC tissues compared with nontumour thyroid tissues. High expression of GLTC was correlated with more extensive distant metastasis, a larger tumour size, and poorer prognosis. Mass spectrometry revealed that GLTC, as a binding partner of LDHA, promotes the succinylation of LDHA at lysine 155 (K155) via competitive inhibition of the interaction between SIRT5 and LDHA, thereby promoting LDHA enzymatic activity. Overexpression of the succinylation mimetic LDHAK155E mutant restored glycolytic metabolism and cell viability in cells in which metabolic reprogramming and cell viability were ceased due to GLTC depletion. Interestingly, GLTC inhibition abrogated the effects of K155-succinylated LDHA on radioiodine (RAI) resistance in vitro and in vivo. Taken together, our results indicate that GLTC plays an oncogenic role and is an attractive target for RAI sensitisation in PTC treatment.
Collapse
Affiliation(s)
- Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Duan
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenhua Sun
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiong Jia
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, China.
| | - Hao Zhang
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
27
|
Zhang L, Wang E, Peng G, Wang Y, Huang F. Comprehensive Proteome and Acetyl-Proteome Atlas Reveals Hepatic Lipid Metabolism in Layer Hens with Fatty Liver Hemorrhagic Syndrome. Int J Mol Sci 2023; 24:ijms24108491. [PMID: 37239836 DOI: 10.3390/ijms24108491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The feeding of high-energy and low-protein diets often induces fatty liver hemorrhagic syndrome (FLHS) in laying hens. However, the mechanism of hepatic fat accumulation in hens with FLHS remains uncertain. In this research, a comprehensive hepatic proteome and acetyl-proteome analysis was performed in both normal and FLHS-affected hens. The results indicated that the upregulated proteins were primarily associated with fat digestion and absorption, the biosynthesis of unsaturated fatty acids, and glycerophospholipid metabolism, while the downregulated proteins were mainly related to bile secretion and amino acid metabolism. Furthermore, the significant acetylated proteins were largely involved in ribosome and fatty acid degradation, and the PPAR signaling pathway, while the significant deacetylated proteins were related to valine, leucine, and isoleucine degradation in laying hens with FLHS. Overall, these results demonstrate that acetylation inhibits hepatic fatty acid oxidation and transport in hens with FLHS, and mainly exerts its effects by affecting protein activity rather than expression. This study provides new nutritional regulation options to alleviate FLHS in laying hens.
Collapse
Affiliation(s)
- Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Enling Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023; 12:cells12060852. [PMID: 36980194 PMCID: PMC10047932 DOI: 10.3390/cells12060852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
- IEOS—Istituto per l’Endocrinologia e Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| |
Collapse
|
29
|
Dai M, Wang L, Yang J, Chen J, Dou X, Chen R, Ge Y, Lin Y. LDHA as a regulator of T cell fate and its mechanisms in disease. Biomed Pharmacother 2023; 158:114164. [PMID: 36916398 DOI: 10.1016/j.biopha.2022.114164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
T cells are the main force of anti-infection and antitumor and are also involved in autoimmune diseases. During the development of these diseases, T cells need to rapidly produce large amounts of energy to satisfy their activation, proliferation, and differentiation. In this review, we introduced lactate dehydrogenase A(LDHA), predominantly involved in glycolysis, which provides energy for T cells and plays a dual role in disease by mediating lactate production, non-classical enzyme activity, and oxidative stress. Mechanistically, the signaling molecule can interact with the LDHA promoter or regulate LDHA activity through post-translational modifications. These latest findings suggest that modulation of LDHA may have considerable therapeutic effects in diseases where T-cell activation is an important pathogenesis.
Collapse
Affiliation(s)
- Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| |
Collapse
|
30
|
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate. Cancers (Basel) 2022; 14:cancers14246028. [PMID: 36551514 PMCID: PMC9776395 DOI: 10.3390/cancers14246028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Rewired metabolism is acknowledged as one of the drivers of tumor growth. As a result, aerobic glycolysis, or the Warburg effect, is a feature of many cancers. Increased glucose uptake and glycolysis provide intermediates for anabolic reactions necessary for cancer cell proliferation while contributing sufficient energy. However, the accompanying increased lactate production, seemingly wasting glucose carbon, was originally explained only by the need to regenerate NAD+ for successive rounds of glycolysis by the lactate dehydrogenase (LDH) reaction in the cytosol. After the discovery of a mitochondrial LDH isoform, lactate oxidation entered the picture, and lactate was recognized as an important oxidative fuel. It has also been revealed that lactate serves a variety of signaling functions and helps cells adapt to the new environment. Here, we discuss recent findings on lactate metabolism and signaling in cancer while attempting to explain why the Warburg effect is adopted by cancer cells.
Collapse
Affiliation(s)
- Eva Kocianova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Viktoria Piatrikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Tereza Golias
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
31
|
Fu Y, Yu J, Li F, Ge S. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. J Exp Clin Cancer Res 2022; 41:144. [PMID: 35428309 PMCID: PMC9013066 DOI: 10.1186/s13046-022-02338-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
AbstractMetabolites are intermediate products of cellular metabolism catalysed by various enzymes. Metabolic remodelling, as a biochemical fingerprint of cancer cells, causes abnormal metabolite accumulation. These metabolites mainly generate energy or serve as signal transduction mediators via noncovalent interactions. After the development of highly sensitive mass spectrometry technology, various metabolites were shown to covalently modify proteins via forms of lysine acylation, including lysine acetylation, crotonylation, lactylation, succinylation, propionylation, butyrylation, malonylation, glutarylation, 2-hydroxyisobutyrylation and β-hydroxybutyrylation. These modifications can regulate gene expression and intracellular signalling pathways, highlighting the extensive roles of metabolites. Lysine acetylation is not discussed in detail in this review since it has been broadly investigated. We focus on the nine aforementioned novel lysine acylations beyond acetylation, which can be classified into two categories: histone acylations and nonhistone acylations. We summarize the characteristics and common functions of these acylation types and, most importantly, provide a glimpse into their fine-tuned control of tumorigenesis and potential value in tumour diagnosis, monitoring and therapy.
Collapse
|
32
|
Sharma D, Singh M, Rani R. Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol 2022; 87:184-195. [PMID: 36371026 DOI: 10.1016/j.semcancer.2022.11.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Lactate dehydrogenase (LDH) is one of the crucial enzymes in aerobic glycolysis, catalyzing the last step of glycolysis, i.e. the conversion of pyruvate to lactate. Most cancer cells are characterized by an enhanced rate of tumor glycolysis to ensure the energy demand of fast-growing cancer cells leading to increased lactate production. Excess lactate creates extracellular acidosis which facilitates invasion, angiogenesis, and metastasis and affects the immune response. Lactate shuttle and lactate symbiosis is established in cancer cells, which may further increase the poor prognosis. Several genetic and phenotypic studies established the potential role of lactate dehydrogenase A (LDHA) or LDH5, the one homo-tetramer of subunit A, in cancer development and metastasis. The LDHA is considered a viable target for drug design and discovery. Several small molecules have been discovered to date exhibiting significant LDHA inhibitory activities and anticancer activities, therefore the starvation of cancer cells by targeting tumor glycolysis through LDHA inhibition with improved selectivity can generate alternative anticancer therapeutics. This review provides an overview of the role of LDHA in metabolic reprogramming and its association with proto-oncogenes and oncogenes. This review also aims to deliver an update on significant LDHA inhibitors with anticancer properties and future direction in this area.
Collapse
Affiliation(s)
- Dolly Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Mamta Singh
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Reshma Rani
- Jubilant Biosys, Drug Discovery chemistry, Greater Noida, 201310 Uttar Pradesh, India.
| |
Collapse
|
33
|
Zhang Z, Chen Y, Fang L, Zhao J, Deng S. The involvement of high succinylation modification in the development of prostate cancer. Front Oncol 2022; 12:1034605. [PMID: 36387072 PMCID: PMC9663485 DOI: 10.3389/fonc.2022.1034605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Succinylation modification of the lysine site plays an important role in tumorigenesis and development, but it is rarely reported in prostate cancer (PCa), so this study aims to elucidate its expression in and clinical correlation with PCa. METHODS A total of 95 tumor, 3 normal and 52 paired adjacent tissue of PCa were involved for succinylation stanning. 498 PCa samples with 20 succinylation modification-related genes from TCGA were downloaded for model construction. Statistical methods were employed to analyze the data, including Non-Negative Matrix Factorization (NMF) algorithm, t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm and Cox regression analysis. RESULTS The pan-succinyllysine antibody stanning indicated that tumor tissues showed higher succinyllysine level than adjacent tissues (p<0.001). Gleason grade and PDL1 expression levels were significantly different (p<0.001) among the high, medium and low succinylation staining scores. The types of PCa tissue were divided into four clusters using RNA-seq data of 20 succinylation-related genes in TCGA database. Clinical characterize of age, PSA level, and pathological stage showed differences among four clusters. The expression of succinylation-related genes (KAT5, SDHD and GLYATL1) and PCa related genes (PDL1, AR and TP53) were significantly different in 52 matched tumor and adjacent tissues (p<0.001). GLYATL1 and AR gene expression was significantly related to the pathological stage of PCa. CONCLUSION Succinylation was significantly increased in PCa tissues and was closely related to Gleason grade and PD-L1 expression. Model construction of 20 genes related to succinylation modification showed that the later the pathological stage of PCa, the higher the level of succinylation modification.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China,Breast Cancer Biological Targeting Institute, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanru Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China,Breast Cancer Biological Targeting Institute, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lingyu Fang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China,Breast Cancer Biological Targeting Institute, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, China,*Correspondence: Shishan Deng, ; Jiang Zhao,
| | - Shishan Deng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China,Breast Cancer Biological Targeting Institute, North Sichuan Medical College, Nanchong, Sichuan, China,*Correspondence: Shishan Deng, ; Jiang Zhao,
| |
Collapse
|
34
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
35
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
36
|
Fiorentino F, Castiello C, Mai A, Rotili D. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. J Med Chem 2022; 65:9580-9606. [PMID: 35802779 PMCID: PMC9340778 DOI: 10.1021/acs.jmedchem.2c00687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase primarily located in mitochondria. SIRT5 displays an affinity for negatively charged acyl groups and mainly catalyzes lysine deglutarylation, desuccinylation, and demalonylation while possessing weak deacetylase activity. SIRT5 substrates play crucial roles in metabolism and reactive oxygen species (ROS) detoxification, and SIRT5 activity is protective in neuronal and cardiac physiology. Moreover, SIRT5 exhibits a dichotomous role in cancer, acting as context-dependent tumor promoter or suppressor. Given its multifaceted activity, SIRT5 is a promising target in the design of activators or inhibitors that might act as therapeutics in many pathologies, including cancer, cardiovascular disorders, and neurodegeneration. To date, few cellular-active peptide-based SIRT5 inhibitors (SIRT5i) have been described, and potent and selective small-molecule SIRT5i have yet to be discovered. In this perspective, we provide an outline of SIRT5's roles in different biological settings and describe SIRT5 modulators in terms of their mode of action, pharmacological activity, and structure-activity relationships.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Carola Castiello
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|