1
|
Goldberg DC, Cloud C, Lee SM, Barnes B, Gruber S, Kim E, Pottekat A, Westphal MS, McAuliffe L, Majounie E, KalayilManian M, Zhu Q, Tran C, Hansen M, Stojakovic J, Parker JB, Kohli RM, Porecha R, Renke N, Zhou W. Scalable Screening of Ternary-Code DNA Methylation Dynamics Associated with Human Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594606. [PMID: 38826316 PMCID: PMC11142114 DOI: 10.1101/2024.05.17.594606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Epigenome-wide association studies (EWAS) are transforming our understanding of the interplay between epigenetics and complex human traits and phenotypes. We introduce the Methylation Screening Array (MSA), a new iteration of the Infinium technology for scalable and quantitative screening of trait associations of nuanced ternary-code cytosine modifications in larger, more inclusive, and stratified human populations. MSA integrates EWAS, single-cell, and cell-type-resolved methylome profiles, covering diverse human traits and diseases. Our first MSA applications yield multiple biological insights: we revealed a previously unappreciated role of 5-hydroxymethylcytosine (5hmC) in trait associations and epigenetic clocks. We demonstrated that 5hmCs complement 5-methylcytosines (5mCs) in defining tissues and cells' epigenetic identities. In-depth analyses highlighted the cell type context of EWAS and GWAS hits. Using this platform, we conducted a comprehensive human 5hmC aging EWAS, discovering tissue-invariant and tissue-specific aging dynamics, including distinct tissue-specific rates of mitotic hyper- and hypomethylation rates. These findings chart a landscape of the complex interplay of the two forms of cytosine modifications in diverse human tissues and their roles in health and disease.
Collapse
Affiliation(s)
- David C Goldberg
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Cameron Cloud
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | - Elliot Kim
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | | | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Bonev B, Castelo-Branco G, Chen F, Codeluppi S, Corces MR, Fan J, Heiman M, Harris K, Inoue F, Kellis M, Levine A, Lotfollahi M, Luo C, Maynard KR, Nitzan M, Ramani V, Satijia R, Schirmer L, Shen Y, Sun N, Green GS, Theis F, Wang X, Welch JD, Gokce O, Konopka G, Liddelow S, Macosko E, Ali Bayraktar O, Habib N, Nowakowski TJ. Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery. Nat Neurosci 2024; 27:2292-2309. [PMID: 39627587 PMCID: PMC11999325 DOI: 10.1038/s41593-024-01806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells. Here, we summarize the most promising and robust technologies in these areas, discuss their strengths and limitations and discuss key computational approaches for analysis of these complex datasets. We highlight how data sharing and integration, documentation, visualization and benchmarking of results contribute to transparency, reproducibility, collaboration and democratization in neuroscience, and discuss needs and opportunities for future technology development and analysis.
Collapse
Affiliation(s)
- Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Manolis Kellis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ariel Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mo Lotfollahi
- Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vijay Ramani
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Rahul Satijia
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Lucas Schirmer
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yin Shen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Na Sun
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gilad S Green
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabian Theis
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiao Wang
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ozgun Gokce
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Evan Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tomasz J Nowakowski
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Rylaarsdam LE, Nichols RV, O'Connell BL, Coleman S, Yardımcı GG, Adey AC. Single-cell DNA methylation analysis tool Amethyst reveals distinct noncanonical methylation patterns in human glial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607670. [PMID: 39211069 PMCID: PMC11360991 DOI: 10.1101/2024.08.13.607670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Single-cell sequencing technologies have revolutionized biomedical research by enabling deconvolution of cell type-specific properties in highly heterogeneous tissue. While robust tools have been developed to handle bioinformatic challenges posed by single-cell RNA and ATAC data, options for emergent modalities such as methylation are much more limited, impeding the utility of results. Here we present Amethyst, a comprehensive R package for atlas-scale single-cell methylation sequencing data analysis. Amethyst begins with base-level methylation calls and expedites batch integration, doublet detection, dimensionality reduction, clustering, cell type annotation, differentially methylated region calling, and interpretation of results, facilitating rapid data interaction in a local environment. We introduce the workflow using published single-cell methylation human peripheral blood mononuclear cell (PBMC) and human cortex data. We further leverage Amethyst on an atlas-scale brain dataset to describe a noncanonical methylation pattern in human astrocytes and oligodendrocytes, challenging the notion that this form of methylation is principally relevant to neurons in the brain. Tools such as Amethyst will increase accessibility to single-cell methylation data analysis, catalyzing research progress across diverse contexts.
Collapse
|
4
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Lee SM, Loo CE, Prasasya RD, Bartolomei MS, Kohli RM, Zhou W. Low-input and single-cell methods for Infinium DNA methylation BeadChips. Nucleic Acids Res 2024; 52:e38. [PMID: 38407446 PMCID: PMC11040145 DOI: 10.1093/nar/gkae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection P-value calculation achieved higher sensitivities for low-input datasets and was validated in over 100 000 public diverse methylome profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.
Collapse
Affiliation(s)
- Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA 19104, USA
| | - Christian E Loo
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rexxi D Prasasya
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Zhou W, Johnson BK, Morrison J, Beddows I, Eapen J, Katsman E, Semwal A, Habib W, Heo L, Laird P, Berman B, Triche T, Shen H. BISCUIT: an efficient, standards-compliant tool suite for simultaneous genetic and epigenetic inference in bulk and single-cell studies. Nucleic Acids Res 2024; 52:e32. [PMID: 38412294 PMCID: PMC11014253 DOI: 10.1093/nar/gkae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Data from both bulk and single-cell whole-genome DNA methylation experiments are under-utilized in many ways. This is attributable to inefficient mapping of methylation sequencing reads, routinely discarded genetic information, and neglected read-level epigenetic and genetic linkage information. We introduce the BISulfite-seq Command line User Interface Toolkit (BISCUIT) and its companion R/Bioconductor package, biscuiteer, for simultaneous extraction of genetic and epigenetic information from bulk and single-cell DNA methylation sequencing. BISCUIT's performance, flexibility and standards-compliant output allow large, complex experimental designs to be characterized on clinical timescales. BISCUIT is particularly suited for processing data from single-cell DNA methylation assays, with its excellent scalability, efficiency, and ability to greatly enhance mappability, a key challenge for single-cell studies. We also introduce the epiBED format for single-molecule analysis of coupled epigenetic and genetic information, facilitating the study of cellular and tissue heterogeneity from DNA methylation sequencing.
Collapse
Affiliation(s)
- Wanding Zhou
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Benjamin K Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jacob Morrison
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - James Eapen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Efrat Katsman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ayush Semwal
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Walid Abi Habib
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lyong Heo
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter W Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Timothy J Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
7
|
Lee SM, Loo CE, Prasasya RD, Bartolomei MS, Kohli RM, Zhou W. Low-input and single-cell methods for Infinium DNA methylation BeadChips. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558252. [PMID: 37786695 PMCID: PMC10541608 DOI: 10.1101/2023.09.18.558252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection p -values calculation achieved higher sensitivities for low-input datasets and was validated in over 100,000 public datasets with diverse methylation profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.
Collapse
|
8
|
O'Neill H, Lee H, Gupta I, Rodger EJ, Chatterjee A. Single-Cell DNA Methylation Analysis in Cancer. Cancers (Basel) 2022; 14:6171. [PMID: 36551655 PMCID: PMC9777108 DOI: 10.3390/cancers14246171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Morphological, transcriptomic, and genomic defects are well-explored parameters of cancer biology. In more recent years, the impact of epigenetic influences, such as DNA methylation, is becoming more appreciated. Aberrant DNA methylation has been implicated in many types of cancers, influencing cell type, state, transcriptional regulation, and genomic stability to name a few. Traditionally, large populations of cells from the tissue of interest are coalesced for analysis, producing averaged methylome data. Considering the inherent heterogeneity of cancer, analysing populations of cells as a whole denies the ability to discover novel aberrant methylation patterns, identify subpopulations, and trace cell lineages. Due to recent advancements in technology, it is now possible to obtain methylome data from single cells. This has both research and clinical implications, ranging from the identification of biomarkers to improved diagnostic tools. As with all emerging technologies, distinct experimental, bioinformatic, and practical challenges present themselves. This review begins with exploring the potential impact of single-cell sequencing on understanding cancer biology and how it could eventually benefit a clinical setting. Following this, the techniques and experimental approaches which made this technology possible are explored. Finally, the present challenges currently associated with single-cell DNA methylation sequencing are described.
Collapse
Affiliation(s)
- Hannah O'Neill
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Heather Lee
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|