1
|
Schippel N, Wei J, Ma X, Kala M, Qiu S, Stoilov P, Sharma S. Erythropoietin-dependent Acquisition of CD71 hi CD105 hi Phenotype within CD235a - Early Erythroid Progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610192. [PMID: 39257831 PMCID: PMC11383684 DOI: 10.1101/2024.08.29.610192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The development of committed erythroid progenitors and their continued maturation into mature erythrocytes requires the cytokine erythropoietin (Epo). Here, we describe the immunophenotypic identification of a unique Epo-dependent colony-forming unit-erythroid (CFU-E) cell subtype that forms during early erythropoiesis (EE). This previously undescribed CFU-E subtype, termed late-CFU-E (lateC), lacks surface expression of the characteristic erythroid marker CD235a (glycophorin A) but has high levels of CD71 and CD105. LateCs could be prospectively detected in human bone marrow (BM) cells and, upon isolation and reculture, exhibited the potential to form CFU-E colonies in medium containing only Epo (no other cytokines) and continued differentiation along the erythroid trajectory. Analysis of ex vivo cultures of BM CD34 + cells showed that acquisition of the CD7 hi CD105 hi phenotype in lateCs is gradual and occurs through the formation of four EE cell subtypes. Of these, two are CD34 + burst-forming unit-erythroid (BFU-E) cells, distinguishable as CD7 lo CD105 lo early BFU-E and CD7 hi CD105 lo late BFU-E, and two are CD34 - CFU-Es, also distinguishable as CD71 lo CD105 lo early CFU-E and CD7 hi CD105 lo mid-CFU-E. The transition of these EE populations is accompanied by a rise in CD36 expression, such that all lateCs are CD36 + . Single cell RNA-sequencing analysis confirmed Epo-dependent formation of a CFU-E cluster that exhibits high coexpression of CD71, CD105, and CD36 transcripts. Gene set enrichment analysis revealed the involvement of genes specific to fatty acid and cholesterol metabolism in lateC formation. Overall, in addition to identifying a key Epo-dependent EE cell stage, this study provides a framework for investigation into mechanisms underlying other erythropoiesis-stimulating agents.
Collapse
|
2
|
Gao C, Zhang H, Wang Y, Wang S, Guo X, Han Y, Zhao H, An X. Global Transcriptomic and Characteristics Comparisons between Mouse Fetal Liver and Bone Marrow Definitive Erythropoiesis. Cells 2024; 13:1149. [PMID: 38995000 PMCID: PMC11240549 DOI: 10.3390/cells13131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.
Collapse
Affiliation(s)
- Chengjie Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.G.)
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.G.)
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shihui Wang
- Institute of Hematology, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (C.G.)
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Jeenduang N, Horpet D, Plyduang T, Nuinoon M. Association of thalassemia, hemoglobinopathies, and vitamin D levels with lipid profile in adults: Community-based research in southern Thai population. Heliyon 2024; 10:e31374. [PMID: 38813217 PMCID: PMC11133901 DOI: 10.1016/j.heliyon.2024.e31374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
This study explored the frequency of lipid-lowering drug use in the thalassemia population and investigated the association of thalassemia, hemoglobinopathies, and serum 25(OH)D levels with lipid profile and red blood cell parameters. A combination of cross-sectional and community-based studies was conducted with 615 participants from the southern Thai population. Thalassemia and hemoglobinopathies were diagnosed using hemoglobin analysis and polymerase chain reaction-based methods to genotype globin genes. Biochemical parameters such as lipid profile, fasting blood sugar (FBS), and serum 25(OH)D levels were assessed using standard enzymatic methods and electrochemiluminescence immunoassays. Differences in the means of hematological and biochemical parameters between the thalassemia and non-thalassemia groups were compared and analyzed. A significantly lower frequency of lipid-lowering drug use was observed in the thalassemia group. Thalassemia, with clearly defined abnormalities in red blood cells, is associated with a 4.72-fold decreased risk of taking lipid-lowering drugs. Among thalassemia participants, the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly lower than those in non-thalassemia participants. The prevalence of hypovitaminosis D in carriers of thalassemia and/or hemoglobinopathies in the southern Thai population was 53 % in females and 21 % in males. The highest lipid profile was observed in samples without thalassemia and hypovitaminosis D. The genetics of thalassemia and hemoglobinopathies with obviously abnormal red blood cells could explain the variable lipid levels, in addition to lipid metabolism-related genes and environmental factors. However, the effect of thalassemia on lipid levels in each population may differ according to its prevalence. A larger sample size is required to confirm this association, especially in countries with a high prevalence of thalassemia.
Collapse
Affiliation(s)
- Nutjaree Jeenduang
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Food Technology and Innovation Research Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| | - Dararat Horpet
- Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, Thailand
| | - Thunyaluk Plyduang
- Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, Thailand
| | - Manit Nuinoon
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Han Y, Gao C, Liu Y, Zhang H, Wang S, Zhao H, Bao W, Guo X, Vinchi F, Lobo C, Shi P, Mendelson A, Luchsinger L, Zhong H, Yazdanbakhsh K, An X. Hemolysis-driven IFNα production impairs erythropoiesis by negatively regulating EPO signaling in sickle cell disease. Blood 2024; 143:1018-1031. [PMID: 38127913 PMCID: PMC10950476 DOI: 10.1182/blood.2023021658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.
Collapse
Affiliation(s)
- Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Chengjie Gao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Yunfeng Liu
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | - Huan Zhang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Shihui Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Huizhi Zhao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Weili Bao
- Laboratory of Complement Biology, New York Blood Center, New York, NY
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Francesca Vinchi
- Laboratory of Iron Research, New York Blood Center, New York, NY
| | - Cheryl Lobo
- Laboratory of Blood Borne Parasites, New York Blood Center, New York, NY
| | - Patricia Shi
- Sickle Cell Clinical Research Program, New York Blood Center, New York, NY
| | - Avital Mendelson
- Laboratory of Stem Cell Biology and Engineering Research, New York Blood Center, New York, NY
| | - Larry Luchsinger
- Laboratory of Stem Cell Regenerative Research, New York Blood Center, New York, NY
| | - Hui Zhong
- Laboratory of Immune Regulation, New York Blood Center, New York, NY
| | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| |
Collapse
|