1
|
Malik A, Sharma PR, Sharma RK. α-Methylbenzylamine Functionalized Crown-Ether-Appended Calix[4]arene Phase Transfer Catalyst for Enantioselective Henry Reaction. Chemistry 2023; 29:e202302638. [PMID: 37850687 DOI: 10.1002/chem.202302638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
In this letter, we designed a highly selective α-methylbenzylamine functionalized crown-ether-appended calix[4]arene derived phase transfer catalyst for asymmetric nitroaldol reaction to provide the desired nitroaldol adducts in high yields (up to 99 % yield) with good to excellent enantioselectivities (up to 99.8 % ee).
Collapse
Affiliation(s)
- Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| | - Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| |
Collapse
|
2
|
Gao CH, Zhang SM, Feng FF, Hu SS, Zhao QF, Chen YZ. Constructing a CdS QDs/silica gel composite with high photosensitivity and prolonged recyclable operability for enhanced visible-light-driven NADH regeneration. J Colloid Interface Sci 2023; 652:1043-1052. [PMID: 37639926 DOI: 10.1016/j.jcis.2023.08.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Visible-light-driven nicotinamide adenine dinucleotide (NADH) regeneration is one of the most effective measures, and cadmium sulfide (CdS) materials are typically used as low-cost photocatalysts. The CdS photocatalysts, however, still suffer from low regeneration efficiency and poor cycle stability. In this work, the CdS quantum dots (QDs) less than 10 nm embedded onto silica gel (CdS QDs/Silica gel) were constructed for visible-light-driven NADH regeneration by a successive ionic layer adsorption reaction and ball milling method. Results demonstrate that the photosensitivity of the CdS QDs/Silica gel composite was 31 times higher than that of the bulk CdS. Moreover, the conduction band (CB) edge of the CdS QDs/Silica gel composite is -1.34 eV, which is more negative 0.5 eV than that of the bulk CdS. The obtained CdS QDs/Silica gel composites showed the highest NADH regeneration yields of 68.8% under visible-light (LED, 420 nm) illumination and can be reused for over 40 cycles. Finally, the bioactivity of NADH toward enzyme catalysis is further confirmed by the hydrogenation of benzaldehyde to benzyl alcohol catalyzed with an alcohol dehydrogenase as enzyme catalysis.
Collapse
Affiliation(s)
- Chun-Hui Gao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Shi-Ming Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Fang-Fang Feng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - San-San Hu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qian-Fan Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education, and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
3
|
Liu Y, Zhu L, Li X, Cui Y, Roosta A, Feng J, Chen X, Yao P, Wu Q, Zhu D. Photoredox/Enzymatic Catalysis Enabling Redox-Neutral Decarboxylative Asymmetric C-C Coupling for Asymmetric Synthesis of Chiral 1,2-Amino Alcohols. JACS AU 2023; 3:3005-3013. [PMID: 38034963 PMCID: PMC10685423 DOI: 10.1021/jacsau.3c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
Photocatalysis offers tremendous opportunities for enzymes to access new functions. Herein, we described a redox-neutral photocatalysis/enzymatic catalysis system for the asymmetric synthesis of chiral 1,2-amino alcohols via decarboxylative radical C-C coupling of N-arylglycines and aldehydes by combining an organic photocatalyst, eosin Y, and carbonyl reductase RasADH. Notably, this protocol avoids using any sacrificial reductants. A possible reaction mechanism proposed is that the transformation proceeds through sequential photoinduced decarboxylative radical addition to an aldehyde and a photoenzymatic deracemization pathway. This redox-neutral photoredox/enzymatic strategy is promising not only for effective synthesis of a series of chiral amino alcohols in a green and sustainable manner but also for the design of other novel C-C radical coupling transformations for the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Yiyin Liu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Liangyan Zhu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Xuemei Li
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Yunfeng Cui
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Atefeh Roosta
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Jinhui Feng
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Xi Chen
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Peiyuan Yao
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Qiaqing Wu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| | - Dunming Zhu
- National
Engineering Research Center of Industrial Enzymes and Tianjin Engineering
Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of
Sciences, Tianjin 300308, China
- National
Technology Innovation Center for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
4
|
Lv T, Feng J, Chen X, Luo Y, Wu Q, Zhu D, Ma Y. Desymmetric Reductive Amination of 1,3-Cyclopentadiones to Single Stereoisomer of β-Amino Ketones with an All-Carbon Quaternary Stereocenter by Engineered Amine Dehydrogenases. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Wu J, Yan B, Meng J, Yang E, Ye X, Yao Q. Catalyst-free photo-reductions of aromatic olefins and carbonyl compounds. Org Biomol Chem 2022; 20:8638-8642. [PMID: 36102896 DOI: 10.1039/d2ob01353c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein a catalyst-free, traditional reductant-free strategy for the direct photoinduced hydrogenation or deuteration of aromatic olefins, ketones, and aldehydes with simple bases as the only additives. A broad range of substrates were demonstrated with high yields and deuterium incorporations. Mechanistic experiments indicate a radical mechanism.
Collapse
Affiliation(s)
- Jieliang Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Boyu Yan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jiangtao Meng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Enqin Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Xiushen Ye
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China. .,Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
6
|
Cui Y, Ji Y, Chen X, Li J, Feng J, Zhao Q, Yao P, Wu Q, Zhu D. Efficient enzymatic synthesis of (S)-1-(3′-bromo-2′-methoxyphenyl)ethanol, the key building block of lusutrombopag. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
7
|
Feng J, Wu Q, Zhu D, Ma Y. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. CHEMSUSCHEM 2022; 15:e202102399. [PMID: 35089653 DOI: 10.1002/cssc.202102399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous "Marker Degradation". Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| |
Collapse
|
8
|
Zhang H, Zhu L, Feng J, Liu X, Chen X, Wu Q, Zhu D. Directed evolution of an alcohol dehydrogenase for the desymmetric reduction of 2,2-disubstituted cyclopenta-1,3-diones by enzymatic hydrogen transfer. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed evolution of carbonyl reductase TbADH created mutant Tb2 with balanced activity toward ethyl secodione and isopropanol, enabling the desymmetric reduction of ethyl secodione to give (13R,17S)-ethyl secol with 94% yield, >99% ee and >99% de.
Collapse
Affiliation(s)
- Hongliu Zhang
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Liangyan Zhu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 P.R. China
| | - Jinhui Feng
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Xiangtao Liu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Xi Chen
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 P.R. China
| | - Qiaqing Wu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
| | - Dunming Zhu
- Tianjin Engineering Research Center of Biocatalytic Technology, National Engineering Research Center of Industrial Enzymes and National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin 300308, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 P.R. China
| |
Collapse
|
9
|
Cui Y, Zhu L, Chen X, Feng J, Wu Q, Zhu D. Engineering a carbonyl reductase for the scalable preparation of (S)-3-Cyclopentyl-3-hydroxypropanenitrile, the key building block of ruxolitinib. Chembiochem 2021; 23:e202100589. [PMID: 34951083 DOI: 10.1002/cbic.202100589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/09/2022]
Abstract
( S )- 3-Cyclopentyl-3-hydroxypropanenitrile is the key precursor for the synthesis of ruxolitinib. The bioreduction of 3-cyclopentyl-3-ketopropanenitrile ( 1a ) offers an attractive method to access this important compound. A carbonyl reductase (PhADH) from Paraburkholderia hospita catalyzed the reduction of 1a giving the ( S )-alcohol ( 1b ) with 85% ee. Rational engineering of PhADH resulted in a double mutant H93C/A139L, which enhanced the enantioselectivity from 85% to >98%, as well as a 6.3-fold improvement in the specific activity. The bioreduction of 1a was performed at 200 g/L (1.5 M) substrate concentration, leading to isolation of ( S )- 1b in 91% yield. Similarly, using this mutant enzyme 3-cyclohexyl-3-ketopropanenitrile ( 2a) and 3-phenyl-3-ketopropanenitrile ( 3a ) were reduced at high concentration affording the corresponding alcohols in >99% ee, and 90% and 92% yield, respectively. The results showed that the variant H93C/A139L was a powerful biocatalyst for reduction of β-substituted-β-ketonitriles.
Collapse
Affiliation(s)
- Yunfeng Cui
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biocatalysis, CHINA
| | - Liangyan Zhu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biocatalysis, CHINA
| | - Xi Chen
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biotechnology, 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308, China, 300308, Tianjin, CHINA
| | - Jinhui Feng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biocatalysis, CHINA
| | - Qiaqing Wu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biocatalysis, CHINA
| | - Dunming Zhu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biocatalysis, CHINA
| |
Collapse
|