1
|
Panigrahi P, Ghosh S, Khandelia T, Tripathi G, Mandal R, Patel BK. Harnessing reductive BF 2-complexation via Ru(II)-catalyzed N-O cleavage of isoxazoles. Chem Commun (Camb) 2024; 60:9109-9112. [PMID: 39109403 DOI: 10.1039/d4cc02816c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Developed here is a highly fluorescent organic N,O bidentate BF2 complex from isoxazole in the presence of a Ru(II) catalyst. Herein, the complexation proceeds via a selective N-O cleavage of the isoxazole ring. The complex shows absorption (λmax,abs) in the range of 352-363 nm with an extinction coefficient (ε) in the range of 8000-64 000 M-1 cm-1, and fluorescence emission (λmax,em) in the range of 413-485 nm with a Stokes shift of 61-125 nm having quantum yield up to 33%. Apart from the solution state, the solid BF2 complex 2u exhibits absorption at 405 nm and strong fluorescence emission at 550 nm with a quantum yield of 26.9%.
Collapse
Affiliation(s)
- Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Gyanesh Tripathi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Li X, Liao LF, Ding LY, Chen CH, Liang C, Mo DL. Iron(III) and BF 3·OEt 2-Promoted O-Transfer Reaction of N-Aryl-α,β-Unsaturated Nitrones to Prepare Difluoroboron β-Ketoiminates. Org Lett 2024; 26:3060-3064. [PMID: 38552180 DOI: 10.1021/acs.orglett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We described an iron(III) and BF3·OEt2-promoted oxygen transfer reaction of N-aryl-α,β-unsaturated nitrones to prepare various N,O-difluoroboron β-ketoiminates in good yields ranging from 24% to 87%. Control experiments revealed that the enaminone was the vital intermediate for the formation of N,O-difluoroboron β-ketoiminates, and iron(III) combined with BF3·OEt2 played as cocatalyst to promote the oxygen transfer reaction through intramolecular cyclization and N-O bond cleavage. More importantly, an estrone-derived N,O-difluoroboron β-ketoiminate was easily prepared in 40% yield from estrone in four steps.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Lin-Fen Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Li-Yao Ding
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Chun-Hua Chen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commision, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
3
|
Wei Z, Chen Y, Wang J, Yang T, Zhao Z, Zhu S. De Novo Synthesis of α-Oligo(arylfuran)s and Its Application in OLED as Hole-Transporting Material. Chemistry 2023; 29:e202203444. [PMID: 36517415 DOI: 10.1002/chem.202203444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Tuning the photophysical properties of π-conjugated oligomers by functionalization of skeleton, to achieve an optically and electronically advantageous building block for organic semiconductor materials is a vital yet challenging task. In this work, a series of structurally well-defined polyaryl-functionalized α-oligofurans, in which aryl groups are introduced precisely into each of the furan units, are rapidly and efficiently synthesized by de novo metal-free synthesis of α-bi(arylfuran) monomers for the first time. This new synthetic strategy nicely circumvents the cumbersome substituent introduction process in the later stage by the preinstallation of the desired aryl groups in the starting material. The characterization of α-oligo(arylfuran)s demonstrates that photoelectric properties of coplanar α-oligo(arylfuran)s can be tuned through varying aryl groups with different electrical properties. These novel α-oligo(arylfuran)s have good hole transport capacity and can function as hole-transporting layers in organic light-emitting diodes, which is indicative of significant breakthrough in the application of α-oligofurans materials in OLEDs. And our findings offer an avenue for the ingenious use of α-oligo(arylfuran)s as p-type organic semiconductors for OLEDs.
Collapse
Affiliation(s)
- Zhuwen Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jianghui Wang
- State Key Laboratory of Luminescent Materials and, Devices, Guangdong Provincial Key Laboratory of, Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Tao Yang
- State Key Laboratory of Luminescent Materials and, Devices, Guangdong Provincial Key Laboratory of, Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and, Devices, Guangdong Provincial Key Laboratory of, Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
4
|
Wu R, Chen Y, Zhu S. Rh(II)-Catalyzed Enynal Cycloisomerization for the Generation of Vinyl Carbene: Divergent Access to Polycyclic Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Zhou J, Shi X, Zheng H, Chen G, Zhang C, Liu X, Cao H. Deconstructive Cycloaromatization Strategy toward N, O-Bidentate Ligands from Indolizines and Cyclopropenones. Org Lett 2022; 24:3238-3243. [PMID: 35446037 DOI: 10.1021/acs.orglett.2c01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The innovative construction of novel N,O-bidentate ligands represents a long-standing challenge for chemists. Here, we report an unprecedented approach for the construction of N,O-bidentate derivatives via the merging of ring deconstruction with cycloaromatization of indolizines and cyclopropenones. Without any catalysts, our method can deliver a series of polyaryl 2-(pyridin-2-yl)phenols in excellent yields. In addition, N,O-bidentate organic BF2 complexes can also be constructed via this one-pot protocol.
Collapse
Affiliation(s)
- Jinlei Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Huitao Zheng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Guangxian Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
6
|
Chen Y, Zhu S. Modular construction of α-furanyl ketones via semi-pinacol rearrangement-mediated ring expansion. Org Chem Front 2022. [DOI: 10.1039/d2qo01324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient semi-pinacol rearrangement strategy of enynals involving a metal carbene intermediate has been developed, which allows the practical synthesis of various functionalized α-furanyl ketones in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Youmei Institute of Intelligent Biomanufacturing, Foshan 528225, PR China
| |
Collapse
|