1
|
Zhang Y, Liu X, Sun Y, Liu Y, Zhang Y, Ding T, Chen J. Salivary Protein Cyclin-Dependent Kinase-like from Grain Aphid Sitobion avenae Suppresses Wheat Defense Response and Enhances Aphid Adaptation. Int J Mol Sci 2024; 25:4579. [PMID: 38731798 PMCID: PMC11083452 DOI: 10.3390/ijms25094579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.
Collapse
Affiliation(s)
- Yumeng Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Tianbo Ding
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| |
Collapse
|
2
|
Zhang J, Li F, Zhang X, Xie T, Qin H, Lv J, Gao Y, Li M, Gao Y, Jia Y. Melatonin Improves Turbot Oocyte Meiotic Maturation and Antioxidant Capacity, Inhibits Apoptosis-Related Genes mRNAs In Vitro. Antioxidants (Basel) 2023; 12:1389. [PMID: 37507927 PMCID: PMC10376768 DOI: 10.3390/antiox12071389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
High-quality eggs are essential for the sustainability of commercial aquaculture production. Melatonin is a potent candidate for regulating the growth and maturation of oocytes. Therefore, research on the effect of melatonin on marine fish oocytes in vitro has been conducted. The present study successfully established a culture system of turbot (Scophthalmus maximus) oocytes in vitro and investigated the effect of melatonin on oocyte meiotic maturation, antioxidant capacity, and the expression of apoptosis-related genes. The cultures showed that turbot Scophthalmus maximus late-vitellogenic denuded oocytes, with diameters of 0.5-0.7 mm, had a low spontaneous maturation rate and exhibited a sensitive response to 17α, 20β-dihydroxyprogesterone (DHP) treatment in vitro. Melatonin increased by four times the rate of oocyte germinal vesicle breakdown (GVBD) in a concentration- and time-dependent manner. The mRNA of melatonin receptor 1 (mtnr1) was significantly upregulated in the oocyte and follicle after treatment with melatonin (4.3 × 10-9 M) for 24 h in vitro, whereas melatonin receptor 2 (mtnr2) and melatonin receptor 3 (mtnr3) remained unchanged. In addition, melatonin significantly increased the activities of catalase, glutathione peroxidase, and superoxide dismutase, as well as the levels of glutathione, while decreasing the levels of malondialdehyde and reactive oxygen species (ROS) levels in turbot oocytes and follicles cultures in vitro. p53, caspase3, and bax mRNAs were significantly downregulated in oocytes and follicles, whereas bcl2 mRNAs were significantly upregulated. In conclusion, the use of turbot late-vitellogenesis oocytes (0.5-0.7 mm) is suitable for establishing a culture system in vitro. Melatonin promotes oocyte meiotic maturation and antioxidative capacity and inhibits apoptosis via the p53-bax-bcl2 and caspase-dependent pathways, which have important potential to improve the maturation and quality of oocytes.
Collapse
Affiliation(s)
- Jiarong Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Feixia Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyu Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ting Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongyu Qin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Junxian Lv
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mingyue Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Zhang Z, Xu J, Lyu S, Xin X, Shi Q, Huang Y, Yu X, Zhu X, Li Z, Wang X, Lang L, Xu Z, Wang E. Whole-Genome DNA Methylation Dynamics of Sheep Preimplantation Embryo Investigated by Single-Cell DNA Methylome Sequencing. Front Genet 2021; 12:753144. [PMID: 35003207 PMCID: PMC8733409 DOI: 10.3389/fgene.2021.753144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
The early stages of mammalian embryonic development involve the participation and cooperation of numerous complex processes, including nutritional, genetic, and epigenetic mechanisms. However, in embryos cultured in vitro, a developmental block occurs that affects embryo development and the efficiency of culture. Although the block period is reported to involve the transcriptional repression of maternal genes and transcriptional activation of zygotic genes, how epigenetic factors regulate developmental block is still unclear. In this study, we systematically analyzed whole-genome methylation levels during five stages of sheep oocyte and preimplantation embryo development using single-cell level whole genome bisulphite sequencing (SC-WGBS) technology. Then, we examined several million CpG sites in individual cells at each evaluated developmental stage to identify the methylation changes that take place during the development of sheep preimplantation embryos. Our results showed that two strong waves of methylation changes occurred, namely, demethylation at the 8-cell to 16-cell stage and methylation at the 16-cell to 32-cell stage. Analysis of DNA methylation patterns in different functional regions revealed a stable hypermethylation status in 3'UTRs and gene bodies; however, significant differences were observed in intergenic and promoter regions at different developmental stages. Changes in methylation at different stages of preimplantation embryo development were also compared to investigate the molecular mechanisms involved in sheep embryo development at the methylation level. In conclusion, we report a detailed analysis of the DNA methylation dynamics during the development of sheep preimplantation embryos. Our results provide an explanation for the complex regulatory mechanisms underlying the embryo developmental block based on changes in DNA methylation levels.
Collapse
Affiliation(s)
- Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiawei Xu
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaoling Xin
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Xiang Yu
- Animal Health Supervision Institute of Henan Province, Zhengzhou, China
| | - Xiaoting Zhu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, China
| | - Limin Lang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Xing CH, Wang Y, Liu JC, Pan ZN, Zhang HL, Sun SC, Zhang Y. Melatonin reverses mitochondria dysfunction and oxidative stress-induced apoptosis of Sudan I-exposed mouse oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112783. [PMID: 34544023 DOI: 10.1016/j.ecoenv.2021.112783] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Sudan I is one of the industry dyes and widely used in cosmetics, wax agent, solvent and textile. Sudan I has multiple toxicity such as carcinogenicity, mutagenicity, genotoxicity and oxidative damage. However, Sudan I has been illegally used as colorant in food products, triggering worldwide attention about food safety. Nevertheless, the toxicity of Sudan I on reproduction, particularly on oocyte maturation is still unclear. In the present study, using mouse in vivo models, we report the toxicity effects of Sudan I on mouse oocyte. The results reflect that Sudan I exposure disrupts spindle organization and chromosomes alignment as well as cortical actin distribution, thus leading to the failure of polar body extrusion. Based on the transcriptome results, it is found that the exposure of Sudan I leads to the change in expression of 764 genes. Moreover, it's further reflected that the damaging effects of Sudan I are mediated by the destruction of mitochondrial functions, which induces the accumulated ROS to stimulate oxidative stress-induced apoptosis. As an endogenous hormone, melatonin within the ovarian follicle plays function on improving oocyte quality and female reproduction by efficiently suppressing oxidative stress. Moreover, melatonin supplementation also improves oocyte quality and increases fertilization rate during in vitro culture. Consistent with these, we find that in vivo supplementation of melatonin efficaciously suppresses mitochondrial dysfunction and the accompanying apoptosis, thus reverses oocyte meiotic deteriorations. Collectively, our results prove the reproduction toxicity of Sudan I for the exposure of Sudan I reduces the oocyte quality, and demonstrate the protective effects of melatonin against Sudan I-induced meiotic deteriorations.
Collapse
Affiliation(s)
- Chun-Hua Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Daneshvar M, Movahedin M, Salehi M, Noruzinia M. Alterations of miR-16, miR-let-7a and their target genes expression in human blastocysts following vitrification and re-vitrification. Reprod Biol Endocrinol 2021; 19:155. [PMID: 34627262 PMCID: PMC8501585 DOI: 10.1186/s12958-021-00842-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Embryo cryopreservation is a widely used technique in infertility management and today is an essential part of assisted reproductive technology (ART). In some cases, re-vitrification can be applied to good quality supernumerary warmed embryos that have not been transferred in the present cycle. However, there is no study about re-vitrification impact on microRNA and gene expression in human embryos. The purpose of this study is to evaluate miR-16, miR-let7a and target genes expression in in vitro produced human blastocysts following re-vitrification.Day3 embryos obtained from ICSI cycles of fertile couples referring for family balancing program were biopsied and cultured individually. On the fourth day (post-ICSI) male ones (choices of their parents) were transferred and the females (good quality embryos) were donated for research. Donated embryos were cultured to blastocyst stage and assigned to three groups: fresh, vitrified and re-vitrification. Embryos were vitrified on Cryotech carriers. Then blastocysts of three groups were individually assessed for expression of miR-16, miR-let7a and target genes.The results showed that re-vitrification of human blastocysts did not affect the ability to re-expand in culture. In addition, significant decrease was observed in miR-16 and miR-let7a expression in re-vitrified group compared to fresh (p < 0.05). A significant upregulation of the target genes ITGβ3 and BCL-2 in re-vitrified and vitrified embryos was observed compared to the fresh group (p < 0.05). The expression of BAX as a pro-apoptotic gene showed a significant decrease in re-vitrification group comparing with the fresh one (P < 0.05).The results of this research indicated that re-vitrification of embryos changes the expression of miR-16, miR-let-7a and their target genes. These alterations include increased expression of BCl-2 and ITGβ3 genes which play important roles in embryo survival and implantation, respectively. Clinical proof of these effects requires further research.
Collapse
Affiliation(s)
- Maryam Daneshvar
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Noruzinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Koagouw W, Stewart NA, Ciocan C. Long-term exposure of marine mussels to paracetamol: is time a healer or a killer? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48823-48836. [PMID: 33928507 PMCID: PMC8084691 DOI: 10.1007/s11356-021-14136-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 04/16/2023]
Abstract
Pharmaceuticals pose a major threat to the marine environment, and several studies have recently described their negative effects on marine organisms. Pharmaceutical compounds are constantly being released into aquatic ecosystems, and chronic exposure, even at low concentrations, may have a major impact on marine organisms. The purpose of the present study is to evaluate the biological changes induced by one of the most widely used pharmaceuticals-paracetamol-in the blue mussel Mytilus edulis, after a long-term exposure at environmentally relevant concentrations. We present our data alongside and in comparison with results from a previous short-term exposure, to demonstrate the significance of exposure period on the effects of paracetamol in adult blue mussels. After 24 days of laboratory exposure, seven potential target genes were selected to examine toxicological effects in mussels' gonads and possible disruptive effects on reproductive processes. The results show the modulation of some important reproduction-related genes: estrogen receptor-2 (ER2), vitelline envelope zona pellucida domain-9 (V9), and vitellogenin (VTG). Variations in mRNA expression of four other genes involved in apoptosis (HSP70, CASP8, BCL2, and FAS) are also highlighted. Histopathological alterations caused by paracetamol, together with neutral red retention time response in mussels' hemocytes, are presented herein. Overall, this study highlights the exacerbated effects of low concentration of paracetamol after chronic exposure, similar to the damage induced by higher concentrations in a short exposure scenario, thus emphasizing the importance of length of exposure period when studying the effects of this substance. Additionally, this study also discusses the potential of paracetamol to inflict several major changes in the reproductive system of mussels and thus possibly affect the survival of populations.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
- Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, UK
- Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia
| | - Nicolas A. Stewart
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
- Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, UK
| |
Collapse
|
7
|
Abstract
Pregnancy-associated melanoma is defined as melanoma diagnosed during pregnancy or within 1 year of delivery. The association of pregnancy with melanoma is well known, but its underlying molecular mechanisms of association are poorly understood. The aim was to assess the expression of apoptosis-related genes in melanoma tumors during pregnancy in an attempt to elucidate the molecular mechanisms underlying apoptosis-driven activation of melanoma cells in this period. Mice were allocated across two experimental groups (nonpregnant and pregnant) and implanted with the melanoma cell line BF16-F10. Tumor tissue was collected for RNA extraction and purification, and gene expression was quantified using the mouse apoptosis RT2ProfilerTM PCR array. Different intracellular apoptotic pathways were activated (positively or negatively) by pregnancy in tumor cells: intrinsic (21.5%), extrinsic (32%), caspase (14%), apoptosis (21.5%), and caspase-activated DNase (11%). The proportion of upregulated genes for each of these pathways was 100, 30, 50, 17, and 0%, respectively. MetaCore software was then used to analyze gene ontology processes and pathways by building networks. Among the gene ontology processes, the majority of differentiated genes were related to the apoptotic process. The main pathway activated by pregnancy was the intrinsic one (genes Api-5, Bcl2-L1, Birc-2, Birc-3, Bok, and Trp53bp2). Pregnancy activates the intrinsic apoptosis pathway to stimulate caspases 7 and 9, but the final balance is inhibition of apoptosis mechanisms. In mice, pregnancy cannot promote or worsen melanoma.
Collapse
|
8
|
Sun YC, Wang YY, Sun XF, Cheng SF, Li L, Zhao Y, Shen W, Chen H. The role of autophagy during murine primordial follicle assembly. Aging (Albany NY) 2018; 10:197-211. [PMID: 29410391 PMCID: PMC5842841 DOI: 10.18632/aging.101376] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022]
Abstract
It is generally accepted that significant germ cell loss occurs during the establishment of the primordial follicle pool in most mammalian ovaries around the time of birth. However, the underlying mechanisms responsible for these processes remain largely unknown. In this investigation, we explored the role of autophagy during the establishment of the primordial follicle pool and found that autophagy was active in this process. Our data suggested that 17.5 dpc ovaries treated with rapamycin displayed a delay in germ cell cyst breakdown resulting in more oocytes at day 5 of treatment, while, ovaries that treated with 3-MA showed the opposite effect. We found that rapamycin treatment promoted autophagy and depressed cell apoptosis increasing the number of NOBOX positive oocytes. Furthermore, our results also revealed that epigenetic regulator, Sirt1, plays a role in germ cell loss. An epigenetic inhibitor or RNAi treatment of Sirt1, showed an increased level of H4K16ac and a decreased level of autophagy. Thus, these data indicate that autophagy prevents germ cell over loss during the establishment of primordial follicle pool, and this process may be influenced by Sirt1-invovled epigenetic regulation.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi, China
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong-Yong Wang
- Department of Reproductive Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi, China
| |
Collapse
|
9
|
Sun YC, Sun XF, Dyce PW, Shen W, Chen H. The role of germ cell loss during primordial follicle assembly: a review of current advances. Int J Biol Sci 2017; 13:449-457. [PMID: 28529453 PMCID: PMC5436565 DOI: 10.7150/ijbs.18836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
In most female mammals, early germline development begins with the appearance of primordial germ cells (PGCs), and develops to form mature oocytes following several vital processes. It remains well accepted that significant germ cell apoptosis and oocyte loss takes place around the time of birth. The transition of the ovarian environment from fetal to neonatal, coincides with the loss of germ cells and the timing of follicle formation. All told it is common to lose approximately two thirds of germ cells during this transition period. The current consensus is that germ cell loss can be attributed, at least in part, to programmed cell death (PCD). Recently, autophagy has been implicated as playing a part in germ cell loss during the time of parturition. In this review, we discuss the major opinions and mechanisms of mammalian ovarian PCD during the process of germ cell loss. We also pay close attention to the function of autophagy in germ cell loss, and speculate that autophagy may also serve as a critical and necessary process during the establishment of primordial follicle pool.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling Shaanxi 712100, China
| |
Collapse
|
10
|
Anticancer Effects of Salvia miltiorrhiza Alcohol Extract on Oral Squamous Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5364010. [PMID: 28246540 PMCID: PMC5303586 DOI: 10.1155/2017/5364010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
Abstract
Researchers have reported significant effects from Danshen (Salvia miltiorrhiza) in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC) cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP) family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug.
Collapse
|
11
|
Sun Y, Lu CM, Song Z, Xu KK, Wu SB, Li ZJ. Expression and regulation of microRNA-29a and microRNA-29c in early diabetic rat cataract formation. Int J Ophthalmol 2016; 9:1719-1724. [PMID: 28003969 DOI: 10.18240/ijo.2016.12.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/11/2016] [Indexed: 01/20/2023] Open
Abstract
AIM To determine the role of microRNA (miRNA)-29a and miRNA-29c in the regulation of apoptosis in early rat diabetic cataract formation. METHODS Streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats were used in the study. The expression level of miRNA-29a, miRNA-29c, and BCL2-modifying factor (BMF) in lens epithelial cells (LECs) samples were measured using quantitative real-time polymerase chain reaction. Prediction algorithms of miRanda, TargetScan 6.2, and mirRDB to perform a miRNA gene network analysis were used for the potential miRNA-29a and miRNA-29c targets. RESULTS The miRNA-29a and miRNA-29c expression levels were all significantly lower in the control group compared to the 2 and 4wk diabetic samples (P<0.01). The network analysis indicated that one miRNA-29a and miRNA-29c targets was BMF. There was significantly higher expression of BMF mRNA compared to the normal controls (P<0.01). CONCLUSION Apoptosis occurs in rat LECs following high blood glucose exposure. It is likely that apoptosis during diabetic cataract formation involves the decreased expression of miRNA-29a and miRNA-29c and the increased expression of BMF.
Collapse
Affiliation(s)
- Ying Sun
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Department of Ophthalmology, Second Hospital of Heilongjiang Province, Harbin 150001, Heilongjiang Province, China
| | - Chun-Mei Lu
- Department of Physiology, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Zhen Song
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke-Ke Xu
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shu-Bin Wu
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Zhi-Jian Li
- Department of Ophthalmology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
12
|
Xia HF, Jin XH, Cao ZF, Hu Y, Ma X. MicroRNA expression and regulation in the uterus during embryo implantation in rat. FEBS J 2014; 281:1872-91. [PMID: 24528955 DOI: 10.1111/febs.12751] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/28/2013] [Accepted: 02/07/2014] [Indexed: 12/20/2022]
Abstract
Embryo implantation is a complex initial step in establishment of a successful pregnancy. Many mRNAs have been shown to be differentially expressed in the rat uterus during embryo implantation. However, the expression profiles of microRNAs (miRNAs), a key post-transcriptional regulator of gene expression, in the rat uterus between the pre-receptive and receptive phases are still unknown. Here, an miRNA microarray was used to examine differential expression of miRNAs in the rat uterus between the pre-receptive and receptive phases. Twenty-eight miRNAs were up-regulated and 29 miRNAs were down-regulated at least twofold during the receptive phase in rat uterus; these results were confirmed by Northern blotting. miR-29a was only highly expressed in rat uterus during the implantation period, and activation of delayed implantation and artificial decidualization enhanced the miR-29a level. Further investigation revealed that both the pro-apoptotic factor genes Bak1 and Bmf and the anti-apoptotic factor gene Bcl-w are targets of miR-29a. There was weak binding between miR-29a and the 3' UTR of the anti-apoptotic factor gene Mcl1. Over-expression of miR-29a inhibited the late apoptosis of endometrial stromal cells, which may be due to the stronger binding capacity between miR-29a and the 3' UTR of pro-apoptotic factors than that between miR-29a and the 3' UTR of anti-apoptotic factors. Collectively, miR-29a plays an important role during embryo implantation by regulating both pro-apoptotic and anti-apoptotic factors. miR-29a may predominantly bind pro-apoptotic factors, leading to inhibition of cell apoptosis.
Collapse
Affiliation(s)
- Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China; Graduate School, Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
13
|
The Effectiveness and Mechanism of Toona sinensis Extract Inhibit Attachment of Pandemic Influenza A (H1N1) Virus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:479718. [PMID: 24073006 PMCID: PMC3773900 DOI: 10.1155/2013/479718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/13/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022]
Abstract
TSL-1 is a fraction of the aqueous extract from the tender leaf of Toona sinensis Roem, a nutritious vegetable. The pandemic influenza A (H1N1) virus is a recently described, rapidly contagious respiratory pathogen which can cause acute respiratory distress syndrome (ARDS) and poses a major public health threat. In this study, we found that TSL-1 inhibited viral yields on MDCK plaque formation by pandemic influenza A (H1N1) virus on infected A549 cells with high selectivity index. Meanwhile, TSL-1 also suppressed viral genome loads in infected A549 cells, quantified by qRT-PCR. This study further demonstrated that TSL-1 inhibited pandemic influenza A (H1N1) virus activity through preventing attachment of A549 cells but not penetration. TSL-1 inhibited viral attachment through significant downregulation of adhesion molecules and chemokines (VCAM-1, ICAM-1, E-selectin, IL-8, and fractalkine) compared to Amantadine. Our results suggest that TSL-1 may be used as an alternative treatment and prophylaxis against pandemic influenza A (H1N1) virus.
Collapse
|
14
|
Santonocito M, Guglielmino MR, Vento M, Ragusa M, Barbagallo D, Borzì P, Casciano I, Scollo P, Romani M, Tatone C, Purrello M, Di Pietro C. The apoptotic transcriptome of the human MII oocyte: characterization and age-related changes. Apoptosis 2012. [DOI: 10.1007/s10495-012-0783-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Boumela I, Assou S, Aouacheria A, Haouzi D, Dechaud H, De Vos J, Handyside A, Hamamah S. Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond. Reproduction 2011; 141:549-61. [PMID: 21339285 DOI: 10.1530/rep-10-0504] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In women, up to 99.9% of the oocyte stockpile formed during fetal life is decimated by apoptosis. Apoptotic features are also detected in human preimplantation embryos both in vivo and in vitro. Despite the important consequences of cell death processes to oocyte competence and early embryonic development, little is known about its genetic and molecular control. B cell lymphoma-2 (BCL2) family proteins are major regulators of cell death and survival. Here, we present a literature review on BCL2 family expression and protein distribution in human and animal oocytes and early embryos. Most of the studies focused on the expression of two antagonistic members: the founding and survival family member BCL2 and its proapoptotic homolog BAX. However, recent transcriptomic analyses have identified novel candidate genes related to oocyte and/or early embryonic viability (such as BCL2L10) or commitment to apoptosis (e.g. BIK). Interestingly, some BCL2 proteins appear to be differentially distributed at the subcellular level during oocyte maturation and early embryonic development, a process probably linked to the functional compartmentalization of the ooplasm and blastomere. Assessment of BCL2 family involvement in regulating the survival of human oocytes and embryos may be of particular value for diagnosis and assisted reproductive technology. We suggest that implications of not only aberrant gene expression but also abnormal subcellular protein redistribution should be established in pathological conditions resulting in infertility.
Collapse
Affiliation(s)
- Imene Boumela
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier F-34000, France
| | | | | | | | | | | | | | | |
Collapse
|