1
|
Ekanayake A, Rajapaksha AU, Hewawasam C, Anand U, Bontempi E, Kurwadkar S, Biswas JK, Vithanage M. Environmental challenges of COVID-19 pandemic: resilience and sustainability - A review. ENVIRONMENTAL RESEARCH 2023; 216:114496. [PMID: 36257453 PMCID: PMC9576205 DOI: 10.1016/j.envres.2022.114496] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 05/05/2023]
Abstract
The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.
Collapse
Affiliation(s)
- Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Choolaka Hewawasam
- Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
2
|
Adelodun B, Kumar P, Odey G, Ajibade FO, Ibrahim RG, Alamri SAM, Alrumman SA, Eid EM, Kumar V, Adeyemi KA, Arya AK, Bachheti A, Oliveira MLS, Choi KS. A safe haven of SARS-CoV-2 in the environment: Prevalence and potential transmission risks in the effluent, sludge, and biosolids. GEOSCIENCE FRONTIERS 2022; 13:101373. [PMID: 37521134 PMCID: PMC8861126 DOI: 10.1016/j.gsf.2022.101373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 05/11/2023]
Abstract
The novel coronavirus, SARS-CoV-2, which has caused millions of death globally is recognized to be unstable and recalcitrant in the environment, especially in the way it has been evolving to form new and highly transmissible variants. Of particular concerns are human-environment interactions and the handling and reusing the environmental materials, such as effluents, sludge, or biosolids laden with the SARS-CoV-2 without adequate treatments, thereby suggesting potential transmission and health risks. This study assesses the prevalence of SARS-CoV-2 RNA in effluents, sludge, and biosolids. Further, we evaluate the environmental, ecological, and health risks of reusing these environmental materials by wastewater/sludge workers and farmers. A systematic review of literature from the Scopus database resulted in a total of 21 articles (11 for effluents, 8 for sludge, and 2 for biosolids) that met the criteria for meta-analysis, which are then subdivided into 30 meta-analyzed studies. The prevalence of SAR-CoV-2 RNA in effluent and sludge based on random-effect models are 27.51 and 1012.25, respectively, with a 95% CI between 6.14 and 48.89 for the effluent, and 104.78 and 1019.71 for the sludge. However, the prevalence of SARS-CoV-2 RNA in the biosolids based on the fixed-effect model is 30.59, with a 95% CI between 10.10 and 51.08. The prevalence of SARS-CoV-2 RNA in environmental materials indicates the inefficiency in some of the treatment systems currently deployed to inactivate and remove the novel virus, which could be a potential health risk concern to vulnerable wastewater workers in particular, and the environmental and ecological issues for the population at large. This timely review portends the associated risks in handling and reusing environmental materials without proper and adequate treatments.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria
| | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Saad A M Alamri
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Sulaiman A Alrumman
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
| | - Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha 61321, Saudi Arabia
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Khalid Adeola Adeyemi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ashish Kumar Arya
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Archana Bachheti
- Department of Environmental Science, Graphic Era (Deemed to be University) Deharadun, 248002 Uttarakhand, India
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
- Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu 41566, South Korea
| |
Collapse
|
3
|
Naseri K, Aliashrafzadeh H, Otadi M, Ebrahimzadeh F, Badfar H, Alipourfard I. Human Responses in Public Health Emergencies for Infectious Disease Control: An Overview of Controlled Topologies for Biomedical Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6324462. [PMID: 36105443 PMCID: PMC9458400 DOI: 10.1155/2022/6324462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 originated in Wuhan city of Hubei Province in China in December three years ago. Since then, it has spread to more than 210 countries and territories. This disease is caused by Severe Acute Respiratory Syndrome Coronavirus 2. The virus has a size of one to two nanometers and a single-stranded positive RNA. Droplets spread the virus from coughing and sneezing. This condition causes coughing, fever, acute respiratory problems, and even death. According to the WHO, the virus can survive outside the body for several hours. This research aimed to determine how environmental factors influenced the COVID-19 virus's survival and behavior, as well as its transmission, in a complex environment. Based on the results, virus transmissions are influenced by various human and environmental factors such as population distribution, travel, social behavior, and climate change. Environmental factors have not been adequately examined concerning the transmission of this epidemic. Thus, it is necessary to examine various aspects of prevention and control of this disease, including its effects on climate and other environmental factors.
Collapse
Affiliation(s)
- Kamal Naseri
- Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Milan, Italy
| | | | - Maryam Otadi
- Chemical Engineering Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homayoun Badfar
- Department of Mechanical Engineering, Urmia University of Technology (UUT), PO Box: 57166-419, Urmia, Iran
| | - Iraj Alipourfard
- Institute of Biology,Biotechnology and Environmental Protection, Faculty of Natural Sciences, The University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Haque R, Moe CL, Raj SJ, Ong L, Charles K, Ross AG, Shirin T, Raqib R, Sarker P, Rahman M, Rahman MZ, Amin N, Mahmud ZH, Rahman M, Johnston D, Akter N, Khan TA, Hossain MA, Hasan R, Islam MT, Bhattacharya P. Wastewater surveillance of SARS-CoV-2 in Bangladesh: Opportunities and challenges. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 27:100334. [PMID: 35434440 PMCID: PMC9004539 DOI: 10.1016/j.coesh.2022.100334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ongoing pandemic of the coronavirus disease 2019 (COVID-19) is a public health crisis of global concern. The progression of the COVID-19 pandemic has been monitored in the first place by testing symptomatic individuals for SARS-CoV-2 virus in the respiratory samples. Concurrently, wastewater carries feces, urine, and sputum that potentially contains SARS-CoV-2 intact virus or partially damaged viral genetic materials excreted by infected individuals. This brings significant opportunities for understanding the infection dynamics by environmental surveillance. It has advantages for the country, especially in densely populated areas where individual clinical testing is difficult. However, there are several challenges including: 1) establishing a sampling plan and schedule that is representative of the various catchment populations 2) development and validation of standardized protocols for the laboratory analysis 3) understanding hydraulic flows and virus transport in complex wastewater drainage systems and 4) collaborative efforts from government agencies, NGOs, public health units and academia.
Collapse
Affiliation(s)
- Rehnuma Haque
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
- School of Medicine, Stanford University, USA
| | - Christine L Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, USA
| | - Suraja J Raj
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, USA
| | - Li Ong
- School of Geography and the Environment, University of Oxford, UK
| | - Katrina Charles
- School of Geography and the Environment, University of Oxford, UK
| | - Allen G Ross
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Rubhana Raqib
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - Protim Sarker
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - Mahbubur Rahman
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - Nuhu Amin
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - Zahid Hayat Mahmud
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - Mahbubur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Bangladesh
| | - Dara Johnston
- Water, Sanitation & Hygiene (WASH) Section, UNICEF, Bangladesh
| | - Nargis Akter
- Water, Sanitation & Hygiene (WASH) Section, UNICEF, Bangladesh
| | - Taqsem A Khan
- Dhaka Water Supply & Sewerage Authority (DWASA), Bangladesh
| | | | - Rezaul Hasan
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, 1212, Bangladesh
| | - M Tahmidul Islam
- COVID-19 Research @KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Prosun Bhattacharya
- COVID-19 Research @KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
5
|
Hu Z, Yang L, Han J, Liu Z, Zhao Y, Jin Y, Sheng Y, Zhu L, Hu B. Human viruses lurking in the environment activated by excessive use of COVID-19 prevention supplies. ENVIRONMENT INTERNATIONAL 2022; 163:107192. [PMID: 35354102 PMCID: PMC8938188 DOI: 10.1016/j.envint.2022.107192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 05/09/2023]
Abstract
Due to extensive COVID-19 prevention measures, millions of tons of chemicals penetrated into natural environment. Alterations of human viruses in the environment, the neglected perceiver of environmental fluctuations, remain obscure. To decipher the interaction between human viruses and COVID-19 related chemicals, environmental samples were collected on March 2020 from surroundings of designated hospitals and receivers of wastewater treatment plant effluent in Wuhan. The virus community and chemical concentration were respectively unveiled in virtue of virome and ultra-high-performance liquid chromatography-tandem mass spectrometry. The complex relationship between virus and chemical was ulteriorly elaborated by random forest model. As an indicator, environmental viruses were corroborated to sensitively reflect the ecological disturbance originated from pandemic prevention supplies. Chemicals especially trihalomethanes restrained the virus community diversity. Confronting this adverse scenario, Human gammaherpesvirus 4 and Orf virus with resistance to trihalomethanes flourished while replication potential of Macacine alphaherpesvirus 1 ascended under glucocorticoids stress. Consequently, human viruses lurking in the environment were actuated by COVID-19 prevention chemicals, which was a constant burden to public health in this ongoing pandemic. Besides, segments of SARS-CoV-2 RNA were detected near designated hospitals, suggesting environment as a missing link in the transmission route. This research innovatively underlined the human health risk of pandemic prevention supplies from the virus - environment interaction, appealing for monitoring of environmental viruses in long term.
Collapse
Affiliation(s)
- Zhichao Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zishu Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yihao Jin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaqi Sheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058 China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058 China.
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Soni V, Khosla A, Singh P, Nguyen VH, Le QV, Selvasembian R, Hussain CM, Thakur S, Raizada P. Current perspective in metal oxide based photocatalysts for virus disinfection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114617. [PMID: 35121465 PMCID: PMC8803534 DOI: 10.1016/j.jenvman.2022.114617] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Nanotechnology holds huge potential for the prevention of various viral outbreaks that have increased at a disquieting rate over the past decades. Metal oxide nanomaterials with oxidative capability are the effective materials that provide platforms as well as tools for the well understanding of the mechanism, its detection, and treatment of various viral diseases like measles, influenza, herpes, ebola, current COVID-19 etc. In this inclusive review, we survey various previous research articles on different notable photoactive transition metal oxides that possess enough potential to act as antiviral agents for the deactivation of harmful viruses. We investigated and highlighted the plausible photocatalytic oxidative mechanism of photoactive transition metal oxides in degrading viral coatings, genomic RNA using suitable free radical generation. The key finding of the present review article including the discovery of a vision on the suitable photocatalytic transition metal oxides that have been proven to be excellent against harmful viruses and consequently combatting deadly CoV-2 in the environment. This review intends to provide conclusive remarks and a realistic outlook on other advanced photocatalytic metal oxides as a potential solution in battling other similar upcoming pandemics.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Atul Khosla
- School of Management, Faculty of Management Sciences, Shoolini University, Solan, HP, India, 173229
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul 02841, South Korea
| | | | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
7
|
Kumar M, Srivastava V, Mazumder P, Deka JP, Gupta S, Goswami R, Mutiyar PK, Dave S, Mahanta C, Ramanathan AL, Joshi M. Spectre of SARS-CoV-2 RNA in the ambient urban waters of Ahmedabad and Guwahati: A tale of two Indian cities. ENVIRONMENTAL RESEARCH 2022; 204:112067. [PMID: 34543636 PMCID: PMC8445884 DOI: 10.1016/j.envres.2021.112067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 05/19/2023]
Abstract
COVID-19 positive patients can egest live SARS-CoV-2 virus and viral genome fragments through faecal matter and urine, raising concerns about viral transmission through the faecal-oral route and/or contaminated aerosolized water. These concerns are amplified in many low- and middle-income countries, where raw sewage is often discharged into surface waterways and open defecation is common. Nonetheless, there has been no evidence of COVID-19 transmission via ambient urban water, and the virus viability in such aquatic matrices is believed to be minimal and not a matter of concern. In this manuscript, we attempt to discern the presence of SARS-CoV-2 genetic material (ORF-1ab, N and S genes) in the urban water (lakes, rivers, and drains) of the two Indian cities viz., Ahmedabad (AMD), in western India with 9 wastewater treatment plants (WWTPs) and Guwahati (GHY), in the north-east of the country with no such treatment facilities. The present study was carried out to establish the applicability of environmental water surveillance (E-wat-Surveillance) of COVID-19 as a potential tool for public health monitoring at the community level. 25.8% and 20% of the urban water samples had detectable SARS-CoV-2 RNA load in AMD and GHY, respectively. N-gene > S-gene > ORF-1ab-gene were readily detected in the urban surface water of AMD, whereas no such observable trend was noticed in the case of GHY. The high concentrations of SARS-CoV-2 genes (e.g., ORF-1ab; 800 copies/L for Sabarmati River, AMD and S-gene; 565 copies/L for Bharalu urban river, GHY) found in urban waters suggest that WWTPs do not always completely remove the virus genetic material and that E-wat-Surveillance of COVID-19 in cities/rural areas with poor sanitation is possible.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttrakhand, 248007, India.
| | - Vaibhav Srivastava
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat, 382 355, India
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Jyoti Prakash Deka
- Discipline of Environmental Sciences, Gauhati Commerce College, Guwahati, Assam, 781021, India
| | - Shilangi Gupta
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat, 382 355, India
| | - Ritusmita Goswami
- Centre for Ecology, Environment and Sustainable Development, Tata Institute of Social Sciences, Guwahati, Assam, 781013, India
| | - Pravin K Mutiyar
- National Mission for Clean Ganga, Department of Water Resources, Ministry of Jal Shakti, Govt. of India, New Delhi, India
| | - Shyamnarayan Dave
- UNICEF Gujarat State Office, Sector- 20, Gandhinagar, Gujarat, 382021, India
| | - Chandan Mahanta
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - A L Ramanathan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India
| |
Collapse
|
8
|
Vadiati M, Beynaghi A, Bhattacharya P, Bandala ER, Mozafari M. Indirect effects of COVID-19 on the environment: How deep and how long? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152255. [PMID: 34896489 PMCID: PMC8660132 DOI: 10.1016/j.scitotenv.2021.152255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 05/30/2023]
Abstract
Although the World Health Organization (WHO) announcement released in early March 2020 stated there is no proven evidence that the COVID-19 virus can survive in drinking water or sewage, there has been some recent evidence that coronaviruses can survive in low-temperature environments and in groundwater for more than a week. Some studies have also found SARS-CoV-2 genetic materials in raw municipal wastewater, which highlights a potential avenue for viral spread. A lack of information about the presence and spread of COVID-19 in the environment may lead to decisions based on local concerns and prevent the integration of the prevalence of SARS-CoV-2 into the global water cycle. Several studies have optimistically assumed that coronavirus has not yet affected water ecosystems, but this assumption may increase the possibility of subsequent global water issues. More studies are needed to provide a comprehensive picture of COVID-19 occurrence and outbreak in aquatic environments and more specifically in water resources. As scientific efforts to report reliable news, conduct rapid and precise research on COVID-19, and advocate for scientists worldwide to overcome this crisis increase, more information is required to assess the extent of the effects of the COVID-19 pandemic on the environment. The goals of this study are to estimate the extent of the environmental effects of the pandemic, as well as identify related knowledge gaps and avenues for future research.
Collapse
Affiliation(s)
- Meysam Vadiati
- Hubert H. Humphrey Fellowship Program, Global Affairs, University of California, Davis, 10 College Park, 95616 Davis, CA, USA
| | - Ali Beynaghi
- Office of Sustainability, Amirkabir University of Technology, Tehran, Iran
| | - Prosun Bhattacharya
- COVID-19 Research @KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Erick R Bandala
- Division of Hydrological Sciences, Desert Research Institute, 755 E. Flamingo Road, 89119 Las Vegas, NV, USA
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Shukla S, Khan R, Saxena A, Sekar S, Ali EF, Shaheen SM. Appraisal of COVID-19 lockdown and unlocking effects on the air quality of North India. ENVIRONMENTAL RESEARCH 2022; 204:112107. [PMID: 34560058 PMCID: PMC8455374 DOI: 10.1016/j.envres.2021.112107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic lockdown supposedly provided a 'window' of reinstatement to natural resources including the air quality, but the scenario after the phased unlocking is yet to be explored. Consequently, here we evaluated the status of air quality during the 8th phase of unlocking of COVID-19 lockdown (January 2021) at three locations of North India. The first site (S1) was located at Punjab Agricultural University, Ludhiana-PPCB; the second site (S2) at Yamunapuram, Bulandshahr-UPPCB; and the third site (S3) at Okhla Phase-2, Delhi-DPCC. The levels of PM2.5 showed a significant increase of 525.2%, 281.2%, and 185.0% at sites S1, S2 and S3, respectively in the unlock 8 (January 2021), in comparison to its concentration in the lockdown phase. Coherently, the levels of PM10 also showed a prominent increase of 284.5%, 189.1%, and 103.9% at sites S3, S1, and S2, respectively during the unlock 8 as compared to its concentration in the lockdown phase. This rise in the concentration of PM2.5 and PM10 could be primarily attributed to the use of biomass fuel, industrial and vehicular emissions, stubble burning considering the agricultural activities at sites S1 and S2. Site S3 is a major industrial hub and has the highest population density among all three sites. Consequently, the maximum increase (295.7%) in the NO2 levels during the unlock 8 was witnessed at site S3. The strong correlation between PM2.5, PM10, and CO, along with the PM2.5/PM10 ratio confirmed the similar origin of these pollutants at all the three sites. The improvements in the levels of air quality during the COVID-19 lockdown were major overtaken during the various phases of unlocking consequent to the initiation of anthropogenic processes.
Collapse
Affiliation(s)
- Saurabh Shukla
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India.
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India.
| | - Abhishek Saxena
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India.
| | - Selvam Sekar
- Department of Geology, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India.
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt.
| |
Collapse
|
10
|
Gwenzi W. Wastewater, waste, and water-based epidemiology (WWW-BE): A novel hypothesis and decision-support tool to unravel COVID-19 in low-income settings? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150680. [PMID: 34599955 PMCID: PMC8481624 DOI: 10.1016/j.scitotenv.2021.150680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 05/02/2023]
Abstract
Traditional wastewater-based epidemiology (W-BE) relying on SARS-CoV-2 RNA detection in wastewater is attractive for understanding COVID-19. Yet traditional W-BE based on centralized wastewaters excludes putative SARS-CoV-2 reservoirs such as: (i) wastewaters from shared on-site sanitation facilities, (ii) solid waste including faecal sludge from non-flushing on-site sanitation systems, and COVID-19 personal protective equipment (PPE), (iii) raw/untreated water, and (iv) drinking water supply systems in low-income countries (LICs). A novel hypothesis and decision-support tool based on Wastewater (on-site sanitation, municipal sewer systems), solid Waste, and raw/untreated and drinking Water-based epidemiology (WWW-BE) is proposed for understanding COVID-19 in LICs. The WWW-BE conceptual framework, including components and principles is presented. Evidence on the presence of SARS-CoV-2 and its proxies in wastewaters, solid materials/waste (papers, metals, fabric, plastics), and raw/untreated surface water, groundwater and drinking water is discussed. Taken together, wastewaters from municipal sewer and on-site sanitation systems, solid waste such as faecal sludge and COVID-19 PPE, raw/untreated surface water and groundwater, and drinking water systems in LICs act as potential reservoirs that receive and harbour SARS-CoV-2, and then transmit it to humans. Hence, WWW-BE could serve a dual function in estimating the prevalence and potential transmission of COVID-19. Several applications of WWW-BE as a hypothesis and decision support tool in LICs are discussed. WWW-BE aggregates data from various infected persons in a spatial unit, hence, putatively requires less resources (analytical kits, personnel) than individual diagnostic testing, making it an ideal decision-support tool for LICs. The novelty, and a critique of WWW-BE versus traditional W-BE are presented. Potential challenges of WWW-BE include: (i) biohazards and biosafety risks, (ii) lack of expertise, analytical equipment, and accredited laboratories, and (iii) high uncertainties in estimates of COVID-19 cases. Future perspectives and research directions including key knowledge gaps and the application of novel and emerging technologies in WWW-BE are discussed.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
11
|
Kumar M, Kuroda K, Joshi M, Bhattacharya P, Barcelo D. First comparison of conventional activated sludge versus root-zone treatment for SARS-CoV-2 RNA removal from wastewaters: Statistical and temporal significance. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 425:130635. [PMID: 34149304 PMCID: PMC8200644 DOI: 10.1016/j.cej.2021.130635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/26/2021] [Accepted: 05/30/2021] [Indexed: 05/05/2023]
Abstract
In the initial pandemic phase, effluents from wastewater treatment facilities were reported mostly free from Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) RNA, and thus conventional wastewater treatments were generally considered effective. However, there is a lack of first-hand data on i) comparative efficacy of various treatment processes for SARS-CoV-2 RNA removal; and ii) temporal variations in the removal efficacy of a given treatment process in the backdrop of active COVID-19 cases. This work provides a comparative account of the removal efficacy of conventional activated sludge (CAS) and root zone treatments (RZT) based on weekly wastewater surveillance data, consisting of forty-four samples, during a two-month period. The average genome concentration was higher in the inlets of CAS-based wastewater treatment plant (WWTP) in the Sargasan ward (1.25 × 103 copies/ L), than that of RZT-based WWTP (7.07 × 102 copies/ L) in an academic institution campus of Gandhinagar, Gujarat, India. ORF 1ab and S genes appeared to be more sensitive to treatment i.e., significantly reduced (p < 0.05) than N genes (p > 0.05). CAS treatment exhibited better RNA removal efficacy (p = 0.014) than RZT (p = 0.032). Multivariate analyses suggested that the effective genome concentration should be calculated based on the presence/absence of multiple genes. The present study stresses that treated effluents are not always free from SARS-CoV-2 RNA, and the removal efficacy of a given WWTP is prone to exhibit temporal variability owing to variations in active COVID-19 cases in the vicinity and genetic material accumulation over the time. Disinfection seems less effective than the adsorption and coagulation processes for SARS-CoV-2 removal. Results stress the need for further research on mechanistic insight on SARS-CoV-2 removal through various treatment processes taking solid-liquid partitioning into account.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
- Kiran C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat 382 011, India
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Damia Barcelo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, and Catalan Institute for Water Research (ICRA)-CERCA, Girona, Spain
| |
Collapse
|
12
|
Sangkham S. A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowledge of treatment process for removal of viral fragments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113563. [PMID: 34488114 PMCID: PMC8373619 DOI: 10.1016/j.jenvman.2021.113563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
The entire globe is affected by the novel disease of coronavirus 2019 (COVID-19 or 2019-nCoV), which is formally recognised as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health Organisation (WHO) announced this disease as a global pandemic. The presence of SARS-CoV-2 RNA in unprocessed wastewater has become a cause of worry due to these emerging pathogens in the process of wastewater treatment, as reported in the present study. This analysis intends to interpret the fate, environmental factors and route of transmission of SARS-CoV-2, along with its eradication by treating the wastewater for controlling and preventing its further spread. Different recovery estimations of the virus have been depicted by the detection of SARS-CoV-2 RNA in wastewater through the viral concentration techniques. Most frequently used viral concentration techniques include polyethylene glycol (PEG) precipitation, ultrafiltration, electronegative membrane, and ultracentrifugation, after which the detection and quantification of SARS-CoV-2 RNA are done in wastewater samples through quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The wastewater treatment plant (WWTP) holds the key responsibility of eliminating pathogens prior to the discharge of wastewater into surface water bodies. The removal of SARS-CoV-2 RNA at the treatment stage is dependent on the operations of wastewater treatment systems during the outbreak of the virus; particularly, in the urban and extensively populated regions. Efficient primary, secondary and tertiary methods of wastewater treatment and disinfection can reduce or inactivate SARS-CoV-2 RNA before being drained out. Nonetheless, further studies regarding COVID-19-related disinfectants, environment conditions and viral concentrations in each treatment procedure, implications on the environment and regular monitoring of transmission need to be done urgently. Hence, monitoring the SARS-CoV-2 RNA in samples of wastewater under the procedure of wastewater-based epidemiology (WBE) supplement the real-time data pertaining to the investigation of the COVID-19 pandemic in the community, regional and national levels.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao, 56000, Thailand.
| |
Collapse
|
13
|
Ma D, Li H, Meng Z, Zhang C, Zhou J, Xia J, Wang Y. Absolute and Fast Removal of Viruses and Bacteria from Water by Spraying-Assembled Carbon-Nanotube Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15206-15214. [PMID: 34714066 DOI: 10.1021/acs.est.1c04644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane separation is able to efficiently remove pathogens like bacteria and viruses from water based on size exclusion. However, absolute and fast removal of pathogens requires highly permeable but selective membranes. Herein, we report the preparation of such advanced membranes using carbon nanotubes (CNTs) as one-dimensional building blocks. We first disperse CNTs with the help of an amphiphilic block copolymer, poly(2-dimethylaminoethyl methacrylate)-block-polystyrene (PDMAEMA-b-PS, abbreviated as BCP). The PS blocks adsorb on the surface of CNTs via the π-π interaction, while the PDMAEMA blocks are solvated, thus forming homogeneous and stable CNT dispersions. We then spray the CNT dispersions on porous substrates, producing composite membranes with assembled CNT layers as the selective layers. We demonstrate that the optimized membrane shows 100% rejection to phage viruses and bacteria (Escherichia coli) while giving a water permeance up to ∼3300 L m-2 h-1 bar-1. The performance of the resultant BCP/CNT membrane outperforms that of state-of-the-art membranes and commercial membranes. The BCP/CNT membrane can be used for multiple runs and regenerated by water rinsing. Membrane modules assembled from large-area membrane sheets sustain the capability of absolute and fast removal of viruses and bacteria.
Collapse
Affiliation(s)
- Dongwei Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Hengyi Li
- Beijing OriginWater Membrane Technology Co., Ltd., Beijing 101407, P. R. China
| | - Zixun Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Chenxu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| | - Jianzhong Xia
- Institute for Advanced Study, Shenzhen University, Shenzen 518060, Guangdong, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China
| |
Collapse
|
14
|
Kumar M, Joshi M, Shah AV, Srivastava V, Dave S. Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: A perspectives of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148367. [PMID: 34465041 PMCID: PMC8186940 DOI: 10.1016/j.scitotenv.2021.148367] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Following the proven concept, capabilities, and limitations of detecting the RNA of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) in wastewater, it is pertinent to understand the utility of wastewater surveillance data on various scale. In the present work, we put forward the first wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness. A three-month data of Surveillance of Wastewater for Early Epidemic Prediction (SWEEP) was generated for the world heritage city of Ahmedabad, Gujarat, India. In this expedition, 116 wastewater samples were analyzed to detect SARS-CoV-2 RNA, from September 3rd to November 26th, 2020. A total of 111 samples were detected with at least two out of three SARS-CoV-2 genes (N, ORF 1ab, and S). Monthly variation depicted a significant decline in all three gene copies in October compared to September 2020, followed by a sharp increment in November 2020. Correspondingly, the descending order of average effective gene concentration was: November (~10,729 copies/L) > September (~3047 copies/L) > October (~454 copies/L). Monthly variation of SARS-CoV-2 RNA in the wastewater samples may be ascribed to a decline of 20.48% in the total number of active cases in October 2020 and a rise of 1.82% in November 2020. Also, the monthly recovered new cases were found to be 16.61, 20.03, and 15.58% in September, October, and November 2020, respectively. The percentage change in the gene concentration was observed in the lead of 1-2 weeks with respect to the percentage change in the provisional figures of confirmed cases. SWEEP data-based city zonation was matched with the heat map of the overall COVID-19 infected population in Ahmedabad city, and month-wise effective gene concentration variations are shown on the map. The results expound on the potential of WBE surveillance of COVID-19 as a city zonation tool that can be meaningfully interpreted, predicted, and propagated for community preparedness through advanced identification of COVID-19 hotspots within a given city.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector-11, Gandhinagar, Gujarat 382 011, India
| | - Anil V Shah
- Gujarat Pollution Control Board, Paryavaran Bhavan, Sector-10A, Gandhinagar, Gujarat 382010, India
| | - Vaibhav Srivastava
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Shyamnarayan Dave
- United Nations Children's Fund, Gujarat State Office, Gandhinagar, Sector 20, Gandhinagar, Gujarat 382021, India
| |
Collapse
|
15
|
Meng X, Wang X, Meng S, Wang Y, Liu H, Liang D, Fan W, Min H, Huang W, Chen A, Zhu H, Peng G, Liu J, Qiu Z, Wang T, Yang L, Wei Y, Huo P, Zhang D, Liu Y. A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T WATER 2021; 1:2174-2185. [PMID: 37566346 PMCID: PMC8457323 DOI: 10.1021/acsestwater.1c00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/06/2023]
Abstract
A novel coronavirus (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) has attracted global attention due to its highly infectious and pathogenic properties. Most of current studies focus on aerosols released from infected individuals, but the presence of SARS-CoV-2 in wastewater also should be examined. In this review, we used bibliometrics to statistically evaluate the importance of water-related issues in the context of COVID-19. The results show that the levels and transmission possibilities of SARS-CoV-2 in wastewater are the main concerns, followed by potential secondary pollution by the intensive use of disinfectants, sludge disposal, and the personal safety of workers. The presence of SARS-CoV-2 in wastewater requires more attention during the COVID-19 pandemic. Thus, the most effective techniques, i.e., wastewater-based epidemiology and quantitative microbial risk assessment, for virus surveillance in wastewater are systematically analyzed. We further explicitly review and analyze the successful operation of a sewage treatment plant in Huoshenshan Hospital in China as an example and reference for other sewage treatment systems to properly ensure discharge safety and tackle the COVID-19 pandemic. This review offers deeper insight into the prevention and control of SARS-CoV-2 and similar viruses in the post-COVID-19 era from a wastewater perspective.
Collapse
Affiliation(s)
- Xianghao Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Xuye Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Shujuan Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Ying Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongju Liu
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Dawei Liang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Wenhong Fan
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongping Min
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Wenhai Huang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Anming Chen
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Haijun Zhu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Guanping Peng
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Jun Liu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Zhenhuan Qiu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Tao Wang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Linyan Yang
- School of Resources and Environmental Engineering,
East China University of Science and Technology, Shanghai
200237, P. R. China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and
Risk Assessment, Chinese Research Academy of Environmental
Science, Beijing 100012, P. R. China
| | - Peishu Huo
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Dayi Zhang
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Yu Liu
- School of Civil and Environmental Engineering,
Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798
| |
Collapse
|
16
|
Facciolà A, Laganà P, Caruso G. The COVID-19 pandemic and its implications on the environment. ENVIRONMENTAL RESEARCH 2021; 201:111648. [PMID: 34242676 PMCID: PMC8261195 DOI: 10.1016/j.envres.2021.111648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
The emerging threat posed by COVID-19 pandemic has strongly modified our lifestyle, making urgent to re-consider the humans-environment relationships and stimulating towards more sustainable choices in our daily behavior. Scientific evidences showed that the onset of new viral pathogens with a high epidemic-pandemic potential is often the result of complex interactions between animals, humans and environment. In this context, the interest of the scientific community has also been attracted towards the potential interactions of SARS-CoV-2 with environmental compartments. Many issues, ranging from the epidemiology and persistence of SARS-CoV-2 in water bodies to the potential implications of lockdown measures on environmental quality status are here reviewed, with a special reference to marine ecosystems. Due to current sanitary emergence, the relevance of pilot studies regarding the interactions between SARS-CoV-2 spread and the direct and indirect environmental impacts of the COVID-19 pandemic, that are still a matter of scientific debate, is underlined.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| |
Collapse
|
17
|
Adelodun B, Ajibade FO, Tiamiyu AO, Nwogwu NA, Ibrahim RG, Kumar P, Kumar V, Odey G, Yadav KK, Khan AH, Cabral-Pinto MMS, Kareem KY, Bakare HO, Ajibade TF, Naveed QN, Islam S, Fadare OO, Choi KS. Monitoring the presence and persistence of SARS-CoV-2 in water-food-environmental compartments: State of the knowledge and research needs. ENVIRONMENTAL RESEARCH 2021; 200:111373. [PMID: 34033834 PMCID: PMC8142028 DOI: 10.1016/j.envres.2021.111373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 05/18/2023]
Abstract
The recent spread of severe acute respiratory syndrome coronavirus (SAR-CoV-2) and the accompanied coronavirus disease 2019 (COVID-19) has continued ceaselessly despite the implementations of popular measures, which include social distancing and outdoor face masking as recommended by the World Health Organization. Due to the unstable nature of the virus, leading to the emergence of new variants that are claimed to be more and rapidly transmissible, there is a need for further consideration of the alternative potential pathways of the virus transmissions to provide the needed and effective control measures. This review aims to address this important issue by examining the transmission pathways of SARS-CoV-2 via indirect contacts such as fomites and aerosols, extending to water, food, and other environmental compartments. This is essentially required to shed more light regarding the speculation of the virus spread through these media as the available information regarding this is fragmented in the literature. The existing state of the information on the presence and persistence of SARS-CoV-2 in water-food-environmental compartments is essential for cause-and-effect relationships of human interactions and environmental samples to safeguard the possible transmission and associated risks through these media. Furthermore, the integration of effective remedial measures previously used to tackle the viral outbreaks and pandemics, and the development of new sustainable measures targeting at monitoring and curbing the spread of SARS-CoV-2 were emphasized. This study concluded that alternative transmission pathways via human interactions with environmental samples should not be ignored due to the evolving of more infectious and transmissible SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | | | - Nathaniel Azubuike Nwogwu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Department of Agricultural and Bioresources Engineering, Federal University of Technology Owerri, PMB 1526, Nigeria; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | | | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, 114, Jazan, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria
| | | | - Temitope Fausat Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61413, Asir, Saudi Arabia
| | - Oluniyi Olatunji Fadare
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Division of Environmental and Earth Sciences, Centre for Energy Research and Development, Obafemi Awolowo University, Ile Ife, 220001, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, 41566, South Korea.
| |
Collapse
|
18
|
Anand U, Bianco F, Suresh S, Tripathi V, Núñez-Delgado A, Race M. SARS-CoV-2 and other viruses in soil: An environmental outlook. ENVIRONMENTAL RESEARCH 2021; 198:111297. [PMID: 33971130 PMCID: PMC8102436 DOI: 10.1016/j.envres.2021.111297] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/15/2023]
Abstract
In the present review, the authors shed light on the SARS-CoV-2 impact, persistence, and monitoring in the soil environment. With this purpose, several aspects have been deepened: i) viruses in soil ecosystems; ii) direct and indirect impact on the soil before and after the pandemic, and iii) methods for quantification of viruses and SARS-CoV-2 monitoring in soil. Viruses are present in soil (i.e. up to 417 × 107 viruses per g TS-1 in wetlands) and can affect the behavior and ecology of other life forms (e.g. bacteria), which are remarkably important for maintaining environmental equilibrium. Also, SARS-CoV-2 can be found in soil (i.e. up to 550 copies·g-1). Considering that the SARS-CoV-2 is very recent, poor knowledge is available in the literature on persistence in the soil and reference has been made to coronaviruses and other families of viruses. For instance, the survival of enveloped viruses (e.g. SARS-CoV) can reach 90 days in soils with 10% of moisture content at ambient. In such a context, the possible spread of the SARS-CoV-2 in the soil was evaluated by analyzing the possible contamination routes.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Univ. Santiago de Compostela, 27002, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| |
Collapse
|
19
|
Ahmed F, Islam MA, Kumar M, Hossain M, Bhattacharya P, Islam MT, Hossen F, Hossain MS, Islam MS, Uddin MM, Islam MN, Bahadur NM, Didar-Ul-Alam M, Reza HM, Jakariya M. First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: Variation along the sewer network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMID: 33652314 DOI: 10.1101/2020.09.14.20194696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We made the first and successful attempt to detect SARS-CoV-2 genetic material in the vicinity wastewaters of an isolation centre i.e. Shaheed Bhulu Stadium, situated at Noakhali, Southeastern Bangladesh. Owing to the fact that isolation centre, in general, always contained a constant number of 200 COVID-19 patients, the prime objective of the study was to check if several drains carrying RNA of coronavirus are actually getting diluted or accumulated along with the sewage network. Our finding suggested that while the temporal variation of the genetic load decreased in small drains over the span of 50 days, the main sewer exhibited accumulation of SARS-CoV-2 RNA. Other interesting finding displays that probably distance of sampling location in meters is not likely to have a significant impact on the detected gene concentration, although the quantity of the RNA extracted in the downstream of the drain was higher. These findings are of immense value from the perspective of wastewater surveillance of COVID-19, as they largely imply that we do not need to monitor every wastewater system, and probably major drains monitoring may illustrate the city health. Perhaps, we are reporting the accumulation of SARS-CoV-2 genetic material along with the sewer network i.e. from primary to tertiary drains. The study sought further data collection in this line to simulate conditions prevailed in most of the developing countries and to shed further light on decay/accumulation processes of the genetic load of the SARS-COV-2.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Md Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology, Gandhinagar, Gujarat 382 355, India.
| | - Maqsud Hossain
- Department of Biochemistry and Microbiology, North South University, NSU Genome Research Institute (NGRI), North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Md Tahmidul Islam
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sydul Islam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Main Uddin
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Nur Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Didar-Ul-Alam
- Professor and Honorable Vice-Chancellor, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka 1229, Bangladesh.
| |
Collapse
|
20
|
Ahmed F, Islam MA, Kumar M, Hossain M, Bhattacharya P, Islam MT, Hossen F, Hossain MS, Islam MS, Uddin MM, Islam MN, Bahadur NM, Didar-Ul-Alam M, Reza HM, Jakariya M. First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: Variation along the sewer network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145724. [PMID: 33652314 PMCID: PMC7870435 DOI: 10.1016/j.scitotenv.2021.145724] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 04/14/2023]
Abstract
We made the first and successful attempt to detect SARS-CoV-2 genetic material in the vicinity wastewaters of an isolation centre i.e. Shaheed Bhulu Stadium, situated at Noakhali, Southeastern Bangladesh. Owing to the fact that isolation centre, in general, always contained a constant number of 200 COVID-19 patients, the prime objective of the study was to check if several drains carrying RNA of coronavirus are actually getting diluted or accumulated along with the sewage network. Our finding suggested that while the temporal variation of the genetic load decreased in small drains over the span of 50 days, the main sewer exhibited accumulation of SARS-CoV-2 RNA. Other interesting finding displays that probably distance of sampling location in meters is not likely to have a significant impact on the detected gene concentration, although the quantity of the RNA extracted in the downstream of the drain was higher. These findings are of immense value from the perspective of wastewater surveillance of COVID-19, as they largely imply that we do not need to monitor every wastewater system, and probably major drains monitoring may illustrate the city health. Perhaps, we are reporting the accumulation of SARS-CoV-2 genetic material along with the sewer network i.e. from primary to tertiary drains. The study sought further data collection in this line to simulate conditions prevailed in most of the developing countries and to shed further light on decay/accumulation processes of the genetic load of the SARS-COV-2.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Md Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology, Gandhinagar, Gujarat 382 355, India.
| | - Maqsud Hossain
- Department of Biochemistry and Microbiology, North South University, NSU Genome Research Institute (NGRI), North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Md Tahmidul Islam
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sydul Islam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Main Uddin
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Nur Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Didar-Ul-Alam
- Professor and Honorable Vice-Chancellor, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka 1229, Bangladesh.
| |
Collapse
|
21
|
Brisolara KF, Maal-Bared R, Sobsey MD, Reimers RS, Rubin A, Bastian RK, Gerba C, Smith JE, Bibby K, Kester G, Brown S. Assessing and managing SARS-CoV-2 occupational health risk to workers handling residuals and biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145732. [PMID: 33611008 PMCID: PMC7869681 DOI: 10.1016/j.scitotenv.2021.145732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 04/14/2023]
Abstract
Current wastewater worker guidance from the United States Environmental Protection Agency (USEPA) aligns with the Centers for Disease Control and Prevention (CDC) and the Occupational Safety and Health Administration (OSHA) recommendations and states that no additional specific protections against SARS-CoV-2, the virus that causes COVID-19 infections, are recommended for employees involved in wastewater management operations with residuals, sludge, and biosolids at water resource recovery facilities. The USEPA guidance references a document from 2002 that summarizes practices required for protection of workers handling class B biosolids to minimize exposure to pathogens including viruses. While there is no documented evidence that residuals or biosolids of any treatment level contain infectious SARS-CoV-2 or are a source of transmission of this current pandemic strain of coronavirus, this review summarizes and examines whether the provided federal guidance is sufficient to protect workers in view of currently available data on SARS-CoV-2 persistence and transmission. No currently available epidemiological data establishes a direct link between wastewater sludge or biosolids and risk of infection from the SARS-CoV-2. Despite shedding of the RNA of the virus in feces, there is no evidence supporting the presence or transmission of infectious SARS-CoV-2 through the wastewater system or in biosolids. In addition, this review presents previous epidemiologic data related to other non-enveloped viruses. Overall, the risk for exposure to SARS-CoV-2, or any pathogen, decreases with increasing treatment measures. As a result, the highest risk of exposure is related to spreading and handling untreated feces or stool, followed by untreated municipal sludge, the class B biosolids, while lowest risk is associated with spreading or handling Class A biosolids. This review reinforces federal recommendations and the importance of vigilance in applying occupational risk mitigation measures to protect public and occupational health.
Collapse
Affiliation(s)
- Kari Fitzmorris Brisolara
- Louisiana State University Health Sciences Center, School of Public Health, 2020 Gravier Street, New Orleans, LA 70112, United States of America.
| | | | - Mark D Sobsey
- Gillings School of Global Public Health at the University of North Carolina, Chapel Hill, United States of America
| | - Robert S Reimers
- Tulane University School of Public Health and Tropical Medicine and Environmental Solutions, Pinnacle Waste Solutions, LLC Richmond, TX, United States of America
| | - Albert Rubin
- North Carolina State University, Department of Biological and Agricultural Engineering, Raleigh, NC, United States of America
| | - Robert K Bastian
- Retired - former USEPA, Washington, DC, United States of America
| | - Charles Gerba
- University of Arizona, Department of Environmental Science, Tucson, AZ, United States of America
| | - James E Smith
- Retired - former USEPA, Washington, DC, United States of America
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Greg Kester
- California Association of Sanitation Agencies, Sacramento, CA, United States of America
| | - Sally Brown
- University of Washington, Seattle, WA, United States of America
| |
Collapse
|
22
|
Wurtzer S, Waldman P, Ferrier-Rembert A, Frenois-Veyrat G, Mouchel JM, Boni M, Maday Y, Marechal V, Moulin L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. WATER RESEARCH 2021; 198:117183. [PMID: 33962244 DOI: 10.1101/2020.12.19.20248508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 05/21/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.
Collapse
Affiliation(s)
- S Wurtzer
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France.
| | - P Waldman
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - A Ferrier-Rembert
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - G Frenois-Veyrat
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - J M Mouchel
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - M Boni
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
| | - V Marechal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - L Moulin
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France
| |
Collapse
|
23
|
Wurtzer S, Waldman P, Ferrier-Rembert A, Frenois-Veyrat G, Mouchel JM, Boni M, Maday Y, Marechal V, Moulin L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. WATER RESEARCH 2021; 198:117183. [PMID: 33962244 PMCID: PMC8060898 DOI: 10.1016/j.watres.2021.117183] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 05/20/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.
Collapse
Affiliation(s)
- S Wurtzer
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France.
| | - P Waldman
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - A Ferrier-Rembert
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - G Frenois-Veyrat
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - J M Mouchel
- Sorbonne Université, CNRS, EPHE, UMR 7619 Metis, e-LTER Zone Atelier Seine, F-75005 Paris, France
| | - M Boni
- Institut de Recherche Biomédicale des Armées, Microbiology & Infectious diseases, Virology unit, 1 place Valérie André, F-91220 Brétigny-sur-Orge, France
| | - Y Maday
- Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
| | - V Marechal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, F-75012, Paris, France
| | - L Moulin
- Eau de Paris, R&D and Water quality department, 33 avenue Jean Jaurès, F-94200 Ivry sur Seine, France
| |
Collapse
|
24
|
Kumar M, Joshi M, Patel AK, Joshi CG. Unravelling the early warning capability of wastewater surveillance for COVID-19: A temporal study on SARS-CoV-2 RNA detection and need for the escalation. ENVIRONMENTAL RESEARCH 2021; 196:110946. [PMID: 33662347 PMCID: PMC7921726 DOI: 10.1016/j.envres.2021.110946] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Wastewater-based Epidemiological (WBE) surveillance offers a promising approach to assess the pandemic situation covering pre-symptomatic and asymptomatic cases in highly populated area under limited clinical tests. In the present study, we analyzed SARS-CoV-2 RNA in the influent wastewater samples (n = 43) from four wastewater treatment plants (WWTPs) in Gandhinagar, India, during August 7th to September 30th, 2020. A total of 40 samples out of 43 were found positive i.e. having at least two genes of SARS-CoV-2. The average Ct values for S, N, and ORF 1 ab genes were 32.66, 33.03, and 33.95, respectively. Monthly variation depicted a substantial rise in the average copies of N (~120%) and ORF 1 ab (~38%) genes in the month of September as compared to August, while S-gene copies declined by 58% in September 2020. The SARS-CoV-2 genome concentration was higher in the month of September (~924.5 copies/L) than August (~897.5 copies/L), corresponding to a ~2.2-fold rise in the number of confirmed cases during the study period. Further, the percentage change in genome concentration level on a particular date was found in the lead of 1-2 weeks of time with respect to the official confirmed cases registered based on clinical tests on a temporal scale. The results profoundly unravel the potential of WBE surveillance to predict the fluctuation of COVID-19 cases to provide an early warning. Our study explicitly suggests that it is the need of hour that the wastewater surveillance must be included as an integral part of COVID-19 pandemic monitoring which can not only help the water authorities to identify the hotspots within a city but can provide up to 2 weeks of time lead for better tuning the management interventions.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat, 382 355, India; Kiran C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gujarat, India.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India
| | - Arbind Kumar Patel
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat, 382 355, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India
| |
Collapse
|
25
|
Mohapatra S, Menon NG, Mohapatra G, Pisharody L, Pattnaik A, Menon NG, Bhukya PL, Srivastava M, Singh M, Barman MK, Gin KYH, Mukherji S. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142746. [PMID: 33092831 PMCID: PMC7536135 DOI: 10.1016/j.scitotenv.2020.142746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 04/14/2023]
Abstract
The contagious SARS-CoV-2 virus, responsible for COVID-19 disease, has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and/or reinfection via the environment requires considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; NUS Environmental Research Institute, National University of Singapore (NUS), Singapore
| | - N Gayathri Menon
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India; nEcoTox GmbH, An der Neümuhle 2, Annweiler am Trifels, Germany
| | | | - Lakshmi Pisharody
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln (UNL), USA
| | - N Gowri Menon
- Department of Veterinary Epidemiology and Preventive Medicine, Kerala Veterinary and Animal Sciences University (KVASU), Wayanad, Kerala, India
| | | | | | | | | | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore (NUS), Singapore.
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India.
| |
Collapse
|
26
|
Bhattacharya P, Kumar M, Islam MT, Haque R, Chakraborty S, Ahmad A, Niazi NK, Cetecioglu Z, Nilsson D, Ijumulana J, van der Voorn T, Jakariya M, Hossain M, Ahmed F, Rahman M, Akter N, Johnston D, Ahmed KM. Prevalence of SARS-CoV-2 in Communities Through Wastewater Surveillance-a Potential Approach for Estimation of Disease Burden. CURRENT POLLUTION REPORTS 2021; 7:160-166. [PMID: 33842197 PMCID: PMC8021931 DOI: 10.1007/s40726-021-00178-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 05/17/2023]
Abstract
The episodic outbreak of COVID-19 due to SARS-CoV-2 is severely affecting the economy, and the global count of infected patients is increasing. The actual number of patients had been underestimated due to limited facilities for testing as well as asymptomatic nature of the expression of COVID-19 on individual basis. Tragically, for emerging economies with high population density, the situation has been more complex due to insufficient testing facilities for diagnosis of the disease. However, the recent reports about persistent shedding of viral RNA of SARS-CoV-2 in the human feces have created a possibility to track the prevalence and trends of the disease in communities, known as wastewater-based epidemiology (WBE). In this article, we highlight the current limitations and future prospects for WBE to manage pandemics.
Collapse
Affiliation(s)
- Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-11428 Stockholm, Sweden
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382 355 India
| | - Md. Tahmidul Islam
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-11428 Stockholm, Sweden
- WaterAid Bangladesh, House 97/B, Road 25, Block A, Banani, Dhaka, 1213 Bangladesh
| | - Rehnuma Haque
- Environmental Interventions Unit, Infectious Disease Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Sudip Chakraborty
- Department of DIMES, University of Calabria, Via P. Bucci, Cubo 42/a, 87036 Rende, Italy
| | - Arslan Ahmad
- Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040 Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland 4350 Australia
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Teknikringen 42, Stockholm, SE-10044 Sweden
| | - David Nilsson
- WaterCenter@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-11428 Stockholm, Sweden
| | - Julian Ijumulana
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-11428 Stockholm, Sweden
| | - Tom van der Voorn
- University of Osnabrück, Institute of Environmental Systems Research, Barbarastr. 12, 49069 Osnabrück, Germany
| | - Md. Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229 Bangladesh
| | - Maqsud Hossain
- Department of Biochemistry and Microbiology, NSU Genome Research Institute (NGRI), North South University, Bashundhara, Dhaka, 1229 Bangladesh
| | - Firoz Ahmed
- Department of Microbiology, Noakhali University of Science and Technology, Noakhali, Bangladesh
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Nargis Akter
- Water Sanitation and Hygiene Section, United Nations Children’s Fund, BSL Office Complex, 1 Minto Road, Dhaka, 1000 Bangladesh
| | - Dara Johnston
- Water Sanitation and Hygiene Section, United Nations Children’s Fund, BSL Office Complex, 1 Minto Road, Dhaka, 1000 Bangladesh
| | - Kazi Matin Ahmed
- Department of Geology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
27
|
Kumar M, Kuroda K, Patel AK, Patel N, Bhattacharya P, Joshi M, Joshi CG. Decay of SARS-CoV-2 RNA along the wastewater treatment outfitted with Upflow Anaerobic Sludge Blanket (UASB) system evaluated through two sample concentration techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142329. [PMID: 33254951 PMCID: PMC7490623 DOI: 10.1016/j.scitotenv.2020.142329] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 05/18/2023]
Abstract
For the first time, we present, i) an account of decay in the genetic material loading of SARS-CoV-2 during Upflow Anaerobic Sludge Blanket (UASB) treatment of wastewater, and ii) comparative evaluation of polyethylene glycol (PEG), and ultrafiltration as virus concentration methods from wastewater for the quantification of SARS-CoV-2 genes. The objectives were achieved through tracking of SARS-CoV-2 genetic loadings i.e. ORF1ab, N and S protein genes on 8th and 27th May 2020 along the wastewater treatment plant (106000 m3 million liters per day) equipped with UASB system in Ahmedabad, India. PEG method performed better in removing materials inhibiting RT-qPCR for SARS-CoV-2 gene detection from the samples, as evident from constant and lower CT values of control (MS2). Using the PEG method, we found a reduction >1.3 log10 reduction in SARS-CoV-2 RNA abundance during UASB treatment, and the RNA was not detected at all in the final effluent. The study implies that i) conventional wastewater treatment systems is effective in SARS-CoV-2 RNA removal, and ii) UASB system significantly reduces SARS-CoV-2 genetic loadings. Finally, PEG method is recommended for better sensitivity and inhibition removal during SARS-CoV-2 RNA quantification in wastewater.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India; Kiran C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gujarat, India.
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama, 9390398, Japan
| | - Arbind Kumar Patel
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Nidhi Patel
- Gujarat Biotechnology Research Centre (GBRC), Sector-11, Gandhinagar, Gujarat 382 011, India
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 42, SE-11428 Stockholm, Sweden
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector-11, Gandhinagar, Gujarat 382 011, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector-11, Gandhinagar, Gujarat 382 011, India
| |
Collapse
|
28
|
Bivins A, Greaves J, Fischer R, Yinda KC, Ahmed W, Kitajima M, Munster VJ, Bibby K. Persistence of SARS-CoV-2 in Water and Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:937-942. [PMID: 37566354 PMCID: PMC7553037 DOI: 10.1021/acs.estlett.0c00730] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 05/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA is frequently detected in the feces of infected individuals. While infectious SARS-CoV-2 has not previously been identified in wastewater, infectious SARS-CoV-2 has been isolated from the feces of at least one patient, raising concerns about the presence of infectious SARS-CoV-2 in wastewater. The fate and inactivation characteristics of SARS-CoV-2 in water and wastewater are unknown, with current inactivation estimates based on surrogate models. In this study, the persistence of SARS-CoV-2 infectivity and RNA signal was determined in water and wastewater. The times for 90% reduction (T90) of viable SARS-CoV-2 in wastewater and tap water at room temperature were 1.5 and 1.7 days, respectively. In high-starting titer (105 TCID50 mL-1) experiments, infectious virus persisted for the entire 7-day sampling time course. In wastewater at 50 and 70 °C, the observed T90 values for infectious SARS-CoV-2 were decreased to 15 and 2 min, respectively. SARS-CoV-2 RNA was found to be significantly more persistent than infectious SARS-CoV-2, indicating that the environmental detection of RNA alone does not substantiate risk of infection.
Collapse
Affiliation(s)
- Aaron Bivins
- Department of Civil & Environmental Engineering
& Earth Sciences, University of Notre Dame, Notre Dame,
Indiana 46556, United States
- Environmental Change Initiative,
University of Notre Dame, Notre Dame, Indiana 46566,
United States
| | - Justin Greaves
- Department of Civil & Environmental Engineering
& Earth Sciences, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| | - Robert Fischer
- Laboratory of Virology, Rocky Mountain Laboratories
(RML), National Institutes of Health, Hamilton, Montana 59840,
United States
| | - Kwe Claude Yinda
- Laboratory of Virology, Rocky Mountain Laboratories
(RML), National Institutes of Health, Hamilton, Montana 59840,
United States
| | - Warish Ahmed
- CSIRO Land and Water,
Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102,
Australia
| | - Masaaki Kitajima
- Division of Environmental Engineering,
Hokkaido University, North 13 West 8, Kita-ku, Sapporo,
Hokkaido 060-8628, Japan
| | - Vincent J. Munster
- Laboratory of Virology, Rocky Mountain Laboratories
(RML), National Institutes of Health, Hamilton, Montana 59840,
United States
| | - Kyle Bibby
- Department of Civil & Environmental Engineering
& Earth Sciences, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| |
Collapse
|
29
|
Kumar M, Mohapatra S, Mazumder P, Singh A, Honda R, Lin C, Kumari R, Goswami R, Jha PK, Vithanage M, Kuroda K. Making Waves Perspectives of Modelling and Monitoring of SARS-CoV-2 in Aquatic Environment for COVID-19 Pandemic. CURRENT POLLUTION REPORTS 2020; 6:468-479. [PMID: 32953402 PMCID: PMC7486595 DOI: 10.1007/s40726-020-00161-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Prevalence of SARS-CoV-2 in the aquatic environment pertaining to the COVID-19 pandemic has been a global concern. Though SARS-CoV-2 is known as a respiratory virus, its detection in faecal matter and wastewater demonstrates its enteric involvement resulting in vulnerable aquatic environment. Here, we provide the latest updates on wastewater-based epidemiology, which is gaining interest in the current situation as a unique tool of surveillance and monitoring of the disease. Transport pathways with its migration through wastewater to surface and subsurface waters, probability of infectivity and ways of inactivation of SARS-CoV-2 are discussed in detail. Epidemiological models, especially compartmental projections, have been explained with an emphasis on its limitation and the assumptions on which the future predictions of disease propagation are based. Besides, this review covers various predictive models to track and project disease spread in the future and gives an insight into the probability of a future outbreak of the disease.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Room No. 336A, Block 5, Gandhinagar, Gujarat 382355 India
- Kiran C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355 India
| | - Sanjeeb Mohapatra
- Environmnetal Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Ashwin Singh
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355 India
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 9201192 Japan
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, Australia
| | - Rina Kumari
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030 India
| | - Ritusmita Goswami
- Department of Environmental Science, The Assam Royal Global University, Guwahati, Assam 781035 India
| | - Pawan Kumar Jha
- Center of Environmental Science, University of Allahabad, Prayagraj, 211002 India
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, 9390398 Japan
| |
Collapse
|
30
|
Bilal M, Munir H, Nazir MS, Iqbal HMN. Persistence, transmission, and infectivity of SARS-CoV-2 in inanimate environments. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2020; 2:100047. [PMID: 38620566 PMCID: PMC7546641 DOI: 10.1016/j.cscee.2020.100047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023]
Abstract
Currently, the emergence of a novel coronavirus, referred to as SARS-CoV-2, has become a global health concern which cause severe respiratory tract infections in humans. Person-to-person transmission of SARS-CoV-2 has occurred across the globe, within a short period of SARS-CoV-2 emergence. The goal of this analysis is to summarize in various inanimate surfaces and environments information about the frequency, persistence, potential dissemination, and infectivity of SARS-CoV-2. Most respiratory viruses, including coronaviruses, SARS-CoVs, or influenza may persist for a few days on the surfaces or objects. The length of tenacity on various inanimate surfaces depends on the environmental and growth conditions and overall survival rate could range from minutes to month time. The SARS-CoV-2 may survive and maintain infectivity in the air in unventilated buses for 30 min. As no specific vaccines or therapeutic drugs are available for this contagious virus, timely prevention measures would be crucial to control the future outbreak of this infectious disease. Precautionary strategies such as wearing masks and frequent washing hands are effective to mitigate COVID-19. Following careful consideration of the above-mentioned scenarios, the short review spotlights the pressing environmental issues regarding the persistence, transmission, and infectivity of SARS-CoV-2 in different environmental matrices. Aiming to address this issue with further and deeper insight into the SARS-CoV-2 emergence, a list of most concerned questions is given that should be carefully considered and answered in future studies.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| |
Collapse
|