1
|
Huang L, Hu X, Liu J, Wang J, Zhou Y, Li G, Dong G, Dong H. Air pollution is linked to cognitive decline independent of hypersensitive C-reactive protein: insights from middle-aged and older Chinese. Environ Health 2024; 23:111. [PMID: 39707297 DOI: 10.1186/s12940-024-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Long-term air pollution exposure and inflammation are considered to be associated with cognitive decline. However, whether air pollution exposure related cognitive decline is dependent on inflammation remains uncertain. MATERIALS AND METHODS The present study collected data from China Health and Retirement Longitudinal Study (CHARLS) at baseline in 2011, with a follow up period in 2015. Concentration of air pollutants (particles with diameters ≤ 1.0 μm [PM1], ≤ 2.5 μm [PM2.5], ≤ 10 μm [PM10], nitrogen dioxide [NO2] and ozone [O3]) were obtained from China High Air Pollutants (CHAP) dataset. Hypersensitive C-reactive protein (hs-CRP), a systemic inflammation marker, was measured in blood of subjects and cognitive function was assessed by standardized questionnaire. RESULTS A total of 6434 participants were included in the study. Lower exposure to PM2.5, PM1, PM10 and NO2 were associated with mitigated cognitive decline. The odds ratios (ORs) for air pollutants changes and cognitive decline and 95% confidence intervals (CIs) were as follows: PM2.5-0.934(0.925, 0.943), PM1- 0.945 (0.935,0.955), PM10-0.977(0.972,0.982) and NO2-0.962(0.950,0.975), respectively. Hs-CRP showed no significant correlation with cognitive decline or change in levels of air pollution. The interaction regression analyses, both unadjusted and adjusted, did not uncover any significant correlation between hs-CRP and air pollution with respect to cognitive decline. Bootstrap test exhibited no significant mediating effect of hs-CRP on the relationship between any air pollutants and cognitive decline, the indirect effects of hs-CRP in conjunction with exposure to different air pollutants were all found to be non-significant, with the following bootstrap CIs and p-values: PM2.5-1.000([1.000,1.000], P = 0.480),PM1-1.000([1.000,1.000], P = 0.230),PM10-1.000([1.000,1.000], P = 0.650), O3-1.000([1.000,1.000], P = 0.470), ΔNO2-1.000([1.000,1.000], P = 0.830) . CONCLUSION Ambient air pollution exposure was linked to cognitive decline independent of hs-CRP level.
Collapse
Affiliation(s)
- Li Huang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiangming Hu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jia Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiajia Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guang Li
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haojian Dong
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Nyingchi People's Hospital, Nyingchi, Tibet, 860003, China.
| |
Collapse
|
2
|
Aimuzi R, Xie Z, Qu Y, Luo K, Jiang Y. Proteomic signatures of ambient air pollution and risk of non-alcoholic fatty liver disease: A prospective cohort study in the UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177529. [PMID: 39547383 DOI: 10.1016/j.scitotenv.2024.177529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Air pollution has been linked with non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms characterized by perturbations in the circulating proteome profile are largely unknown. Therefore, we included 51,357 participants from the UK Biobank with 2941 plasma proteins measured in blood samples collected between 2006 and 2010, measurements of annual fine particular matter <2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2), and follow-up data on NAFLD (743 incident cases occurred over a median follow-up of 13.6 years). Multiple linear regression was used to identify proteins associated with PM2.5 and NO2. Cox proportional hazards models were applied to assess associations of PM2.5 and NO2 and identified proteins with incident NAFLD. Mediation analyses were conducted to explore the mediation role of proteins in the associations between air pollution and incident NAFLD. After adjusting for selected covariates, PM2.5 (hazard ratio [HR] = 2.57, 95%CI:1.27, 5.21, per ln increase) and NO2 (HR = 1.43, 95%CI: 1.10, 1.84, per ln increase) were positively associated with incident NAFLD. We identified 138 proteins associated with PM2.5 (92 positively, 46 inversely, FDR <0.05) and 143 with NO2 (100 positively, 43 inversely). Of the proteins that were significantly associated with both PM2.5 and NO2, 93 (79 positively, 14 inversely) and 79 (69 positively, 10 inversely) were significantly associated with incident NAFLD. Furthermore, 84 PM2.5-associated proteins and 66 NO2-associated proteins significantly mediated the corresponding association between air pollutants and incident NAFLD, with the proportion of mediation effects ranging from 3.2 % to 27.3 % for PM2.5 and 2.6 % to 20.8 % for NO2, respectively. Of note, the majority of significant mediating proteins were enriched in pathways of cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor. Our findings suggested that long-term exposure to PM2.5 and NO2 was associated with an increased risk of NAFLD partially by perturbating circulating proteins involved in pathways of inflammation and immunity responses.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
3
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
4
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
5
|
Zhong C, Yin X, Fallah-Shorshani M, Islam T, McConnell R, Fruin S, Franklin M. Disparities in greenspace associated with sleep duration among adolescent children in Southern California. Environ Epidemiol 2023; 7:e264. [PMID: 37545810 PMCID: PMC10402945 DOI: 10.1097/ee9.0000000000000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
More than half of adolescent children do not get the recommended 8 hours of sleep necessary for optimal growth and development. In adults, several studies have evaluated effects of urban stressors including lack of greenspace, air pollution, noise, nighttime light, and psychosocial stress on sleep duration. Little is known about these effects in adolescents, however, it is known that these exposures vary by socioeconomic status (SES). We evaluated the association between several environmental exposures and sleep in adolescent children in Southern California. Methods In 2010, a total of 1476 Southern California Children's Health Study (CHS) participants in grades 9 and 10 (mean age, 13.4 years; SD, 0.6) completed a questionnaire including topics on sleep and psychosocial stress. Exposures to greenspace, artificial light at night (ALAN), nighttime noise, and air pollution were estimated at each child's residential address, and SES was characterized by maternal education. Odds ratios and 95% confidence intervals (95% CIs) for sleep outcomes were estimated by environmental exposure, adjusting for age, sex, race/ethnicity, home secondhand smoke, and SES. Results An interquartile range (IQR) increase in greenspace decreased the odds of not sleeping at least 8 hours (odds ratio [OR], 0.86 [95% CI, 0.71, 1.05]). This association was significantly protective in low SES participants (OR, 0.77 [95% CI, 0.60, 0.98]) but not for those with high SES (OR, 1.16 [95%CI, 0.80, 1.70]), interaction P = 0.03. Stress mediated 18.4% of the association among low SES participants. Conclusions Residing in urban neighborhoods of greater greenness was associated with improved sleep duration among children of low SES but not higher SES. These findings support the importance of widely reported disparities in exposure and access to greenspace in socioeconomically disadvantaged populations.
Collapse
Affiliation(s)
- Charlie Zhong
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xiaozhe Yin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Masoud Fallah-Shorshani
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Talat Islam
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Scott Fruin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Meredith Franklin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Statistical Sciences and School of the Environment, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Bikomeye JC, Beyer AM, Kwarteng JL, Beyer KMM. Greenspace, Inflammation, Cardiovascular Health, and Cancer: A Review and Conceptual Framework for Greenspace in Cardio-Oncology Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2426. [PMID: 35206610 PMCID: PMC8872601 DOI: 10.3390/ijerph19042426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of global morbidity and mortality. Cancer survivors have significantly elevated risk of poor cardiovascular (CV) health outcomes due to close co-morbid linkages and shared risk factors between CVD and cancer, as well as adverse effects of cancer treatment-related cardiotoxicity. CVD and cancer-related outcomes are exacerbated by increased risk of inflammation. Results from different pharmacological interventions aimed at reducing inflammation and risk of major adverse cardiovascular events (MACEs) have been largely mixed to date. Greenspaces have been shown to reduce inflammation and have been associated with CV health benefits, including reduced CVD behavioral risk factors and overall improvement in CV outcomes. Greenspace may, thus, serve to alleviate the CVD burden among cancer survivors. To understand pathways through which greenspace can prevent or reduce adverse CV outcomes among cancer survivors, we review the state of knowledge on associations among inflammation, CVD, cancer, and existing pharmacological interventions. We then discuss greenspace benefits for CV health from ecological to multilevel studies and a few existing experimental studies. Furthermore, we review the relationship between greenspace and inflammation, and we highlight forest bathing in Asian-based studies while presenting existing research gaps in the US literature. Then, we use the socioecological model of health to present an expanded conceptual framework to help fill this US literature gap. Lastly, we present a way forward, including implications for translational science and a brief discussion on necessities for virtual nature and/or exposure to nature images due to the increasing human-nature disconnect; we also offer guidance for greenspace research in cardio-oncology to improve CV health outcomes among cancer survivors.
Collapse
Affiliation(s)
- Jean C. Bikomeye
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (J.L.K.)
- PhD Program in Public and Community Health, Division of Epidemiology & Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Andreas M. Beyer
- Department of Medicine, Division of Cardiology, Cardiovascular and Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Jamila L. Kwarteng
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (J.L.K.)
- MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Kirsten M. M. Beyer
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (J.C.B.); (J.L.K.)
- PhD Program in Public and Community Health, Division of Epidemiology & Social Sciences, Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
- MCW Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Pearson AL, Breeze V, Reuben A, Wyatt G. Increased Use of Porch or Backyard Nature during COVID-19 Associated with Lower Stress and Better Symptom Experience among Breast Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9102. [PMID: 34501691 PMCID: PMC8430585 DOI: 10.3390/ijerph18179102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Contact with nature has been used to promote both physical and mental health, and is increasingly used among cancer patients. However, the COVID-19 pandemic created new challenges in both access to nature in public spaces and in cancer care. The purpose of our study was to evaluate the change in active and passive use of nature, places of engaging with nature and associations of nature contact with respect to improvements to perceived stress and symptom experience among breast cancer patients during the pandemic. We conducted a cross-sectional survey of people diagnosed with breast cancer using ResearchMatch (n = 56) in July 2020 (the first wave of COVID-19). In this US-based, predominantly white, affluent, highly educated, female sample, we found that, on average, participants were first diagnosed with breast cancer at 54 years old and at stage 2 or 3. Eighteen percent of participants experienced disruptions in their cancer care due to the pandemic. As expected, activities in public places significantly decreased as well, including use of parks/trails and botanical gardens. In contrast, spending time near home, on the porch or in the backyard significantly increased. Also observed were significant increases in indoor activities involving passive nature contact, such as watching birds through a window, listening to birdsong, and smelling rain or plants. Decreased usage of parks/trails was significantly associated with higher stress (Coef = -2.30, p = 0.030) and increased usage of the backyard/porch was significantly associated with lower stress (Coef = -2.69, p = 0.032), lower symptom distress (Coef = -0.80, p = 0.063) and lower symptom severity (Coef = -0.52, p = 0.009). The most commonly reported alternatives to outdoor engagement with nature were watching nature through a window (84%), followed by looking at images of nature (71%), and listening to nature through a window (66%). The least commonly enjoyed alternative was virtual reality of nature scenes (25%). While outdoor contact with nature away from home decreased, participants still found ways to experience the restorative benefits of nature in and around their home. Of special interest in planning interventions was the fact that actual or real nature was preferred over that experienced through technology. This could be an artifact of our sample, or could represent a desire to be in touch with the "real world" during a health crisis. Nature contact may represent a flexible strategy to decrease stress and improve symptom experience among patients with cancer, particularly during public health crises or disruptions to cancer care.
Collapse
Affiliation(s)
- Amber L. Pearson
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Victoria Breeze
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Aaron Reuben
- Department of Psychology, Duke University, Durham, NC 27708, USA;
| | - Gwen Wyatt
- College of Nursing, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
8
|
Abstract
OBJECTIVES Summarise studies of outdoor green space exposure and brain health measures related to Alzheimer's disease and related disorders (ADRD), and determine scientific gaps for future research. DESIGN Rapid review of primary research studies. METHODS AND OUTCOMES PubMed, Embase and Web of Science Core Collection were searched for articles meeting the criteria published on/before 13 February 2020. The review excluded papers not in English, focused on transient states (eg, mental fatigue) or not using individual-level measures of brain health (eg, average school test scores). Brain health measures of interest included cognitive function, clinical diagnosis of cognitive impairment/dementia/ADRD and brain biomarkers such as those from MRI, measures typically associated with ADRD risk and disease progression. RESULTS Twenty-two papers were published from 2012 to 2020, 36% on <18 years old, 32% on 18-64 years old and 59% on ≥65 years old. Sixty-four per cent defined green space based on the Normalised Difference Vegetation Index ('greenness'/healthy vegetation) and 68% focused on cognitive measures of brain health (eg, memory). Seventeen studies (77%) found green space-brain health associations (14 positive, 4 inverse). Greater greenness/green space was positively associated various cognitive domains in 10 studies and with MRI outcomes (regional brain volumes, cortical thickness, amygdala integrity) in three studies. Greater neighbourhood greenness was associated with lower odds/risk of cognitive impairment/ADRD in some studies but increased odds/risk in others (n=4 studies). CONCLUSIONS Published studies suggest positive green space-brain health associations across the life course, but the methods and cohorts were limited and heterogeneous. Future research using racially/ethnically and geographically diverse cohorts, life course methods and more specific green space and brain health measures (eg, time spent in green spaces, ADRD biomarkers) will strengthen evidence for causal associations.
Collapse
Affiliation(s)
- Lilah Besser
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
9
|
Elbarbary M, Oganesyan A, Honda T, Morgan G, Guo Y, Guo Y, Negin J. Systemic Inflammation (C-Reactive Protein) in Older Chinese Adults Is Associated with Long-Term Exposure to Ambient Air Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063258. [PMID: 33809857 PMCID: PMC8004276 DOI: 10.3390/ijerph18063258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
There is an established association between air pollution and cardiovascular disease (CVD), which is likely to be mediated by systemic inflammation. The present study evaluated links between long-term exposure to ambient air pollution and high-sensitivity C reactive protein (hs-CRP) in an older Chinese adult cohort (n = 7915) enrolled in the World Health Organization (WHO) study on global aging and adult health (SAGE) China Wave 1 in 2008–2010. Multilevel linear and logistic regression models were used to assess the associations of particulate matter (PM) and nitrogen dioxide (NO2) on log-transformed hs-CRP levels and odds ratios of CVD risk derived from CRP levels adjusted for confounders. A satellite-based spatial statistical model was applied to estimate the average community exposure to outdoor air pollutants (PM with an aerodynamic diameter of 10 μm or less (PM10), 2.5 μm or less (PM2.5), and 1 μm or less (PM1) and NO2) for each participant of the study. hs-CRP levels were drawn from dried blood spots of each participant. Each 10 μg/m3 increment in PM10, PM2.5, PM1, and NO2 was associated with 12.8% (95% confidence interval; (CI): 9.1, 16.6), 15.7% (95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher serum levels of hs-CRP, respectively. Our findings suggest that air pollution may be an important factor in increasing systemic inflammation in older Chinese adults.
Collapse
Affiliation(s)
- Mona Elbarbary
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- Correspondence: or ; Tel.: +61-416-405-016
| | - Artem Oganesyan
- Department of Hematology and Transfusion Medicine, National Institute of Health, Yerevan 0051, Armenia;
| | - Trenton Honda
- Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA;
| | - Geoffrey Morgan
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- School of Public Health, University Centre for Rural Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia;
| | - Yanfei Guo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Joel Negin
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
| |
Collapse
|
10
|
Residential proximity to major roads and fecundability in a preconception cohort. Environ Epidemiol 2020; 4:e112. [PMID: 33778352 PMCID: PMC7941774 DOI: 10.1097/ee9.0000000000000112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Supplemental Digital Content is available in the text. Emerging evidence from animal and human studies indicates that exposure to traffic-related air pollution may adversely affect fertility.
Collapse
|