1
|
El Ghazawi A, Skouri H, Sabra M, Ballout J, Elias J, Jaalouk DE, Refaat MM. Myocardial Repair and Molecular Changes Following Mechanical Unloading With Ventricular Assist Device. Cardiol Rev 2025:00045415-990000000-00502. [PMID: 40387335 DOI: 10.1097/crd.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Heart failure is a progressive condition with increased morbidity and mortality. There are several treatment options for heart failure, and these include medications, device therapy (cardiac resynchronization therapy, implantable cardioverter defibrillator), and left-ventricular assist devices (LVADs). The usage of LVADs in patients with end-stage heart failure has increased, especially following the introduction of second-generation LVADs with improved mechanics and hemodynamics. LVADs were initially used as a "bridge-to-transplantation." They were later found to reverse the molecular transformations that take place in the cardiomyocytes in patients with heart failure, eventually leading to partial or complete recovery in a subset of patients. And so, LVADs started being used as destination therapy. However, although most patients with heart failure who receive LVAD therapy show reverse remodeling, only a minority of them achieve partial recovery, and an even smaller minority achieve complete recovery. Therefore, several underlying mechanisms that contribute to reverse remodeling and recovery following LVAD therapy are probably still unknown and need further elucidation. In this review, we will then talk about how LVAD implantation contributes to reverse cardiac remodeling by affecting the microenvironment, and several intracellular processes and signaling pathways.
Collapse
Affiliation(s)
- Alaaeddine El Ghazawi
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Hadi Skouri
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad Sabra
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Jad Ballout
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Joseph Elias
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Diana E Jaalouk
- Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Marwan M Refaat
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
Abstract
This review provides a comprehensive overview of the past 25+ years of research into the development of left ventricular assist device (LVAD) to improve clinical outcomes in patients with severe end-stage heart failure and basic insights gained into the biology of heart failure gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, and complications, are reviewed. We explain the hemodynamic effects of LVAD support and how these lead to ventricular unloading. This includes a detailed review of the structural, cellular, and molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support and medical therapies for heart failure related to reverse remodeling, remission, and recovery are discussed within the context of both clinical outcomes and fundamental effects on myocardial biology. The incidence, clinical implications and factors most likely to be associated with improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported hearts and their implications for future research aimed at improving the overall rates of recovery.
Collapse
Affiliation(s)
| | | | - Gabriel Sayer
- Cardiovascular Research Foundation, New York, NY (D.B.)
| | - Nir Uriel
- Cardiovascular Research Foundation, New York, NY (D.B.)
| |
Collapse
|
3
|
Miranda-Silva D, G Rodrigues P, Alves E, Rizo D, Fonseca ACRG, Lima T, Baganha F, Conceição G, Sousa C, Gonçalves A, Miranda I, Vasques-Nóvoa F, Magalhães J, Leite-Moreira A, Falcão-Pires I. Mitochondrial Reversible Changes Determine Diastolic Function Adaptations During Myocardial (Reverse) Remodeling. Circ Heart Fail 2020; 13:e006170. [PMID: 33176457 DOI: 10.1161/circheartfailure.119.006170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Often, pressure overload-induced myocardial remodeling does not undergo complete reverse remodeling after decreasing afterload. Recently, mitochondrial abnormalities and oxidative stress have been successively implicated in the pathogenesis of several chronic pressure overload cardiac diseases. Therefore, we aim to clarify the myocardial energetic dysregulation in (reverse) remodeling, mainly focusing on the mitochondria. METHODS Thirty-five Wistar Han male rats randomly underwent sham or ascending (supravalvular) aortic banding procedure. Echocardiography revealed that banding induced concentric hypertrophy and diastolic dysfunction (early diastolic transmitral flow velocity to peak early-diastolic annular velocity ratio, E/E': sham, 13.6±2.1, banding, 18.5±4.1, P=0.014) accompanied by increased oxidative stress (dihydroethidium fluorescence: sham, 1.6×108±6.1×107, banding, 2.6×108±4.5×107, P<0.001) and augmented mitochondrial function. After 8 to 9 weeks, half of the banding animals underwent overload relief by an aortic debanding surgery (n=10). RESULTS Two weeks later, hypertrophy decreased with the decline of oxidative stress (dihydroethidium fluorescence: banding, 2.6×108±4.5×107, debanding, 1.96×108±6.8×107, P<0.001) and diastolic dysfunction improved simultaneously (E/E': banding, 18.5±4.1, debanding, 15.1±1.8, P=0.029). The reduction of energetic demands imposed by overload relief allowed the mitochondria to reduce its activity and myocardial levels of phosphocreatine, phosphocreatine/ATP, and ATP/ADP to normalize in debanding towards sham values (phosphocreatine: sham, 38.4±7.4, debanding, 35.6±8.7, P=0.71; phosphocreatine/ATP: sham, 1.22±0.23 debanding, 1.11±0.24, P=0.59; ATP/ADP: sham, 6.2±0.9, debanding, 5.6±1.6, P=0.66). Despite the decreased mitochondrial area, complex III and V expression increased in debanding compared with sham or banding. Autophagy and mitophagy-related markers increased in banding and remained higher in debanding rats. CONCLUSIONS During compensatory and maladaptive hypertrophy, mitochondria become more active. However, as the disease progresses, the myocardial energetic demands increase and the myocardium becomes energy deficient. During reverse remodeling, the concomitant attenuation of cardiac hypertrophy and oxidative stress allowed myocardial energetics, left ventricle hypertrophy, and diastolic dysfunction to recover. Autophagy and mitophagy are probably involved in the myocardial adaptation to overload and to unload. We conclude that these mitochondrial reversible changes underlie diastolic function adaptations during myocardial (reverse) remodeling.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Patrícia G Rodrigues
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Estela Alves
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - David Rizo
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - Ana Catarina R G Fonseca
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal (A.C.R.G.F.)
| | - Tânia Lima
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Fabiana Baganha
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Gloria Conceição
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Cláudia Sousa
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Alexandre Gonçalves
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Isabel Miranda
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - José Magalhães
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| |
Collapse
|
4
|
Messmann R, Dietl A, Wagner S, Domenig O, Jungbauer C, Luchner A, Maier LS, Schopka S, Hirt S, Schmid C, Birner C. Alterations of the renin angiotensin system in human end-stage heart failure before and after mechanical cardiac unloading by LVAD support. Mol Cell Biochem 2020; 472:79-94. [PMID: 32564294 PMCID: PMC7431447 DOI: 10.1007/s11010-020-03787-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/11/2020] [Indexed: 01/06/2023]
Abstract
Heart transplantation is often an unrealizable therapeutic option for end-stage heart failure, which is why mechanical left ventricular assist devices (LVADs) become an increasingly important therapeutic alternative. Currently, there is a lack of information about molecular mechanisms which are influenced by LVADs, particularly regarding the pathophysiologically critical renin angiotensin system (RAS). We, therefore, determined regulation patterns of key components of the RAS and the β-arrestin signaling pathways in left ventricular (LV) tissue specimens from 8 patients with end-stage ischemic cardiomyopathy (ICM) and 12 patients with terminal dilated cardiomyopathy (DCM) before and after LVAD implantation and compared them with non-failing (NF) left ventricular tissue samples: AT1R, AT2R, ACE, ACE2, MasR, and ADAM17 were analyzed by polymerase chain reaction. ERK, phosphorylated ERK, p38, phosphorylated p38, JNK, phosphorylated JNK, GRK2, β-arrestin 2, PI3K, Akt, and phosphorylated Akt were determined by Western blot analysis. Angiotensin I and Angiotensin II were quantified by mass spectrometry. Patients were predominantly middle-aged (53 ± 10 years) men with severely impaired LV function (LVEF 19 ± 8%), when receiving LVAD therapy for a mean duration of 331 ± 317 days. Baseline characteristics did not differ significantly between ICM and DCM patients. By comparing failing with non-failing left ventricles, i.e., before LVAD implantation, a downregulation of AT1R, AT2R, and MasR and an upregulation of ACE, ACE2, GRK, β-arrestin, ERK, PI3K, and Akt were seen. Following LVAD support, then angiotensin I, ACE2, GRK, and β-arrestin were downregulated and AT2R, JNK, and p38 were upregulated. ACE, angiotensin II, AT1R, ADAM17, MasR, ERK, PI3K, and Akt remained unchanged. Some regulation patterns were influenced by the underlying etiology of heart failure, the severity of LV dysfunction at baseline, and the duration of LVAD therapy. Key components of the RAS and β-arrestin signaling pathways were divergently altered in failing left ventricles both before and after LVAD implantation, whereas a remarkable fraction remained unchanged. This indicates a rather incomplete molecular reverse remodeling, whose functional relevance has to be further evaluated.
Collapse
Affiliation(s)
- Rebecca Messmann
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Dietl
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | | | - Carsten Jungbauer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Luchner
- Department of Cardiology, Clinic Barmherzige Brüder, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Simon Schopka
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Stephan Hirt
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Birner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
- Department of Internal Medicine I, Klinikum St. Marien, Amberg, Germany.
| |
Collapse
|
5
|
Antonides CFJ, Schoenrath F, de By TMMH, Muslem R, Veen K, Yalcin YC, Netuka I, Gummert J, Potapov EV, Meyns B, Özbaran M, Schibilsky D, Caliskan K. Outcomes of patients after successful left ventricular assist device explantation: a EUROMACS study. ESC Heart Fail 2020; 7:1085-1094. [PMID: 32196996 PMCID: PMC7261531 DOI: 10.1002/ehf2.12629] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 11/11/2022] Open
Abstract
AIMS Sufficient myocardial recovery with the subsequent explantation of a left ventricular assist device (LVAD) occurs in approximately 1-2% of the cases. However, follow-up data about this condition are scarcely available in the literature. This study aimed to report the long-term outcomes and clinical management following LVAD explantation. METHODS AND RESULTS An analysis of the European Registry for Patients with Mechanical Circulatory Support was performed to identify all adult patients with myocardial recovery and successful explantation. Pre-implant characteristics were retrieved and compared with the non-recovery patients. The follow-up data after explantation were collected via a questionnaire. A Kaplan-Meier analysis for freedom of the composite endpoint of death, heart transplantation, LVAD reimplantion, or heart failure (HF) relapse was conducted. A total of 45 (1.4%) cases with myocardial recovery resulting in successful LVAD explantation were identified. Compared with those who did not experience myocardial recovery, the explanted patients were younger (44 vs. 56 years, P < 0.001), had a shorter duration of cardiac disease (P < 0.001), and were less likely to have ischaemic cardiomyopathy (9% vs. 41.8%, P < 0.001). Follow-up after explantation could be acquired in 28 (62%) cases. The median age at LVAD implantation was 43 years (inter-quartile range: 29-52), and 23 (82%) were male. Baseline left ventricular ejection fraction was 18% (inter-quartile range: 10-20%), and 60.7% of the patients had Interagency Registry for Mechanically Assisted Circulatory Support Profile 1 or 2. Aetiologies of HF were dilated cardiomyopathy in 36%, myocarditis in 32%, and ischaemic in 14% of the patients, and 18% had miscellaneous aetiologies. The devices implanted were HeartMate II in 14 (50%), HVAD in 11 (39%), HeartMate 3 in 2 (7%), and 1 unknown with a median duration of support of 410 days (range: 59-1286). The median follow-up after explantation was 26 months (range 0.3-73 months), and 82% of the patients were in New York Heart Association Class I or II. Beta-blockers were prescribed to 85%, angiotensin-converting enzyme inhibitors to 71%, and loop diuretics to 50% of the patients, respectively. Freedom from the composite endpoint was 100% after 30 days and 88% after 2 years. CONCLUSIONS The survival after LVAD explantation is excellent without the need for heart transplantation or LVAD reimplantation. Only a minority of the patients suffer from a relapse of significant HF.
Collapse
Affiliation(s)
- Christiaan F J Antonides
- Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, German Heart Centre Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Theo M M H de By
- Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.,EUROMACS, EACTS, Windsor, UK
| | - Rahatullah Muslem
- Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kevin Veen
- Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yunus C Yalcin
- Thoraxcenter, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.,Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ivan Netuka
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre, NRW, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Evgenij V Potapov
- Department of Cardiothoracic and Vascular Surgery, German Heart Centre Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Bart Meyns
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mustafa Özbaran
- Department of Cardiovascular Surgery, Ege Üniversitesi Tıp Fakültesi, Izmir, Turkey
| | - David Schibilsky
- Department of Cardiovascular Surgery, Universitäts-Herzzentrum Freiburg-Bad Krozingen, Freiburg, Germany
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
6
|
Nagaraju CK, Robinson EL, Abdesselem M, Trenson S, Dries E, Gilbert G, Janssens S, Van Cleemput J, Rega F, Meyns B, Roderick HL, Driesen RB, Sipido KR. Myofibroblast Phenotype and Reversibility of Fibrosis in Patients With End-Stage Heart Failure. J Am Coll Cardiol 2020; 73:2267-2282. [PMID: 31072570 DOI: 10.1016/j.jacc.2019.02.049] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Interstitial fibrosis is an important component of diastolic, and systolic, dysfunction in heart failure (HF) and depends on activation and differentiation of fibroblasts into myofibroblasts (MyoFb). Recent clinical evidence suggests that in late-stage HF, fibrosis is not reversible. OBJECTIVES The study aims to examine the degree of differentiation of cardiac MyoFb in end-stage HF and the potential for their phenotypic reversibility. METHODS Fibroblasts were isolated from the left ventricle of the explanted hearts of transplant recipients (ischemic and dilated cardiomyopathy), and from nonused donor hearts. Fibroblasts were maintained in culture without passaging for 4 or 8 days (treatment studies). Phenotyping included functional testing, immunostaining, and expression studies for markers of differentiation. These data were complemented with immunohistology and expression studies in tissue samples. RESULTS Interstitial fibrosis with cross-linked collagen is prominent in HF hearts, with presence of activated MyoFbs. Tissue levels of transforming growth factor (TGF)-β1, lysyl oxidase, periostin, and osteopontin are elevated. Fibroblastic cells isolated from HF hearts are predominantly MyoFb, proliferative or nonproliferative, with mature α-smooth muscle actin stress fibers. HF MyoFb express high levels of profibrotic cytokines and the TGF-β1 pathway is activated. Inhibition of TGF-β1 receptor kinase in HF MyoFb promotes dedifferentiation of MyoFb with loss of α-smooth muscle actin and depolymerization of stress fibers, and reduces the expression of profibrotic genes and cytokines levels to non-HF levels. CONCLUSION MyoFb in end-stage HF have a variable degree of differentiation and retain the capacity to return to a less activated state, validating the potential for developing antifibrotic therapy targeting MyoFb.
Collapse
Affiliation(s)
| | - Emma L Robinson
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Mouna Abdesselem
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Trenson
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Eef Dries
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Stefan Janssens
- Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Johan Van Cleemput
- Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Meyns
- Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Ronald B Driesen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Kumar G, Saleem N, Kumar S, Maulik SK, Ahmad S, Sharma M, Goswami SK. Transcriptomic Validation of the Protective Effects of Aqueous Bark Extract of Terminalia arjuna (Roxb.) on Isoproterenol-Induced Cardiac Hypertrophy in Rats. Front Pharmacol 2019; 10:1443. [PMID: 31920643 PMCID: PMC6916006 DOI: 10.3389/fphar.2019.01443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Aqueous extract of the bark of Terminalia arjuna (TA) is used by a large population in the Indian subcontinent for treating various cardiovascular conditions. Animal experiments have shown its anti-atherogenic, anti-hypertensive, and anti-inflammatory effects. It has several bioactive ingredients with hemodynamic, ROS scavenging, and anti-inflammatory properties. Earlier we have done limited proteomic and transcriptomic analysis to show its efficacy in ameliorating cardiac hypertrophy induced by isoproterenol (ISO) in rats. In the present study we have used high-throughput sequencing of the mRNA from control and treated rat heart to further establish its efficacy. ISO (5 mg/kg/day s.c.) was administered in male adult rats for 14 days to induce cardiac hypertrophy. Standardized aqueous extract TA bark extract was administered orally. Total RNA were isolated from control, ISO, ISO + TA, and TA treated rat hearts and subjected to high throughput sequence analysis. The modulations of the transcript levels were then subjected to bio-informatics analyses using established software. Treatment with ISO downregulated 1,129 genes and upregulated 204 others. Pre-treatment with the TA bark extracts markedly restored that expression pattern with only 97 genes upregulated and 85 genes downregulated. The TA alone group had only 88 upregulated and 26 downregulated genes. The overall profile of expression in ISO + TA and TA alone groups closely matched with the control group. The genes that were modulated included those involved in metabolism, activation of receptors and cell signaling, and cardiovascular and other diseases. Networks associated with those genes included those involved in angiogenesis, extracellular matrix organization, integrin binding, inflammation, drug metabolism, redox metabolism, oxidative phosphorylation, and organization of myofibril. Overlaying of the networks in ISO and ISO_TA group showed that those activated in ISO group were mostly absent in ISO_TA and TA group, suggesting a global effect of the TA extracts. This study for the first time reveals that TA partially or completely restores the gene regulatory network perturbed by ISO treatment in rat heart; signifying its efficacy in checking ISO-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Gaurav Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Santosh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Subir K Maulik
- Department of Pharmacology, All India Institute of Medical Sciences (A.I.I.M.S.), New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation, New Delhi, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Devabhaktuni SR, Shirazi JT, Miller JM. Mapping and Ablation of Ventricle Arrhythmia in Patients with Left Ventricular Assist Devices. Card Electrophysiol Clin 2019; 11:689-697. [PMID: 31706475 DOI: 10.1016/j.ccep.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ventricular arrhythmias (VA) constitute well-known problems in patients with left ventricular assist devices (LVADs), with incidence ranging from 18% to as high as 52%. Catheter ablation has become a common therapeutic intervention to treat drug-refractory VA, particularly with the increase and more widespread use of durable LVADs to bridge patients to transplantation or as destination therapy. In this article, we focus on etiology, mechanisms, periprocedural management, and mapping and ablation techniques in patients with LVADs and VA.
Collapse
|
9
|
Miranda-Silva D, Gonçalves-Rodrigues P, Almeida-Coelho J, Hamdani N, Lima T, Conceição G, Sousa-Mendes C, Cláudia-Moura, González A, Díez J, Linke WA, Leite-Moreira A, Falcão-Pires I. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Sci Rep 2019; 9:2956. [PMID: 30814653 PMCID: PMC6393473 DOI: 10.1038/s41598-019-39581-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 01/03/2023] Open
Abstract
Aortic Stenosis (AS) is the most frequent valvulopathy in the western world. Traditionally aortic valve replacement (AVR) has been recommended immediately after the onset of heart failure (HF) symptoms. However, recent evidence suggests that AVR outcome can be improved if performed earlier. After AVR, the process of left ventricle (LV) reverse remodelling (RR) is variable and frequently incomplete. In this study, we aimed at detecting mechanism underlying the process of LV RR regarding myocardial structural, functional and molecular changes before the onset of HF symptoms. Wistar-Han rats were subjected to 7-weeks of ascending aortic-banding followed by a 2-week period of debanding to resemble AS-induced LV remodelling and the early events of AVR-induced RR, respectively. This resulted in 3 groups: Sham (n = 10), Banding (Ba, n = 15) and Debanding (Deb, n = 10). Concentric hypertrophy and diastolic dysfunction (DD) were patent in the Ba group. Aortic-debanding induced RR, which promoted LV functional recovery, while cardiac structure did not normalise. Cardiac parameters of RV dysfunction, assessed by echocardiography and at the cardiomyocyte level prevailed altered after debanding. After debanding, these alterations were accompanied by persistent changes in pathways associated to myocardial hypertrophy, fibrosis and LV inflammation. Aortic banding induced pulmonary arterial wall thickness to increase and correlates negatively with effort intolerance and positively with E/e′ and left atrial area. We described dysregulated pathways in LV and RV remodelling and RR after AVR. Importantly we showed important RV-side effects of aortic constriction, highlighting the impact that LV-reverse remodelling has on both ventricles.
Collapse
Affiliation(s)
| | | | | | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University, Bochum, Germany
| | - Tânia Lima
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | - Glória Conceição
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | | | - Cláudia-Moura
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra and CIBERCV, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery and Department of Nephrology, University of Navarra Clinic, Pamplona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra and CIBERCV, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery and Department of Nephrology, University of Navarra Clinic, Pamplona, Spain
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | | - Inês Falcão-Pires
- Department of Surgery and Physiology, University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Catheter Ablation of Ventricular Tachycardia in Patients With a Ventricular Assist Device: A Systematic Review of Procedural Characteristics and Outcomes. JACC Clin Electrophysiol 2018; 5:39-51. [PMID: 30678785 DOI: 10.1016/j.jacep.2018.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES This is a systematic review summarizing the procedural characteristics and outcomes of ventricular assist device (VAD)-related ventricular tachycardia (VT) ablation. BACKGROUND Drug-refractory VT refractory commonly develops post-VAD implantation. Procedural and outcome data come from small series or case reports. METHODS An electronic search was performed using major databases. Primary outcomes were VT recurrence, mortality, and cardiac transplantation. Secondary endpoints were acute procedural success and procedural complications. RESULTS Eighteen studies were included, with a total of 110 patients (mean age 59.6 ± 11 years, 89% men; VT storm 34%). Scar-related re-entry was the predominant mechanism of VT (90.3%) and cannula-related VT in 19.3% cases. Electroanatomical mapping interference occurred in 1.8% of cases; there were no reports of catheter entrapment. Noninducibility of clinical VT was achieved in 77.9%; procedural complications occurred in 9.4%. At a mean follow-up of 263.5 ± 267.0 days, VT recurred in 43.6%, 23.4% underwent cardiac transplant, and 48.1% died. There were no procedural-related deaths and no death was directly related to ventricular arrhythmia. In follow-up, there was a significant reduction in implantable cardioverter-defibrillator therapies or shocks (57.1% vs. 23.8%). Ablation allowed VT storm termination in 90% of patients. CONCLUSIONS VAD-related VT is predominantly related to pre-existing intrinsic myocardial scar rather than inflow cannula site insertion. Catheter ablation is a reasonable treatment strategy, albeit with expectedly high rate of recurrence, transplantation, and mortality related to severe underlying disease.
Collapse
|
11
|
Kempton A, Cefalu M, Justice C, Baich T, Derbala M, Canan B, Janssen PML, Mohler PJ, Smith SA. Altered regulation of cardiac ankyrin repeat protein in heart failure. Heliyon 2018; 4:e00514. [PMID: 29560432 PMCID: PMC5857524 DOI: 10.1016/j.heliyon.2018.e00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Background Left ventricular assist devices (LVADs) have revolutionized and improved the care of the sickest heart failure (HF) patients, and it is imperative that they receive appropriate ventricular unloading. Assessing this critical parameter with current methodologies (labs, imaging) is usually suboptimal in this patient population. Hence it is imperative to elucidate the molecular underpinnings involved in ventricular unloading. We have previously identified the cytoskeletal protein βII spectrin as an essential nodal protein involved in post-translational targeting and βII spectrin protein levels are significantly altered in multiple forms of human and animal HF. We therefore hypothesized that the βII spectrin pathway would play a critical role in LVAD remodeling. Methods Human heart failure samples were obtained from patients undergoing heart transplantation. Wild type (WT) mice and our previously validated βII spectrin conditional knock out (βII cKO) mice were used for animal experiments. Transaortic constriction (TAC) was performed on WT mice. Protein expression was assessed via immunoblots, and protein interactions were assessed with co-immunoprecipitation. Transcriptome analysis was performed using isolated whole hearts from control adult WT mice (n = 3) compared to βII cKO spectrin mice (n = 3). Results We report that hearts from mice selectively lacking βII spectrin expression in cardiomyocytes displayed altered transcriptional regulation of cardiac ankyrin repeat protein (CARP). Notably, CARP protein expression is increased after TAC. Additionally, our findings illustrate that prior to LVAD support, CARP levels are elevated in HF patients compared to normal healthy controls. Further, for the first time in a LVAD population, we show that elevated CARP levels in HF patients return to normal following LVAD support. Conclusion Our findings illustrate that CARP is a dynamic molecule that responds to reduced afterload and stress, and has the potential to serve as a prognostic biomarker to assess for an adequate response to LVAD therapy.
Collapse
Affiliation(s)
- Amber Kempton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matt Cefalu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Cody Justice
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tesla Baich
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mohamed Derbala
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin Canan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sakima A Smith
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Kadado AJ, Akar JG, Hummel JP. Arrhythmias after left ventricular assist device implantation: Incidence and management. Trends Cardiovasc Med 2018; 28:41-50. [DOI: 10.1016/j.tcm.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
13
|
Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 2017; 101:498-505. [PMID: 27906830 DOI: 10.1097/tp.0000000000001585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heterotopic abdominal rat heart transplantation has been extensively used to investigate ischemic-reperfusion injury, immunological consequences during heart transplantations and also to study remodeling of the myocardium due to volume unloading. We provide a unique review on the latter and present a summary of the experimental studies on rat heart transplantation to illustrate changes that occur to the myocardium due to volume unloading. We divided the literature based on whether normal or failing rat heart models were used. This analysis may provide a basis to understand the physiological effects of mechanical circulatory support therapy.
Collapse
|
14
|
Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device-induced reverse remodeling: it's not just about myocardial recovery. Expert Rev Med Devices 2016; 14:15-26. [PMID: 27871197 DOI: 10.1080/17434440.2017.1262762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The abnormal structure, function and molecular makeup of dilated cardiomyopathic hearts can be partially normalized in patients supported by a left ventricular assist device (LVAD), a process called reverse remodeling. This leads to recovery of function in many patients, though the rate of full recovery is low and in many cases is temporary, leading to the concept of heart failure remission, rather than recovery. Areas covered: We summarize data indicative of ventricular reverse remodeling, recovery and remission during LVAD support. These terms were used in searches performed in Pubmed. Duplication of topics covered in depth in prior review articles were avoided. Expert commentary: Although most patients undergoing mechanical circulatory support (MCS) show a significant degree of reverse remodeling, very few exhibit sufficiently improved function to justify device explantation, and many from whom LVADs have been explanted have relapsed back to the original heart failure phenotype. Future research has the potential to clarify the ideal combination of pharmacological, cell, gene, and mechanical therapies that would maximize recovery of function which has the potential to improve exercise tolerance of patients while on support, and to achieve a higher degree of myocardial recovery that is more likely to persist after device removal.
Collapse
Affiliation(s)
- Karolina K Marinescu
- a Department of Medicine, Division of Cardiology, Advanced Heart Failure , Rush University Medical Center , Chicago , IL , USA
| | - Nir Uriel
- b Department of Medicine, Division of Cardiology , University of Chicago , Chicago , IL , USA
| | - Douglas L Mann
- c Department of Medicine, Division of Cardiology , Washington University School of Medicine/Barnes Jewish Hospital , St. Louis , MO , USA
| | - Daniel Burkhoff
- d Department of Medicine, Division of Cardiology , Columbia University Medical Center/New York-Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
15
|
Fu X, Segiser A, Carrel TP, Tevaearai Stahel HT, Most H. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling. Front Cardiovasc Med 2016; 3:34. [PMID: 27807535 PMCID: PMC5069686 DOI: 10.3389/fcvm.2016.00034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
Unloading of the failing left ventricle in order to achieve myocardial reverse remodeling and improvement of contractile function has been developed as a strategy with the increasing frequency of implantation of left ventricular assist devices in clinical practice. But, reverse remodeling remains an elusive target, with high variability and exact mechanisms still largely unclear. The small animal model of heterotopic heart transplantation (hHTX) in rodents has been widely implemented to study the effects of complete and partial unloading on cardiac failing and non-failing tissue to better understand the structural and molecular changes that underlie myocardial recovery. We herein review the current knowledge on the effects of volume unloading the left ventricle via different methods of hHTX in rats, differentiating between changes that contribute to functional recovery and adverse effects observed in unloaded myocardium. We focus on methodological aspects of heterotopic transplantation, which increase the correlation between the animal model and the setting of the failing unloaded human heart. Last, but not least, we describe the late use of sophisticated techniques to acquire data, such as small animal MRI and catheterization, as well as ways to assess unloaded hearts under "reloaded" conditions. While giving regard to certain limitations, heterotopic rat heart transplantation certainly represents the crucial model to mimic unloading-induced changes in the heart and as such the intricacies and challenges deserve highest consideration. Careful translational research will further improve our knowledge of the reverse remodeling process and how to potentiate its effect in order to achieve recovery of contractile function in more patients.
Collapse
Affiliation(s)
- Xuebin Fu
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| | - Adrian Segiser
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| | - Thierry P Carrel
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| | | | - Henriette Most
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital , Berne , Switzerland
| |
Collapse
|
16
|
Sunagawa G, Byram N, Karimov JH, Horvath DJ, Moazami N, Starling RC, Fukamachi K. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery. J Thorac Cardiovasc Surg 2015. [DOI: 10.1016/j.jtcvs.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Weia BC, Adachi I, Jacot JG. Clinical and Molecular Comparison of Pediatric and Adult Reverse Remodeling With Ventricular Assist Devices. Artif Organs 2015; 39:691-700. [DOI: 10.1111/aor.12451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Iki Adachi
- Congenital Heart Surgery; Texas Children's Hospital; Houston TX USA
- Michael E. DeBakey Department of Surgery; Baylor College of Medicine; Texas Medical Center; Houston TX USA
| | - Jeffrey G. Jacot
- Department of Bioengineering; Rice University; Houston TX USA
- Congenital Heart Surgery; Texas Children's Hospital; Houston TX USA
| |
Collapse
|
18
|
Building a bridge to recovery: the pathophysiology of LVAD-induced reverse modeling in heart failure. Surg Today 2015; 46:149-54. [PMID: 25840890 DOI: 10.1007/s00595-015-1149-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/20/2015] [Indexed: 10/23/2022]
Abstract
Heart failure mainly caused by ischemic or dilated cardiomyopathy is a life-threatening disorder worldwide. The previous work in cardiac surgery has led to many excellent surgical techniques for treating cardiac diseases, and these procedures are now able to prolong the human lifespan. However, surgical treatment for end-stage heart failure has been under-explored, although left ventricular assist device (LVAD) implantation and heart transplantation are options to treat the condition. LVAD can provide powerful circulatory support for end-stage heart failure patients and improve the survival and quality of life after implantation compared with the existing medical counterparts. Moreover, LVADs play a crucial role in the "bridge to transplantation", "bridge to recovery" and recently have served as "destination therapy". The structural and molecular changes that improve the cardiac function after LVAD implantation are called "reverse remodeling", which means that patients who have received a LVAD can be weaned from the LVAD with restoration of their cardiac function. This strategy is a desirable alternative to heart transplantation in terms of both the patient quality of life and due to the organ shortage. The mechanism of this bridge to recovery is interesting, and is different from other treatments for heart failure. Bridge to recovery therapy is one of the options in regenerative therapy which only a surgeon can provide. In this review, we pathophysiologically analyze the reverse remodeling phenomenon induced by LVAD and comment about the clinical evidence with regard to its impact on the bridge to recovery.
Collapse
|
19
|
Wei X, Wu B, Zhao J, Zeng Z, Xuan W, Cao S, Huang X, Asakura M, Xu D, Bin J, Kitakaze M, Liao Y. Myocardial Hypertrophic Preconditioning Attenuates Cardiomyocyte Hypertrophy and Slows Progression to Heart Failure Through Upregulation of S100A8/A9. Circulation 2015; 131:1506-17; discussion 1517. [PMID: 25820336 PMCID: PMC4415966 DOI: 10.1161/circulationaha.114.013789] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 02/26/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Transient preceding brief ischemia provides potent cardioprotection against subsequent long ischemia, termed ischemic preconditioning. Here, we hypothesized that transient short-term hypertrophic stimulation would induce the expression of hypertrophy regression genes and render the heart resistant to subsequent hypertrophic stress, and slow the progression to heart failure, as well. METHODS AND RESULTS Cardiomyocyte hypertrophy was induced in mice by either transverse aortic constriction or an infusion of phenylephrine, and in neonatal rat ventricular cardiomyocytes by norepinephrine exposures. In the preconditioning groups, hypertrophic stimulation was provided for 1 to 7 days and then withdrawn for several days by either aortic debanding or discontinuing phenylephrine or norepinephrine treatment, followed by subsequent reexposure to the hypertrophic stimulus for the same period as in the control group. One or 6 weeks after transverse aortic constriction, the heart weight/body weight ratio was lower in the preconditioning group than in the control group, whereas the lung weight/body weight ratio was significantly decreased 6 weeks after transverse aortic constriction. Similar results were obtained in mice receiving phenylephrine infusion and neonatal rat ventricular cardiomyocytes stimulated with norepinephrine. Both mRNA and protein expression of S100A8 and S100A9 showed significant upregulation after the removal of hypertrophic stimulation and persisted for 6 weeks in response to reimposition of transverse aortic constriction. The treatment with recombinant S100A8/A9 inhibited norepinephrine-induced myocyte hypertrophy and reduced the expression of calcineurin and NFATc3, but the silencing of S100A8/A9 prevented such changes. CONCLUSIONS Preconditioning with prohypertrophic factors exerts an antihypertrophic effect and slows the progression of heart failure, indicating the existence of the phenomenon for hypertrophic preconditioning.
Collapse
Affiliation(s)
- Xuan Wei
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Bing Wu
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Jing Zhao
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Zhi Zeng
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Wanling Xuan
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Shiping Cao
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Xiaobo Huang
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Masanori Asakura
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Dingli Xu
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Jianping Bin
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Masafumi Kitakaze
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.)
| | - Yulin Liao
- From Sate Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China (X.W., B.W., J.Z., Z.Z., W.X., S.C., X.H., D.X., J.B., M.K., Y.L.); and Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (M.A., M.K.).
| |
Collapse
|
20
|
Abstract
Heart failure is a global problem with an estimated prevalence of 38 million patients worldwide, a number that is increasing with the ageing of the population. It is the most common diagnosis in patients aged 65 years or older admitted to hospital and in high-income nations. Despite some progress, the prognosis of heart failure is worse than that of most cancers. Because of the seriousness of the condition, a declaration of war on five fronts has been proposed for heart failure. Efforts are underway to treat heart failure by enhancing myofilament sensitivity to Ca(2+); transfer of the gene for SERCA2a, the protein that pumps calcium into the sarcoplasmic reticulum of the cardiomyocyte, seems promising in a phase 2 trial. Several other abnormal calcium-handling proteins in the failing heart are candidates for gene therapy; many short, non-coding RNAs--ie, microRNAs (miRNAs)--block gene expression and protein translation. These molecules are crucial to calcium cycling and ventricular hypertrophy. The actions of miRNAs can be blocked by a new class of drugs, antagomirs, some of which have been shown to improve cardiac function in animal models of heart failure; cell therapy, with autologous bone marrow derived mononuclear cells, or autogenous mesenchymal cells, which can be administered as cryopreserved off the shelf products, seem to be promising in both preclinical and early clinical heart failure trials; and long-term ventricular assistance devices are now used increasingly as a destination therapy in patients with advanced heart failure. In selected patients, left ventricular assistance can lead to myocardial recovery and explantation of the device. The approaches to the treatment of heart failure described, when used alone or in combination, could become important weapons in the war against heart failure.
Collapse
Affiliation(s)
- Eugene Braunwald
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Surgical Treatment of Advanced Heart Failure. Coron Artery Dis 2015. [DOI: 10.1007/978-1-4471-2828-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Bayeva M, Sawicki KT, Butler J, Gheorghiade M, Ardehali H. Molecular and cellular basis of viable dysfunctional myocardium. Circ Heart Fail 2014; 7:680-91. [PMID: 25028350 DOI: 10.1161/circheartfailure.113.000912] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marina Bayeva
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Konrad Teodor Sawicki
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Javed Butler
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Mihai Gheorghiade
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Hossein Ardehali
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.).
| |
Collapse
|
23
|
Nsair A, Liem DA, Cadeiras M, Cheng RK, Allareddy M, Kwon M, Shemin R, Deng MC. Molecular basis of recovering on mechanical circulatory support. Heart Fail Clin 2014; 10:S57-62. [PMID: 24262353 DOI: 10.1016/j.hfc.2013.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Our insights into different system levels of mechanisms by left ventricular assist device support are increasing and suggest a complex regulatory system of overlapping biological processes. To develop novel decision-making strategies and patient selection criteria, heart failure and reverse cardiac remodeling should be conceptualized and explored by a multifaceted research strategy of transcriptomics, metabolomics, proteomics, molecular biology, and bioinformatics. Knowledge of the molecular mechanisms of reverse cardiac remodeling is in its early stages, and comprehensive reconstruction of the underlying networks is necessary.
Collapse
Affiliation(s)
- Ali Nsair
- University of California, Ahmanson-UCLA Cardiomyopathy Center, 100 Medical Plaza, Suite 630, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pokorný M, Cervenka L, Netuka I, Pirk J, Koňařík M, Malý J. Ventricular assist devices in heart failure: how to support the heart but prevent atrophy? Physiol Res 2014; 63:147-56. [PMID: 24779607 DOI: 10.33549/physiolres.932617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ventricular assist devices (VAD) have recently established themselves as an irreplaceable therapeutic modality of terminal heart failure. Because of the worldwide shortage of donors, ventricular assist devices play a key role in modern heart failure therapy. Some clinical data have revealed the possibility of cardiac recovery during VAD application. On the other hand, both clinical and experimental studies indicate the risk of the cardiac atrophy development, especially after prolonged mechanical unloading. Little is known about the specific mechanisms governing the unloading-induced cardiac atrophy and about the exact ultrastructural changes in cardiomyocytes, and even less is known about the ways in which possible therapeutical interventions may affect heart atrophy. One aim of this review was to present important aspects of the development of VAD-related cardiac atrophy in humans and we also review the most significant observations linking clinical data and those derived from studies using experimental models. The focus of this article was to review current methods applied to alleviate cardiac atrophy which follows mechanical unloading of the heart. Out of many pharmacological agents studied, only the selective beta2 agonist clenbuterol has been proved to have a significantly beneficial effect on unloading-induced atrophy. Mechanical means of atrophy alleviation also seem to be effective and promising.
Collapse
Affiliation(s)
- M Pokorný
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
25
|
Mann DL, Bogaev R, Buckberg GD. Cardiac remodelling and myocardial recovery: lost in translation? Eur J Heart Fail 2014; 12:789-96. [DOI: 10.1093/eurjhf/hfq113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Douglas L. Mann
- Division of Cardiology, Department of Medicine; Washington University; St Louis MO 63110 USA
| | - Roberta Bogaev
- Section of Cardiology, Department of Medicine; Baylor College of Medicine, St. Luke's Episcopal Hospital, Texas Heart Institute; Houston TX 77030 USA
| | - Gerald D. Buckberg
- Department of Cardiothoracic Surgery; David Geffen School of Medicine at UCLA; 10833 Le Conte Avenue, 62-258 CHS Los Angeles CA 90095 USA
| |
Collapse
|
26
|
Oswald H, Schultz-Wildelau C, Gardiwal A, Lüsebrink U, König T, Meyer A, Duncker D, Pichlmaier MA, Klein G, Strüber M. Implantable defibrillator therapy for ventricular tachyarrhythmia in left ventricular assist device patients. Eur J Heart Fail 2014; 12:593-9. [DOI: 10.1093/eurjhf/hfq048] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hanno Oswald
- Department of Cardiovascular Medicine; Hannover Medical School; Carl-Neuberg-Street 1 Hannover 30625 Germany
| | - Claudia Schultz-Wildelau
- Department of Cardiovascular Medicine; Hannover Medical School; Carl-Neuberg-Street 1 Hannover 30625 Germany
| | - Ajmal Gardiwal
- Department of Cardiovascular Medicine; Hannover Medical School; Carl-Neuberg-Street 1 Hannover 30625 Germany
| | - Ulrich Lüsebrink
- Department of Cardiovascular Medicine; Hannover Medical School; Carl-Neuberg-Street 1 Hannover 30625 Germany
| | - Thorben König
- Department of Cardiovascular Medicine; Hannover Medical School; Carl-Neuberg-Street 1 Hannover 30625 Germany
| | - Anna Meyer
- Department of Cardiothoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - David Duncker
- Department of Cardiovascular Medicine; Hannover Medical School; Carl-Neuberg-Street 1 Hannover 30625 Germany
| | - Maximilian A. Pichlmaier
- Department of Cardiothoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Gunnar Klein
- Department of Cardiovascular Medicine; Hannover Medical School; Carl-Neuberg-Street 1 Hannover 30625 Germany
| | - Martin Strüber
- Department of Cardiothoracic, Transplantation and Vascular Surgery; Hannover Medical School; Hannover Germany
| |
Collapse
|
27
|
Dandel M, Knosalla C, Hetzer R. Contribution of ventricular assist devices to the recovery of failing hearts: a review and the Berlin Heart Center Experience. Eur J Heart Fail 2013; 16:248-63. [DOI: 10.1002/ejhf.18] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/25/2013] [Accepted: 09/27/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael Dandel
- Department of Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin D-13353 Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin D-13353 Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Germany
| | - Roland Hetzer
- Department of Cardiothoracic and Vascular Surgery; Deutsches Herzzentrum Berlin; Berlin D-13353 Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Germany
| |
Collapse
|
28
|
Abstract
Heart failure is associated with remodeling that consists of adverse cellular, structural, and functional changes in the myocardium. Until recently, this was thought to be unidirectional, progressive, and irreversible. However, irreversibility has been shown to be incorrect because complete or partial reversal can occur that can be marked after myocardial unloading with a left ventricular assist device (LVAD). Patients with chronic advanced heart failure can show near-normalization of nearly all structural abnormalities of the myocardium or reverse remodeling after LVAD support. However, reverse remodeling does not always equate with clinical recovery. The molecular changes occurring after LVAD support are reviewed, both those demonstrated with LVAD unloading alone in patients bridged to transplantation and those occurring in the myocardium of patients who have recovered enough myocardial function to have the device removed. Reverse remodeling may be attributable to a reversal of the pathological mechanisms that occur in remodeling or the generation of new pathways. A reduction in cell size occurs after LVAD unloading, which does not necessarily correlate with improved cardiac function. However, some of the changes in both the cardiac myocyte and the matrix after LVAD support are specific to myocardial recovery. In the myocyte, increases in the cytoskeletal proteins and improvements in the Ca²⁺ handling pathway seem to be specifically associated with myocardial recovery. Changes in the matrix are complex, but excessive scarring appears to limit the ability for recovery, and the degree of fibrosis in the myocardium at the time of implantation may predict the ability to recover.
Collapse
Affiliation(s)
- Emma J Birks
- Department of Cardiovascular Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
29
|
Brinks H, Giraud MN, Segiser A, Ferrié C, Longnus S, Ullrich ND, Koch WJ, Most P, Carrel TP, Tevaearai HT. Dynamic patterns of ventricular remodeling and apoptosis in hearts unloaded by heterotopic transplantation. J Heart Lung Transplant 2013; 33:203-10. [PMID: 24315785 DOI: 10.1016/j.healun.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/22/2013] [Accepted: 10/01/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.
Collapse
Affiliation(s)
- Henriette Brinks
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital, Berne, Switzerland.
| | - Marie-Noelle Giraud
- Cardiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Adrian Segiser
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital, Berne, Switzerland
| | - Celine Ferrié
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital, Berne, Switzerland
| | - Sarah Longnus
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital, Berne, Switzerland
| | - Nina D Ullrich
- Institute of Physiology, University of Berne, Berne, Switzerland
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University, Philadelphia, Pennsylvania
| | - Patrick Most
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, University of Heidelberg, Germany
| | - Thierry P Carrel
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital, Berne, Switzerland
| | - Hendrik T Tevaearai
- Department of Cardiac and Vascular Surgery, Inselspital University Hospital, Berne, Switzerland
| |
Collapse
|
30
|
Hottigoudar RU, Deam AG, Birks EJ, McCants KC, Slaughter MS, Gopinathannair R. Catheter Ablation of Atrial Flutter in Patients With Left Ventricular Assist Device Improves Symptoms of Right Heart Failure. ACTA ACUST UNITED AC 2013; 19:165-71. [DOI: 10.1111/chf.12034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/14/2013] [Accepted: 04/17/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - Allen G. Deam
- Division of Cardiovascular Medicine; University of Louisville; Louisville; KY
| | - Emma J. Birks
- Division of Cardiovascular Medicine; University of Louisville; Louisville; KY
| | - Kelly C. McCants
- Division of Cardiovascular Medicine; University of Louisville; Louisville; KY
| | - Mark S. Slaughter
- Division of Cardiothoracic Surgery; University of Louisville; Louisville; KY
| | | |
Collapse
|
31
|
Shirazi JT, Lopshire JC, Gradus-Pizlo I, Hadi MA, Wozniak TC, Malik AS. Ventricular arrhythmias in patients with implanted ventricular assist devices: a contemporary review. Europace 2012; 15:11-7. [DOI: 10.1093/europace/eus364] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol 2012; 60:2465-72. [PMID: 23158527 DOI: 10.1016/j.jacc.2012.06.062] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/06/2012] [Accepted: 06/12/2012] [Indexed: 11/17/2022]
Abstract
Medical and device therapies that reduce heart failure morbidity and mortality also lead to decreased left ventricular volume and mass and a more normal elliptical shape of the ventricle. These are due to changes in myocyte size, structure, and organization that have been referred to collectively as reverse remodeling. Moreover, there are subsets of patients whose hearts have undergone reverse remodeling either spontaneously or after medical or device therapies and whose clinical course is associated with freedom from future heart failure events. This phenomenon has been referred to as myocardial recovery. Despite the frequent interchangeable use of the terms "myocardial recovery" and "reverse remodeling" to describe the reversal of various aspects of the heart failure phenotype after medical and device therapy, the literature suggests that there are important differences between these 2 phenomena and that myocardial recovery and reverse remodeling are not synonymous. In this review, we discuss the biology of cardiac remodeling, cardiac reverse remodeling, and myocardial recovery with the intent to provide a conceptual framework for understanding myocardial recovery.
Collapse
Affiliation(s)
- Douglas L Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
33
|
Navaratnarajah M, Ibrahim M, Siedlecka U, van Doorn C, Shah A, Gandhi A, Dias P, Sarathchandra P, Yacoub MH, Terracciano CM. Influence of ivabradine on reverse remodelling during mechanical unloading. Cardiovasc Res 2012; 97:230-9. [DOI: 10.1093/cvr/cvs318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Parks KA, Costanzo MR. Thinking beyond resynchronization therapy in the failing heart. Heart Rhythm 2012; 9:S36-44. [PMID: 22521932 DOI: 10.1016/j.hrthm.2012.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 11/19/2022]
Affiliation(s)
- Kimberly A Parks
- Advanced Heart Failure Section, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
35
|
Mulloy DP, Bhamidipati CM, Stone ML, Ailawadi G, Bergin JD, Mahapatra S, Kern JA. Cryoablation during left ventricular assist device implantation reduces postoperative ventricular tachyarrhythmias. J Thorac Cardiovasc Surg 2012; 145:1207-13. [PMID: 22520722 DOI: 10.1016/j.jtcvs.2012.03.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/22/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND The number of patients undergoing implantation of a HeartMate II left ventricular assist device (LVAD; Thoratec Corporation, Pleasanton, Calif) is rising. Ventricular tachyarrhythmia (VA) after placement of the device is common, especially among patients with preoperative VA. We sought to determine whether intraoperative cryoablation in select patients reduces the incidence of postoperative VA. METHODS From January 2009 through September 2010, 50 consecutive patients undergoing implantation of the HeartMate II LVAD were examined. Fourteen of these patients had recurrent preoperative VA. Of those patients with recurrent VA, half underwent intraoperative cryoablation (Cryo: n = 7) and half did not (NoCryo: n = 7). Intraoperatively, patients underwent localized epicardial and endocardial cryoablation via LVAD ventriculotomy. Cryothermal lesions were created to connect scar to fixed anatomic borders in the region of clinical VA. Demographics, risk factors, intraoperative features, and outcomes were analyzed to investigate the feasibility of cryoablation. RESULTS Thirty-day mortality remained low (n = 1, 2%) among all LVAD recipients. There were no differences in risk factors between groups except that preoperative inotropes were less prevalent in Cryo patients (P = .09). Compared with NoCryo, the Cryo group had significantly decreased postoperative resource use and complications (P < .05). Recurrent postoperative VA did not develop in any of the Cryo patients (P = .02). CONCLUSIONS Postoperative VA can be minimized by preoperative risk assessment and intraoperative treatment. Localized cryoablation in select patients offers promising early feasibility when performed during HeartMate II LVAD implantation. Further prospective analysis is required to investigate this novel approach.
Collapse
Affiliation(s)
- Daniel P Mulloy
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Effective ventricular unloading by left ventricular assist device varies with stage of heart failure: cardiac simulator study. ASAIO J 2012; 57:407-13. [PMID: 21817896 DOI: 10.1097/mat.0b013e318229ca8d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although the use of left ventricular assist devices (LVADs) as a bridge-to-recovery (BTR) has shown promise, clinical success has been limited due to the lack of understanding the timing of implantation, acute/chronic device setting, and explantation. This study investigated the effective ventricular unloading at different heart conditions by using a mock circulatory system (MCS) to provide a tool for pump parameter adjustments. We tested the hypothesis that effective unloading by LVAD at a given speed varies with the stage of heart failure. By using a MCS, systematic depression of cardiac performance was obtained. Five different stages of heart failure from control were achieved by adjusting the pneumatic systolic/diastolic pressure, filling pressure, and systemic resistance. The Heart Mate II® (Thoratec Corp., Pleasanton, CA) was used for volumetric and pressure unloading at different heart conditions over a given LVAD speed. The effective unloading at a given LVAD speed was greater in more depressed heart condition. The rate of unloading over LVAD speed was also greater in more depressed heart condition. In conclusion, to get continuous and optimal cardiac recovery, timely increase in LVAD speed over a period of support is needed while avoiding the akinesis of aortic valve.
Collapse
|
38
|
Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol 2011; 26:245-55. [PMID: 21451407 DOI: 10.1097/hco.0b013e328345af13] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Myocardial remodeling driven by excess pressure and volume load is believed to be responsible for the vicious cycle of progressive myocardial dysfunction in chronic heart failure. Left ventricular assist devices (LVADs), by providing significant volume and pressure unloading, allow a reversal of stress-related compensatory responses of the overloaded myocardium. Herein, we summarize and integrate insights from studies which investigated how LVAD unloading influences the structure and function of the failing human heart. RECENT FINDINGS Recent investigations have described the impact of LVAD unloading on key structural features of cardiac remodeling - cardiomyocyte hypertrophy, fibrosis, microvasculature changes, adrenergic pathways and sympathetic innervation. The effects of LVAD unloading on myocardial function, electrophysiologic properties and arrhythmias have also been generating significant interest. We also review information describing the extent and sustainability of the LVAD-induced myocardial recovery, the important advances in understanding of the pathophysiology of heart failure derived from such studies, and the implications of these findings for the development of new therapeutic strategies. Special emphasis is given to the great variety of fundamental questions at the basic, translational and clinical levels that remain unanswered and to specific investigational strategies aimed at advancing the field. SUMMARY Structural and functional reverse remodeling associated with LVADs continues to inspire innovative research. The ultimate goal of these investigations is to achieve sustained recovery of the failing human heart.
Collapse
|
39
|
Ambardekar AV, Buttrick PM. Reverse remodeling with left ventricular assist devices: a review of clinical, cellular, and molecular effects. Circ Heart Fail 2011; 4:224-33. [PMID: 21406678 DOI: 10.1161/circheartfailure.110.959684] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Amrut V Ambardekar
- Division of Cardiology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
40
|
Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant 2010; 29:554-61. [DOI: 10.1016/j.healun.2009.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022] Open
|
41
|
Expression of Extracellular Matrix Genes During Myocardial Recovery From Heart Failure After Left Ventricular Assist Device Support. J Heart Lung Transplant 2009; 28:117-22. [DOI: 10.1016/j.healun.2008.11.910] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 07/15/2008] [Accepted: 11/19/2008] [Indexed: 11/20/2022] Open
|
42
|
Refaat M, Chemaly E, Lebeche D, Gwathmey JK, Hajjar RJ. Ventricular arrhythmias after left ventricular assist device implantation. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2008; 31:1246-52. [PMID: 18811803 DOI: 10.1111/j.1540-8159.2008.01173.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Left ventricular assist devices (LVADs) have been used as a bridge to cardiac transplantation and as destination therapy in patients with advanced heart failure. The period after LVAD support is associated with ventricular arrhythmias (VAs) despite ventricular unloading and such VAs can have a detrimental effect on survival. Despite the increasing use of LVAD, little is known regarding post-LVAD VAs at the molecular level and in vivo. METHODS Forty-two patients who received LVAD over a 24-month period were evaluated and grouped on the basis of the presence or absence of VAs during LVAD support. We completed a comparative microarray analyses between six patients who developed ventricular tachycardia (VT) or ventricular fibrillation (VF) after LVAD support and six patients who did not develop VAs after LVAD. RESULTS VAs occurred in 15 patients (35.7%) during LVAD support at a median post-LVAD day of 25.2. VAs were strongly associated with nonusage of a beta-blocker post-LVAD (odds ratio of 7.04, P-value = 0.001). Analysis of a subset of patients who had VT or VF after LVAD placement showed a decrease in the expression of connexin 43 (0.48 +/- 0.07), Na+/K+-ATPase (0.60 +/- 0.05), and voltage-gated K+ channel Kv4.3 (0.42 +/- 0.04), and an increase in Na+/Ca2+ exchanger (2.2 +/- 0.4) and the structural genes: Titin (2.1 +/- 0.2), laminin (1.7 +/- 0.4), calsequestrin (1.8 +/- 0.5), skeletal muscle isoform of troponin T (5.1 +/- 0.9), and skeletal muscle isoform of troponin I (3.9 +/- 0.7). CONCLUSION After LVAD, the increased risk of VAs is strongly associated with nonusage of beta-blocker postoperatively.
Collapse
Affiliation(s)
- Marwan Refaat
- Divisions of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
43
|
Malliaras KG, Terrovitis JV, Drakos SG, Nanas JN. Reverse cardiac remodeling enabled by mechanical unloading of the left ventricle. J Cardiovasc Transl Res 2008; 2:114-25. [PMID: 20559975 DOI: 10.1007/s12265-008-9057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/05/2008] [Indexed: 01/28/2023]
Abstract
Cardiac remodeling is a characteristic and basic component of heart failure progression and is associated with a poor prognosis. Attenuating or reversing remodeling is an accepted goal of heart failure therapy. Cardiac mechanical support with left ventricular assist devices, in addition to its established role as "bridge to transplantation" or "destination therapy" in patients not eligible for cardiac transplantation, offers the potential for significant and sustained myocardial recovery through reverse remodeling. This review discusses the emerging role of left ventricular assist devices as a "bridge to recovery". Clinical and basic aspects of cardiac remodeling and cardiac reverse remodeling enabled by mechanical unloading, potential candidates for this modality of treatment as well as unresolved issues regarding the use of mechanical circulatory support as a bridge to recovery are discussed.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW There is considerable increase in the use of left ventricular assist devices for the treatment of severe heart failure. Traditionally viewed as a bridge to transplantation and more recently as a destination therapy, left ventricular assist device support is now recognized to offer potential for myocardial recovery through reverse remodeling, a potential that is further enhanced by combination with pharmacologic therapy. In this study, we examine the molecular changes associated with left ventricular assist device support and how these may contribute to the recovery process. RECENT FINDINGS Studies in both patients and experimental models have demonstrated that improved function is associated with alterations in several key pathways including cell survival, cytokine signaling, calcium handling, adrenergic receptor signaling, cytoskeletal and contractile proteins, energy metabolism, extracellular matrix, and endothelial and microvascular functions. Moreover, the unique research opportunities offered by left ventricular assist device analysis are beginning to distinguish changes associated with recovery from those of mechanical unloading alone and identify potential predictors and novel therapeutic targets capable of enhancing myocardial repair. SUMMARY Significant progress has been made toward revealing molecular changes associated with myocardial recovery from heart failure. These studies also offer new insight into the pathogenesis of heart failure and point to novel therapeutic strategies.
Collapse
|
45
|
Lowes BD, Zolty R, Shakar SF, Brieke A, Gray N, Reed M, Calalb M, Minobe W, Lindenfeld J, Wolfel EE, Geraci M, Bristow MR, Cleveland J. Assist devices fail to reverse patterns of fetal gene expression despite beta-blockers. J Heart Lung Transplant 2008; 26:1170-6. [PMID: 18022084 DOI: 10.1016/j.healun.2007.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Heart failure is associated with reversal to a fetal gene expression pattern of contractile and metabolic genes. Substantial recovery of ventricular function with assist devices is rare. Our goal was to evaluate the effects of assist devices on fetal gene expression and hypoxia inducible factor-1 alpha (HIF-1 alpha), a transcriptional factor in hypoxic signaling. METHODS Human heart tissue was obtained from the left ventricular apex at the time of assist device implantation and again from the left ventricular free wall during cardiac transplantation. Non-failing tissue was obtained from unused hearts from human donors. Gene expression was measured with the Affymetrix 133 plus 2 Array. HIF-1 alpha was measured by Western blotting with commercially available antibodies. RESULTS Heart failure was associated with a decrease in alpha-myosin heavy chain and sarcoplasmic reticulum-Ca(2+) adenosine triphosphatase messenger RNA expression along with an increase in skeletal tropomyosin. This pattern persisted after assist device therapy. Heart failure was also associated with abnormalities in regulatory metabolic genes including glucose transporter 1 (GLUT1). These patterns also persisted after assist device therapy despite a reduction in atrial natriuretic peptide expression and normalization of HIF-1 alpha. CONCLUSIONS Failure of assist devices to produce sustained recovery of myocardial contractile function may be due in part to persistent fetal transcriptional patterns of contractile and metabolic genes.
Collapse
Affiliation(s)
- Brian D Lowes
- Division of Cardiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Klotz S, Jan Danser AH, Burkhoff D. Impact of left ventricular assist device (LVAD) support on the cardiac reverse remodeling process. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:479-96. [PMID: 18394685 DOI: 10.1016/j.pbiomolbio.2008.02.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With improved technology and expanding indications for use, left ventricular assist devices (LVADs) are assuming a greater role in the care of patients with end-stage heart failure. Following LVAD implantation with the intention of bridge to transplant, it became evident that some patients exhibit substantial recovery of ventricular function. This prompted explantation of some devices in lieu of transplantation, the so-called bridge-to-recovery (BTR) therapy. However, clinical outcomes following these experiences are not always successful. Patients treated in this fashion have often progressed rapidly back to heart failure. Special knowledge has emerged from studies of hearts supported by LVADs that provides insights into the basic mechanisms of ventricular remodeling and possible limits of ventricular recovery. In general, it was these studies that spawned the concept of reverse remodeling now recognized as an important goal of many heart failure treatments. Important examples of myocardial and/or ventricular properties that do not regress towards normal during LVAD support include abnormal extracellular matrix metabolism, increased tissue angiotensin levels, myocardial stiffening and partial recovery of gene expression involved with metabolism. Nevertheless, studies of LVAD-heart interactions have led to the understanding that although we once considered the end-stage failing heart of patients near death to be irreversibly diseased, an unprecedented degree of myocardial recovery is possible, when given sufficient mechanical unloading and restoration of more normal neurohormonal milieu. Evidence supporting and unsupporting the notion of reverse remodeling and clinical implications of this process will be reviewed.
Collapse
Affiliation(s)
- Stefan Klotz
- Department of Thoracic and Cardiovascular Surgery, University Hospital Muenster, Albert-Schweitzer-Str. 33, Muenster, Germany.
| | | | | |
Collapse
|
47
|
Affiliation(s)
- David M. Kaye
- Heart Failure Research Group, Baker Heart Research Institute, Melbourne, Victoria 8008, Australia;
| | - Masahiko Hoshijima
- Institute of Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0346
| | - Kenneth R. Chien
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Stem Cell Institute, Harvard Medical School, Richard B. Simches Research Centre, Boston, Massachusetts 02114;
| |
Collapse
|
48
|
Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol 2007; 43:231-42. [PMID: 17651751 DOI: 10.1016/j.yjmcc.2007.05.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 05/09/2007] [Accepted: 05/29/2007] [Indexed: 01/08/2023]
Abstract
A significant proportion of patients placed on long-term mechanical circulatory support for end-stage heart failure can be weaned from mechanical assistance after functional recovery of their native heart ("bridge to recovery"). The pathophysiological mechanisms implicated in reverse remodeling that cause a sustained functional myocardial recovery have recently become the subject of intensive research, expected to provide information with a view to accurately identify reliable prognostic indicators of recovery. In addition, this kind of information will enable changes in the strategy of myocardial recovery by modifying the duration and scale of the unloading regimen or by combining it with other treatments that promote reverse remodeling.
Collapse
Affiliation(s)
- Stavros G Drakos
- 3rd Cardiology Department, University of Athens School of Medicine, 24 Makedonias, 104 33, Athens, Greece
| | | | | | | |
Collapse
|
49
|
Abstract
Ventricular assist devices (VADs) play an increasingly important role in the care of cardiovascular patients. Developed initially for support of cardiothoracic surgery patients experiencing difficulty in weaning from cardiopulmonary bypass, these devices have been used extensively as a bridge to cardiac transplantation for patients who are failing on medical management. Research has demonstrated the effectiveness of a VAD as destination therapy, providing a permanent means of support for patients with advanced heart failure who are not eligible for heart transplantation. Applications for VADs are expanding and advances in technology occurring to support these new applications. This article provides an overview of current and emerging VADs and nursing management of the VAD patient.
Collapse
|
50
|
Latif N, Yacoub MH, George R, Barton PJR, Birks EJ. Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung Transplant 2007; 26:230-5. [PMID: 17346624 DOI: 10.1016/j.healun.2006.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 04/21/2006] [Accepted: 08/14/2006] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Reverse remodeling can occur after left ventricular assist device (LVAD) support, which is sufficient in some cases to allow explantation of the device without cardiac transplantation. The molecular mechanisms involved remain unknown. A specific pattern of expression of sarcomeric and non-sarcomeric proteins in the myocardium is thought to be essential for normal myocardial function. However, a detailed protein analysis of their role in recovery has not been performed previously. METHODS Myocardial samples were collected at implantation and explantation in 7 patients with dilated cardiomyopathy who had sufficient recovery for device explantation. Western blotting and immunoprobing were used to quantitate changes in the expression of sarcomeric and cytoskeletal proteins. RESULTS At implantation, all patients (6 men and 1 woman, age [mean +/- SD] 36.1 +/- 10.4 years) were inotrope-dependent; ejection fraction (EF) was 12.6 +/- 4.6%, cardiac index (CI) was 1.66 +/- 0.5 liters/min/m2 and pulmonary capillary wedge pressure (PCWP) was 26 +/- 6 mm Hg. Mean duration of LVAD support was 333 +/- 235 days. Prior to explantation, EF (pump off for 15 minutes) was 62.7 +/- 11.4%, CI was 2.7 +/- 0.7 liters/min/m2 and PCWP was 10.9 +/- 3.5 mm Hg. At explantation, the following statistically significant increases were noted: myosin heavy chain, 1.90-fold (p < 0.05); sarcomeric actin, 1.80-fold (p < 0.05); alphaII spectrin, 1.40-fold (p = 0.05); troponin C, 1.34-fold (p < 0.05); troponin T, 2.10-fold (p < 0.05); cytoskeletal actinin, 5.16-fold (p < 0.05); and smooth muscle alpha-actin, 4.10-fold (p = 0.05). Although not significant (NS), increases were also seen for: troponin I, 1.27-fold; myosin light chain 1, 1.28-fold; tropomyosin, 1.28-fold; and sarcomeric actinin at 3.24-fold. There was a decrease in talin of 2.01-fold (p = NS) between implant and explant. Vimentin was unchanged. CONCLUSIONS Our data suggest that reverse remodeling of the myocardium parallels improvements in hemodynamic function in LVAD patients showing clinical myocardial recovery.
Collapse
Affiliation(s)
- Najma Latif
- Imperial College London, National Heart and Lung Institute, Heart Science Centre, Harefield Hospital, Harefield, Middlesex, UK.
| | | | | | | | | |
Collapse
|