1
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
2
|
Alam P, Maliken BD, Jones SM, Ivey MJ, Wu Z, Wang Y, Kanisicak O. Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. Int J Mol Sci 2021; 22:ijms222313104. [PMID: 34884909 PMCID: PMC8658114 DOI: 10.3390/ijms222313104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Bryan D. Maliken
- Harrington Physician-Scientist Pathway, Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA;
| | - Shannon M. Jones
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Malina J. Ivey
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
- Correspondence: ; Tel.: +1-513-558-2029; Fax: +1-513-584-3892
| |
Collapse
|
3
|
Molecular Imaging of Human Skeletal Myoblasts (huSKM) in Mouse Post-Infarction Myocardium. Int J Mol Sci 2021; 22:ijms221910885. [PMID: 34639225 PMCID: PMC8509689 DOI: 10.3390/ijms221910885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.
Collapse
|
4
|
Portillo Esquivel LE, Zhang B. Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomater Sci Eng 2021; 7:1000-1021. [PMID: 33591735 DOI: 10.1021/acsbiomaterials.0c01805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death around the world, being responsible for 31.8% of all deaths in 2017 (Roth, G. A. et al. The Lancet 2018, 392, 1736-1788). The leading cause of CVD is ischemic heart disease (IHD), which caused 8.1 million deaths in 2013 (Benjamin, E. J. et al. Circulation 2017, 135, e146-e603). IHD occurs when coronary arteries in the heart are narrowed or blocked, preventing the flow of oxygen and blood into the cardiac muscle, which could provoke acute myocardial infarction (AMI) and ultimately lead to heart failure and death. Cardiac regenerative therapy aims to repair and refunctionalize damaged heart tissue through the application of (1) intramyocardial cell delivery, (2) epicardial cardiac patch, and (3) acellular biomaterials. In this review, we aim to examine these current approaches and challenges in the cardiac regenerative therapy field.
Collapse
Affiliation(s)
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontaria L8S 4L8, Canada
| |
Collapse
|
5
|
Evolution of Stem Cells in Cardio-Regenerative Therapy. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Xue Y, Zhou B, Wu J, Miao G, Li K, Li S, Zhou J, Geng Y, Zhang P. Transplantation of Endothelial Progenitor Cells in the Treatment of Coronary Artery Microembolism in Rats. Cell Transplant 2020; 29:963689720912688. [PMID: 32233803 PMCID: PMC7444210 DOI: 10.1177/0963689720912688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As the impairment of myocardial microenvironments due to coronary
microembolization (CME) compromises the treatment effect of percutaneous
coronary intervention and leads to adverse prognosis, we hypothesized that
endothelial progenitor cells (EPCs) transplantation could improve cardiac
function in the condition of CME. Low- (2 × 105) and high- (2 × 106) dose rat bone
marrow-derived EPCs were transplanted in a model of CME. To develop a CME model,
rats were injected with autologous micro-blood-clots into the left ventricle.
Echocardiograph was examined before and 1, 7, and 28 days after EPC
transplantation; serum cardiac troponin I (cTNI), von Willebrand factor (vWF),
and cardiac microRNA expression were examined one day after EPCs
transplantation. Heart morphology and vascular endothelial growth factor (VEGF),
vWF, and basic fibroblast growth factor (bFGF) expression were examined one day
after EPC transplantation. After 10 days of culture inductions, BM-EPCs have high purity as confirmed by
flow cytometry. Cardiac function reflected by left ventricular ejection fraction
significantly decreased after CME treatment and rescued by low-dose EPC.
Compared to the sham group, cTNI and vWF serum levels increased significantly
after CME treatment and rescued by low-dose EPC and high-dose EPC. Low-dose EPC
treatment decreased myocardial necrosis and fibrosis and elevated cardiac
expression of VEGF and vWF, while decreasing the cardiac expression of bFGF.
Low-dose EPC treatment significantly suppressed cardiac expression of
microRNA-19a but significantly enhanced microRNA-21, microRNA-214, and
microRNA-486-3p expression. In conclusion, our results indicate that low-dose
EPC transplantation may play a proangiogenic, antifibroblast, antifibrosis, and
antinecrosis role and enhance cardiac function in a rat model of CME through a
microRNA-related pathway.
Collapse
Affiliation(s)
- Yajun Xue
- Graduate School, Tsinghua University, Beijing, China.,Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Jian Wu
- Department of Physics, Tsinghua University, Beijing, China
| | - Guobin Miao
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Kun Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Siyuan Li
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Jie Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Yu Geng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, China
| |
Collapse
|
7
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
8
|
Samak M, Hinkel R. Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects. Cells 2019; 8:cells8121530. [PMID: 31783680 PMCID: PMC6952821 DOI: 10.3390/cells8121530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the developed world, accounting for more than 30% of all deaths. In a large proportion of these patients, acute myocardial infarction is usually the first manifestation, which might further progress to heart failure. In addition, the human heart displays a low regenerative capacity, leading to a loss of cardiomyocytes and persistent tissue scaring, which entails a morbid pathologic sequela. Novel therapeutic approaches are urgently needed. Stem cells, such as induced pluripotent stem cells or embryonic stem cells, exhibit great potential for cell-replacement therapy and an excellent tool for disease modeling, as well as pharmaceutical screening of novel drugs and their cardiac side effects. This review article covers not only the origin of stem cells but tries to summarize their translational potential, as well as potential risks and clinical translation.
Collapse
Affiliation(s)
- Mostafa Samak
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Povsic TJ. Emerging Therapies for Congestive Heart Failure. Clin Pharmacol Ther 2017; 103:77-87. [DOI: 10.1002/cpt.913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Thomas J. Povsic
- Duke Clinical Research Institute; Duke University Medical Center; Durham North Carolina USA
| |
Collapse
|
10
|
Steger CM, Bonatti J, Rieker RJ, Bonaros N, Schachner T. Stem cell therapy with skeletal myoblasts accelerates neointima formation in a mouse model of vein graft disease. ACTA ACUST UNITED AC 2017; 69:598-604. [DOI: 10.1016/j.etp.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/08/2017] [Accepted: 05/18/2017] [Indexed: 12/14/2022]
|
11
|
Abstract
Skeletal myoblasts function as precursors to adult skeletal myocytes. More so than other muscle progenitors, their capacity for de novo self-renewal and their positive functional effects in the cardiac environment have been demonstrated, even though they do not attain a cardiomyocyte phenotype. Autologous skeletal myoblasts are easily procured by established methods and can be administered into diseased myocardium safely and without technical difficulty, features that at this time set them apart from any other myogenic cell. Clinical studies in patients with chronic myocardial disease have consistently reported modest improvements in ventricular function and clinical status. Data from the Myogenesis Heart efficiency and Regeneration Trial (MYOHEART) trial are currently being evaluated. Larger, randomized, placebo-controlled studies in patients with congestive heart failure due to postinfarction systolic left ventricular dysfunction are under way, such as Myoblast Autologous Grafting in Ischemic Cardiomayopathy (MAGIC) and Multicenter Study of the Safety and Cardiovascular Effects Of Myoblasts in Congestive Heart Failure (MARVEL). The future role of skeletal myoblasts in the clinical setting will be determined by the results of randomized trials as well as by the investigation of subsequent generations of myoblasts, engineered for enhanced efficacy.
Collapse
Affiliation(s)
- Warren Sherman
- Division of Cardiology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Hao M, Wang R, Wang W. Cell Therapies in Cardiomyopathy: Current Status of Clinical Trials. Anal Cell Pathol (Amst) 2017; 2017:9404057. [PMID: 28194324 PMCID: PMC5282433 DOI: 10.1155/2017/9404057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022] Open
Abstract
Because the human heart has limited potential for regeneration, the loss of cardiomyocytes during cardiac myopathy and ischaemic injury can result in heart failure and death. Stem cell therapy has emerged as a promising strategy for the treatment of dead myocardium, directly or indirectly, and seems to offer functional benefits to patients. The ideal candidate donor cell for myocardial reconstitution is a stem-like cell that can be easily obtained, has a robust proliferation capacity and a low risk of tumour formation and immune rejection, differentiates into functionally normal cardiomyocytes, and is suitable for minimally invasive clinical transplantation. The ultimate goal of cardiac repair is to regenerate functionally viable myocardium after myocardial infarction (MI) to prevent or heal heart failure. This review provides a comprehensive overview of treatment with stem-like cells in preclinical and clinical studies to assess the feasibility and efficacy of this novel therapeutic strategy in ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Ming Hao
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Richard Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| | - Wen Wang
- Cellular Biomedicine Group, 333 Guiping Road, Shanghai 200233, China
- Cellular Biomedicine Group, 19925 Stevens Creek Blvd, Suite 100, Cupertino, CA 95014, USA
| |
Collapse
|
13
|
Rognoni A, Cavallino C, Rametta F, Bongo AS. Correlations between microRNAs and their target genes in skeletal myoblasts cell therapy for myocardial infarction. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:292. [PMID: 27568480 DOI: 10.21037/atm.2016.05.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrea Rognoni
- Coronary Care Unit and Catheterization Laboratory, "Maggiore della Carità Hospital", Novara, Italy
| | - Chiara Cavallino
- Coronary Care Unit and Catheterization Laboratory, "Maggiore della Carità Hospital", Novara, Italy; ; Division of Cardiology, Sant'Andrew Hospital, Vercelli, Italy
| | | | - Angelo Sante Bongo
- Coronary Care Unit and Catheterization Laboratory, "Maggiore della Carità Hospital", Novara, Italy
| |
Collapse
|
14
|
Takanari H, Miwa K, Fu X, Nakai J, Ito A, Ino K, Honda H, Tonomura W, Konishi S, Opthof T, van der Heyden MA, Kodama I, Lee JK. A New In Vitro Co-Culture Model Using Magnetic Force-Based Nanotechnology. J Cell Physiol 2016; 231:2249-56. [PMID: 26873862 DOI: 10.1002/jcp.25342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 11/07/2022]
Abstract
Skeletal myoblast (SkMB) transplantation has been conducted as a therapeutic strategy for severe heart failure. However, arrhythmogenicity following transplantation remains unsolved. We developed an in vitro model of myoblast transplantation with "patterned" or "randomly-mixed" co-culture of SkMBs and cardiomyocytes enabling subsequent electrophysiological, and arrhythmogenic evaluation. SkMBs were magnetically labeled with magnetite nanoparticles and co-cultured with neonatal rat ventricular myocytes (NRVMs) on multi-electrode arrays. SkMBs were patterned by a magnet beneath the arrays. Excitation synchronicity was evaluated by Ca(2+) imaging using a gene-encoded Ca(2+) indicator, G-CaMP2. In the monoculture of NRVMs (control), conduction was well-organized. In the randomly-mixed co-culture of NRVMs and SkMBs (random group), there was inhomogeneous conduction from multiple origins. In the "patterned" co-culture where an en bloc SKMB-layer was inserted into the NRVM-layer, excitation homogenously propagated although conduction was distorted by the SkMB-area. The 4-mm distance conduction time (CT) in the random group was significantly longer (197 ± 126 ms) than in control (17 ± 3 ms). In the patterned group, CT through NRVM-area did not change (25 ± 3 ms), although CT through the SkMB-area was significantly longer (132 ± 77 ms). The intervals between spontaneous excitation varied beat-to-beat in the random group, while regular beating was recorded in the control and patterned groups. Synchronized Ca(2+) transients of NRVMs were observed in the patterned group, whereas those in the random group were asynchronous. Patterned alignment of SkMBs is feasible with magnetic nanoparticles. Using the novel in vitro model mimicking cell transplantation, it may become possible to predict arrhythmogenicity due to heterogenous cell transplantation. J. Cell. Physiol. 231: 2249-2256, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroki Takanari
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan.,Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keiko Miwa
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - XianMing Fu
- Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Cardiothoracic Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Cardiovascular Surgery, Central South University The Second Xiangya Hospital, Changsha, China
| | - Junichi Nakai
- Saitama University Brain Science Institute, Saitama, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kousuke Ino
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Japan
| | - Wataru Tonomura
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Satoshi Konishi
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Tobias Opthof
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology Group, Center for Heart Failure Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Ag van der Heyden
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jong-Kook Lee
- Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
15
|
Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 2013; 113:810-34. [PMID: 23989721 PMCID: PMC3892665 DOI: 10.1161/circresaha.113.300219] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/07/2013] [Indexed: 12/28/2022]
Abstract
Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, KY, USA
| | | |
Collapse
|
16
|
Haider KH, Ashraf M. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:323-56. [PMID: 22917238 DOI: 10.1016/b978-0-12-398459-3.00015-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly two decades of research in regenerative medicine have been focused on the development of stem cells as a therapeutic option for treatment of the ischemic heart. Given the ability of stem cells to regenerate the damaged tissue, stem-cell-based therapy is an ideal approach for cardiovascular disorders. Preclinical studies in experimental animal models and clinical trials to determine the safety and efficacy of stem cell therapy have produced encouraging results that promise angiomyogenic repair of the ischemically damaged heart. Despite these promising results, stem cell therapy is still confronted with issues ranging from uncertainty about the as-yet-undetermined "ideal" donor cell type to the nonoptimized cell delivery strategies to harness optimal clinical benefits. Moreover, these lacunae have significantly hampered the progress of the heart cell therapy approach from bench to bedside for routine clinical applications. Massive death of donor cells in the infarcted myocardium during acute phase postengraftment is one of the areas of prime concern, which immensely lowers the efficacy of the procedure. An overview of the published data relevant to stem cell therapy is provided here and the various strategies that have been adopted to develop and optimize the protocols to enhance donor stem cell survival posttransplantation are discussed, with special focus on the preconditioning approach.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
17
|
Povsic TJ, O'Connor CM, Henry T, Taussig A, Kereiakes DJ, Fortuin FD, Niederman A, Schatz R, Spencer R, Owens D, Banks M, Joseph D, Roberts R, Alexander JH, Sherman W. A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 2011; 162:654-662.e1. [PMID: 21982657 DOI: 10.1016/j.ahj.2011.07.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/17/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND We sought to determine the safety and preliminary efficacy of transcatheter intramyocardial administration of myoblasts in patients with heart failure (HF). METHODS MARVEL is a randomized placebo-controlled trial of image-guided, catheter-based intramyocardial injection of placebo or myoblasts (400 or 800 million) in patients with class II to IV HF and ejection fraction <35%. Primary end points were frequency of serious adverse events (safety) and changes in 6-minute walk test and Minnesota Living With HF score (efficacy). Of 330 patients intended for enrollment, 23 were randomized (MARVEL-1) before stopping the study for financial reasons. RESULTS At 6 months, similar numbers of events occurred in each group: 8 (placebo), 7 (low dose), and 8 (high dose), without deaths. Ventricular tachycardia responsive to amiodarone was more frequent in myoblast-treated patients: 1 (placebo), 3 (low dose), and 4 (high dose). A trend toward improvement in functional capacity was noted in myoblast-treated groups (Δ6-minute walk test of -3.6 vs +95.6 vs +85.5 m [placebo vs low dose vs high dose; P = .50]) without significant changes in Minnesota Living With HF scores. CONCLUSIONS In HF patients with chronic postinfarction cardiomyopathy, transcatheter administration of myoblasts in doses of 400 to 800 million cells is feasible and may lead to important clinical benefits. Ventricular tachycardia may be provoked by myoblast injection but appears to be a transient and treatable problem. A large-scale outcome trial of myoblast administration in HF patients with postinfarction cardiomyopathy is feasible and warranted.
Collapse
Affiliation(s)
- Thomas J Povsic
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
George I, Sabbah HN, Xu K, Wang N, Wang J. β-Adrenergic receptor blockade reduces endoplasmic reticulum stress and normalizes calcium handling in a coronary embolization model of heart failure in canines. Cardiovasc Res 2011; 91:447-55. [DOI: 10.1093/cvr/cvr106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
van der Spoel TIG, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyongyosi M, Sluijter JPG, Cramer MJ, Doevendans PA, Chamuleau SAJ. Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 2011; 91:649-58. [DOI: 10.1093/cvr/cvr113] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Abstract
INTRODUCTION Stem cell therapy has emerged as a promising strategy for the treatment of ischemic cardiomyopathy. SOURCES OF DATA Multiple candidate cell types have been used in preclinical animal models and in clinical trials to repair or regenerate the injured heart either directly (through formation of new transplanted tissue) or indirectly (through paracrine effects activating endogenous regeneration). AREAS OF AGREEMENT (i) Clinical trials examining the safety and efficacy of bone marrow derived cells in patients with heart disease are promising, but results leave much room for improvement. (ii) The safety profile has been quite favorable. (iii) Efficacy has been inconsistent and, overall, modest. (iv) Tissue retention of cells after delivery into the heart is disappointingly low. (v) The beneficial effects of adult stem cell therapy are predominantly mediated by indirect paracrine mechanisms. AREAS OF CONTROVERSY The cardiogenic potential of bone marrow-derived cells, the mechanism whereby small numbers of poorly-retained cells translate to measurable clinical benefit, and the overall impact on clinical outcomes are hotly debated. GROWING POINTS/AREAS TIMELY FOR DEVELOPING RESEARCH: This overview of the field leaves us with cautious optimism, while motivating a search for more effective delivery methods, better strategies to boost cell engraftment, more apt patient populations, safe and effective 'off the shelf' cell products and more potent cell types.
Collapse
|
21
|
Abstract
Stem cell transplantation has emerged as a novel treatment option for ischemic heart disease. Different cell types have been utilized and the recent development of induced pluripotent stem cells has generated tremendous excitement in the regenerative field. Bone marrow-derived multipotent progenitor cell transplantation in preclinical large animal models of postinfarction left ventricular remodeling has demonstrated long-term functional and bioenergetic improvement. These beneficial effects are observed despite no significant engraftment of bone marrow cells in the myocardium and even lower differentiation of these cells into cardiomyocytes. It is thought to be related to the paracrine effect of these stem cells, which secrete factors that lead to long-term gene expression changes in the host myocardium, thereby promoting neovascularization, inhibiting apoptosis, and stimulating resident cardiac progenitor cells. Future studies are warranted to examine the changes in the recipient myocardium after stem cell transplantation and to investigate the signaling pathways involved in these effects.
Collapse
|
22
|
Povsic TJ, O'Connor CM. Cell therapy for heart failure: the need for a new therapeutic strategy. Expert Rev Cardiovasc Ther 2010; 8:1107-26. [PMID: 20670189 DOI: 10.1586/erc.10.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Improvements in the treatment of ischemic heart disease have led to a significant growth in the numbers of patients with systolic heart failure secondary to myocardial injury. Current therapies fail to address the loss of contractile tissue due to myocardial injury. Cell therapy is singular in its promise of primarily treating this underlying issue through salvage of viable myocardium or generation of new contractile tissue. Multiple cell types have been used to target acute myocardial infarction, chronic ischemic heart disease and heart failure due to infarction. Bone marrow mononuclear cells have been used to increase myocardial salvage after acute infarction. Randomized trials of over 800 patients have demonstrated no safety issues, and meta-analyses have suggested an improvement in left ventricular function in treated patients with trends toward improvements in hard cardiac end points. Cell therapy for chronic ischemic heart disease with bone marrow angiogenic progenitors has shown similar safety and trends toward improvement in function. While these therapies have targeted patients with viable myocardium, myoblasts have been used to treat patients with left ventricular dysfunction secondary to transmural infarction. Cell types with cardiomyogenic potential, including induced pluripotent stem cells and cardiac progenitor cells, offer the promise of true myocardial regeneration. Future studies with these cells may open the door for true myocardial regeneration.
Collapse
Affiliation(s)
- Thomas J Povsic
- Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
23
|
Abstract
Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Shazia Durrani
- Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA
| | - Mikhail Konoplyannikov
- Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA
| | - Muhammad Ashraf
- Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA
| | - Khawaja Husnain Haider
- Department of Pathology & Laboratory Medicine, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0529, USA
| |
Collapse
|
24
|
Haack-Sorensen M, Friis T, Kastrup J. Mesenchymal stromal cell and mononuclear cell therapy in heart disease. Future Cardiol 2010; 4:481-94. [PMID: 19804342 DOI: 10.2217/14796678.4.5.481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite progress in percutaneous coronary intervention, bypass surgery and drug therapy, rates of mortality and morbidity after acute coronary syndrome are high due to ventricular remodeling and heart failure. Mesenchymal stromal cells (MSCs) from adult bone marrow or adipose tissue are considered potential candidates for therapeutic regenerative treatment in cardiovascular disease. Recent animal studies have demonstrated that MSCs can induce neovascularization and improve myocardial function in postinfarction myocardial ischemic hearts. This review will focus on the present preclinical and clinical knowledge about the use of mononuclear cells and MSCs for cardiac regenerative medicine, the source of MSCs for clinical use and problems to consider when conducting clinical MSC therapy.
Collapse
Affiliation(s)
- Mandana Haack-Sorensen
- Rigshospitalet University Hospital, Cardiac Stem Cell Laboratory, The Heart Centre, Copenhagen, Denmark.
| | | | | |
Collapse
|
25
|
Long-term effects of B-type natriuretic peptide infusion after acute myocardial infarction in a rat model. J Cardiovasc Pharmacol 2010; 55:14-20. [PMID: 19858735 DOI: 10.1097/fjc.0b013e3181c5e743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The effects of exogenous B-type natriuretic peptide (BNP) on postmyocardial infarction (MI) are not known. We tested the hypothesis that in vivo infusion of BNP would improve cardiac function and affect left ventricular (LV) remodeling in an experimental model of MI. METHODS MI was induced by coronary ligation in rats and confirmed by echocardiography. 19 rats were randomized to 1 of 3 groups: sham (n = 7), MI + saline (n = 5), MI + BNP (400 ng.kg(-1).minute(-1)) (n = 7). Infusions were delivered for 7 days via venous catheters tunneled to an infusion pump. Rats were followed for 8 weeks. Echocardiography, hemodynamics, histology, and in vivo and ex vivo pressure-volume relationships were examined. RESULTS LV systolic pressure, LV dP/dtmax, and infarct size improved with BNP treatment versus control MI group (132 +/- 4 vs.110 +/- 2 mm Hg, 8097 +/- 317 vs. 5816 +/- 378 mm Hg/s, 19.3% +/- 1.6% vs. 23.3% +/- 1.9%, respectively; all P < 0.05). Ex vivo end-diastolic pressure-volume relationship demonstrated reduced diastolic dysfunction after BNP therapy (P < 0.05 vs. control MI). Serum BNP levels confirmed delivery of BNP. CONCLUSIONS We demonstrate beneficial effects on LV function and decreased LV remodeling with BNP infusion in an experimental model of acute MI.
Collapse
|
26
|
Mathiasen AB, Haack-Sørensen M, Kastrup J. Mesenchymal stromal cells for cardiovascular repair: current status and future challenges. Future Cardiol 2010; 5:605-17. [PMID: 19886787 DOI: 10.2217/fca.09.42] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease is the most common cause of death in most industrialized countries. Early treatment with stabilizing drugs and mechanical revascularization by percutaneous coronary intervention or coronary bypass surgery has reduced the mortality significantly. In spite of improved offers of treatments in patients with heart failure, the 1-year mortality is still approximately 20% after the diagnosis has been established. Treatment with stem cells with the potential to regenerate the damaged myocardium is a relatively new approach. Mesenchymal stromal cells are a promising source of stem cells for regenerative therapy. Clinical studies on stem cell therapy for cardiac regeneration have shown significant improvements in ventricular pump function, ventricular remodeling, myocardial perfusion, exercise potential and clinical symptoms compared with conventionally treated control groups. The results of most studies are promising, but there are still many unanswered questions. In this review, we explore present preclinical and clinical knowledge regarding the use of stem cells in cardiovascular regenerative medicine, with special focus on mesenchymal stromal cells. We take a closer look at sources of stem cells, delivery method and methods for tracking injected cells.
Collapse
Affiliation(s)
- Anders Bruun Mathiasen
- Cardiac Stem Cell laboratory & Cardiac Catheterization Laboratory 2014, The Heart Centre, Rigshospitalet, Copenhagen University Hospital & Faculty of Health Sciences, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
27
|
Abstract
Cardiac gene and cell therapy have both entered clinical trials aimed at ameliorating ventricular dysfunction in patients with chronic congestive heart failure. The transduction of myocardial cells with viral constructs encoding a specific cardiomyocyte Ca(2+) pump in the sarcoplasmic reticulum (SR), SRCa(2+)-ATPase has been shown to correct deficient Ca(2+) handling in cardiomyocytes and improvements in contractility in preclinical studies, thus leading to the first clinical trial of gene therapy for heart failure. In cell therapy, it is not clear whether beneficial effects are cell-type specific and how improvements in contractility are brought about. Despite these uncertainties, a number of clinical trials are under way, supported by safety and efficacy data from trials of cell therapy in the setting of myocardial infarction. Safety concerns for gene therapy center on inflammatory and immune responses triggered by viral constructs, and for cell therapy with myoblast cells, the major concern is increased incidence of ventricular arrhythmia after cell transplantation. Principles and mechanisms of action of gene and cell therapy for heart failure are discussed, together with the potential influence of reactive oxygen species on the efficacy of these treatments and the status of myocardial-delivery techniques for viral constructs and cells.
Collapse
Affiliation(s)
- Ebo D de Muinck
- Departments of Medicine and Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| |
Collapse
|
28
|
Li YG, Zhang PP, Jiao KL, Zou YZ. Knockdown of microRNA-181 by lentivirus mediated siRNA expression vector decreases the arrhythmogenic effect of skeletal myoblast transplantation in rat with myocardial infarction. Microvasc Res 2009; 78:393-404. [PMID: 19595696 DOI: 10.1016/j.mvr.2009.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/27/2009] [Accepted: 06/29/2009] [Indexed: 02/06/2023]
Abstract
The arrhythmogenic effect of intracardiac skeletal myoblast (SKM) transplantation may be related to the differentiation state of SKMs. We tested the hypothesis that lentivirus mediated siRNA against the loop region of miRNA-181a could upregulate the SKMs differentiation repressor homeobox protein A11 (Hox-A11) and reduce the arrhythmias post SKM transplantation into ischemic myocardium of rats. Primary cultured SKMs were transfected with Lenti-siR-miR-181 (recombined lentivirus expressing the unique siRNA against miR-181a, LV group). Real-time PCR showed that miRNA-181a level was significantly decreased and Hox-A11 protein level significantly increased in LV group than in control group at days 5 and days 7 post Lentivirus transfection. Knockdown of miRNA-181a significantly promoted SKMs' growth and attenuated the connexin43 downregulation in SKMs in vitro. Seven days after left coronary artery ligation, rats were randomized to receive intramyocardial injection of either 5x10(6) SKMs transfected with Lenti-siR-miR-181 (MI-SKMLV), 5x10(6) Lenti-siLUC SKMs (MI-SKM) or PBS (MI-PBS). Systolic function was significantly improved in both MI-SKM and MI-SKMLV groups fourteen days after injection. Incidence of inducible self-terminating ventricular tachycardia was significantly lower in MI-SKMLV than that in MI-SKM group. Engraftments of SKMs with knockdowned miRNA-181a similarly improved cardiac function as SKM transplantation but significantly decreased the arrhythmogenic effect of SKM transplantation in rats with experimental myocardial infarction.
Collapse
Affiliation(s)
- Yi-Gang Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | | | | | | |
Collapse
|
29
|
Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease. Dis Model Mech 2009; 2:344-58. [PMID: 19553696 PMCID: PMC2707103 DOI: 10.1242/dmm.000240] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute ischemic injury and chronic cardiomyopathies damage healthy heart tissue. Dead cells are gradually replaced by a fibrotic scar, which disrupts the normal electromechanical continuum of the ventricular muscle and compromises its pumping capacity. Recent studies in animal models of ischemic cardiomyopathy suggest that transplantation of various stem cell preparations can improve heart recovery after injury. The first clinical trials in patients produced some encouraging results, showing modest benefits. Most of the positive effects are probably because of a favorable paracrine influence of stem cells on the disease microenvironment. Stem cell therapy attenuates inflammation, reduces apoptosis of surrounding cells, induces angiogenesis, and lessens the extent of fibrosis. However, little new heart tissue is formed. The current challenge is to find ways to improve the engraftment, long-term survival and appropriate differentiation of transplanted stem cells within the cardiovascular tissue. Hence, there has been a surge of interest in pluripotent stem cells with robust cardiogenic potential, as well as in the inherent repair and regenerative mechanisms of the heart. Recent discoveries on the biology of adult stem cells could have relevance for cardiac regeneration. Here, we discuss current developments in the field of cardiac repair and regeneration, and present our ideas about the future of stem cell therapy.
Collapse
Affiliation(s)
- Konstantinos D. Boudoulas
- Vanderbilt University, Department of Medicine and Department of Cell and Developmental Biology, Division of Cardiovascular Medicine, Nashville, TN 37232, USA
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Cardiology, Baltimore, MD 21205, USA
| | - Antonis K. Hatzopoulos
- Vanderbilt University, Department of Medicine and Department of Cell and Developmental Biology, Division of Cardiovascular Medicine, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Sherman W, He KL, Yi GH, Wang J, Harvey J, Lee MJ, Haimes H, Lee P, Miranda E, Kanwal S, Burkhoff D. Myoblast Transfer in Ischemic Heart Failure: Effects on Rhythm Stability. Cell Transplant 2009; 18:333-41. [DOI: 10.3727/096368909788534933] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Skeletal myoblast (SM) implantation promotes recovery of myocardial function after ischemic injury. Clinical observations suggest an association of SM implantation and ventricular arrhythmias. Support for this link has been sought in animal studies, but none employing models of congestive heart failure. In a canine model of postinfarction congestive heart failure (CHF) we compared the frequency of rhythm disturbances using ambulatory electrocardiography monitoring following skeletal myoblast or saline (SAL) implantation. In 19 mongrel dogs ischemic injury and CHF were induced by intracoronary microsphere infusions. Direct intramyocardial injection of autologous skeletal myoblasts (ASM) (2.7–8.3 × 108 cells) or SAL controls was administered to 11 and 8 dogs, respectively. Serial echocardiography and 24-h ambulatory electrocardiography were recorded at baseline (after CHF induction) and at 4 weeks and at 8–10 weeks after injection. Comparisons between groups of left ventricular ejection fraction (LVEF) and the frequency of ventricular arrhythmias, supraventricular arrhythmias, and measures of heart rate variability (HRV) were made at each of the three time points. LVEF increased from 41 ± 6% to 47 ± 2% ( p < 0.03) in the ASM group, and did not change (42 ± 6% to 40 ± 2%, p = ns) in SAL. After injection, no differences were seen in the number of dogs demonstrating ventricular tachycardia ( n = 3 vs. n = 2, p = ns) or frequent PVCs ( n = 3 vs. n = 3, p = ns) in the ASM versus SAL groups, respectively. Significant changes were observed in a time-domain measure of HRV, standard deviation of normal-to-normal RR interval (in ms: 4 weeks 174 ± 95 vs. 242 ± 19; 8 weeks 174 ± 78 vs. 276 ± 78, ASM vs. SAL), but not in other time domain parameters. In this canine model of ischemic CHF, ASM implantation did not result in a significant increase in ventricular arrhythmias compared to controls animals. The potential for ASM implantation to affect time–domain parameters of HRV merits further study.
Collapse
Affiliation(s)
- Warren Sherman
- Division of Cardiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kun-Lun He
- Division of Circulatory Physiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Geng-Hua Yi
- Division of Circulatory Physiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jie Wang
- Division of Circulatory Physiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Myung J. Lee
- Division of Circulatory Physiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Paul Lee
- The Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY, USA
| | - Emma Miranda
- Division of Cardiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Sunil Kanwal
- Division of Cardiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Daniel Burkhoff
- Division of Circulatory Physiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Bish LT, Sleeper MM, Brainard B, Cole S, Russell N, Withnall E, Arndt J, Reynolds C, Davison E, Sanmiguel J, Wu D, Gao G, Wilson JM, Sweeney HL. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 2008; 16:1953-9. [PMID: 18813281 PMCID: PMC3241935 DOI: 10.1038/mt.2008.202] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 08/27/2008] [Indexed: 01/11/2023] Open
Abstract
Achieving efficient cardiac gene transfer in a large animal model has proven to be technically challenging. Previous strategies have used cardiopulmonary bypass or dual catheterization with the aid of vasodilators to deliver vectors, such as adenovirus, adeno-associated virus (AAV), or plasmid DNA. Although single-stranded AAV (ssAAV) vectors have shown the greatest promise, they suffer from delayed expression, which might be circumvented using self-complementary vectors. We sought to optimize cardiac gene transfer using a percutaneous transendocardial injection catheter to deliver adeno-associated viral vectors to the canine myocardium. Four vectors were evaluated--ssAAV9, self-complementary AAV9 (scAAV9), scAAV8, scAAV6--so that comparison could be made between single-stranded and self-complementary vectors as well as among serotypes 9, 8, and 6. We demonstrate that scAAV is superior to ssAAV and that AAV 6 is superior to the other serotypes evaluated. Biodistribution studies revealed that vector genome copies were 15-4,000 times more abundant in the heart than in any other organ for scAAV6. Percutaneous transendocardial injection of scAAV6 is a safe, effective method to achieve efficient cardiac gene transfer.
Collapse
Affiliation(s)
- Lawrence T Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gofflot S, Kischel P, Thielen C, Radermacher V, Boniver J, de Leval L. Characterization of an antibody panel for immunohistochemical analysis of canine muscle cells. Vet Immunol Immunopathol 2008; 125:225-33. [DOI: 10.1016/j.vetimm.2008.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 05/08/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
|
33
|
Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol 2008; 45:545-53. [DOI: 10.1016/j.yjmcc.2007.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/15/2022]
|
34
|
Smith RR, Barile L, Messina E, Marbán E. Stem cells in the heart: what's the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm 2008; 5:880-7. [PMID: 18534373 PMCID: PMC2717007 DOI: 10.1016/j.hrthm.2008.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Indexed: 01/14/2023]
Abstract
New approaches for cardiac repair have been enabled by the discovery that the heart contains its own reservoir of stem cells. In Part 1 of this review, we discussed various cardiac stem cell populations, reviewed our own work on cardiosphere-derived cells from human hearts, and outlined large animal preclinical models testing the regenerative potential of cardiac stem cells. Here we continue with a discussion on other adult stem cell sources with clinical potential. We summarize the critical safety issues associated with stem cell therapy and present the possible proarrhythmic and antiarrhythmic effects of stem cell transplantation. We discuss the outcomes of clinical stem cell trials and identify the technical, ethical, and practical issues facing the clinical application of cardiac stem cells.
Collapse
Affiliation(s)
| | - Lucio Barile
- Department of Experimental Medicine, Pasteur Institute, Cenci Bolognetti Foundation, University La Sapienza, Rome, Italy
| | - Elisa Messina
- Department of Experimental Medicine, Pasteur Institute, Cenci Bolognetti Foundation, University La Sapienza, Rome, Italy
| | - Eduardo Marbán
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
35
|
Psaltis PJ, Gronthos S, Worthley SG, Zannettino AC. Cellular Therapy for Cardiovascular Disease Part 1 - Preclinical Insights. Clin Med Cardiol 2008. [DOI: 10.4137/cmc.s571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Peter J Psaltis
- Cardiovascular Research Centre, Royal Adelaide Hospital; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Stan Gronthos
- Division of Haematology, Institute of Medical and Veterinary Science; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Stephen G Worthley
- Cardiovascular Research Centre, Royal Adelaide Hospital; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Andrew C.W. Zannettino
- Division of Haematology, Institute of Medical and Veterinary Science; Department of Medicine, University of Adelaide, South Australia, 5000
| |
Collapse
|
36
|
Dinsmore JH, Dib N. Stem cells and cardiac repair: a critical analysis. J Cardiovasc Transl Res 2008; 1:41-54. [PMID: 20559957 DOI: 10.1007/s12265-007-9008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 01/11/2023]
Abstract
Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which therapies have progressed to the clinic. It is now becoming clear through a number of notable examples that progress to the clinic may have occurred too quickly, before adequate testing and independent verification of results could be completed (Check, Nature 446:485-486, 2007; Chien, J Clin Investig 116:1838-1840, 2006; Giles, Nature 442:344-347, 2006). Broad reproducibility and transfer of results from one lab to another has been and always will be essential for the successful application of any cell therapy. So, what is the prognosis for cell therapy to repair heart damage? Will there be an approved cell therapy, or multiple ones, or will it require combinations of more than one cell type to be successful? These are questions often asked. The answers are difficult to know and even more difficult to predict because there are so many variables associated with cell-based therapies. There is much about the biology of cell systems that we still do not understand. Much of the pluripotency or transdifferentiation phenomena (see below) being observed go against accepted and well-tested principles for cell development and fate choice, and has caused a reevaluation of long-accepted theories. Clearly, new pathways for tissue repair and regeneration have been uncovered, but will these new pathways be sufficient to effect significant tissue repair and regeneration? Despite the false starts so far, there is the strong likelihood one or possibly multiple cell therapies will succeed. Clearly, important information has been gained, which should better guide the field to achieving success. When there is the successful verification in patients of a cell therapy, there will be an explosion of technological advances around the approach(es) that succeed. Whatever cells get approved accompanying them will be: more effective delivery methods; growth and storage methods; combination therapies, mixes of cells or cells + gene therapies; combinations with biomaterials and technologies for immune protection, allowing allografting. There are many parallel paths of technology development waiting to be brought together once there is an effective cellular approach. The coming years will no doubt bring some exciting developments.
Collapse
Affiliation(s)
- Jonathan H Dinsmore
- Advanced Cell Technology and Mytogen, Inc., Bldg. 96, 13th St., Charlestown, MA 02129, USA.
| | | |
Collapse
|
37
|
van den Bos EJ, van der Giessen WJ, Duncker DJ. Cell transplantation for cardiac regeneration: where do we stand? Neth Heart J 2008; 16:88-95. [PMID: 18364985 PMCID: PMC2266868 DOI: 10.1007/bf03086124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During the last decade transplantation of cells into the heart has emerged as a novel therapy for the prevention and treatment of heart failure. Although various cell types have been used, most experience has been obtained with the progenitor cells of skeletal muscle, also called myoblasts, and a wide array of bone marrow-derived cell types. The first preclinical studies demonstrated an improvement in global and regional heart function that was attributed mainly to a direct contractile effect of the transplanted cells. Furthermore, it was suggested that multiple cell types are able to form true cardiomyocytes and truly 'regenerate' the myocardium. More recent studies have questioned these early findings. Other mechanisms such as paracrine effects on the infarct and remote myocardium, a reduction in adverse remodelling and improvement of mechanical properties of the infarct tissue likely play a more important role. On the basis of encouraging preclinical studies, multiple early-phase clinical trials and several randomised controlled trials have been conducted that have demonstrated the feasibility, safety and potential efficacy of this novel therapy in humans. This review summarises the available evidence on cardiac cell transplantation and provides an outlook on future preclinical and clinical research that has to fill in the remaining gaps. (Neth Heart J 2008;16:88-95.).
Collapse
Affiliation(s)
- E J van den Bos
- Thoraxcenter, Erasmus University mc, Rotterdam, the Netherlands
| | | | | |
Collapse
|
38
|
McCue JD, Swingen C, Feldberg T, Caron G, Kolb A, Denucci C, Prabhu S, Motilall R, Breviu B, Taylor DA. The real estate of myoblast cardiac transplantation: negative remodeling is associated with location. J Heart Lung Transplant 2008; 27:116-23. [PMID: 18187097 PMCID: PMC2694446 DOI: 10.1016/j.healun.2007.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 10/19/2007] [Accepted: 10/24/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Skeletal myoblast transplantation has been proposed as a therapy for ischemic cardiomyopathy owing to its possible role in myogenesis. The relative safety and efficacy based on location within scar is not known. We hypothesized that skeletal myoblasts transplanted into peripheral scar (compared with central scar) would more effectively attenuate negative left ventricular (LV) remodeling but at the risk of arrhythmia. METHODS New Zealand White rabbits (n = 34) underwent mid-left anterior descending artery (LAD) ligation to produce a transmural LV infarction. One month after LAD ligation, skeletal myoblasts were injected either in the scar center (n = 13) or scar periphery (n = 10) and compared with saline injection (n = 11). Holter monitoring and magnetic resonance imaging (MRI) was performed pre-injection; Holter monitoring was continued until 2 weeks after injection, with follow-up MRI at 1 month. RESULTS The centrally treated animals demonstrated increased LV end-systolic volume, end-diastolic volume, and mass that correlated with the number of injected cells. There was a trend toward attenuation of negative LV remodeling in peripherally treated animals compared with vehicle. Significant late ectopy was seen in several centrally injected animals, with no late ectopy seen in peripherally injected animals. CONCLUSIONS We noted untoward effects with respect to negative LV remodeling after central injection, suggesting that transplanted cell location with respect to scar may be a key factor in the safety and efficacy of skeletal myoblast cardiac transplantation. Administration of skeletal myoblasts into peripheral scar appears safe, with a trend toward improved function in comparison with sham injection.
Collapse
Affiliation(s)
| | - Cory Swingen
- Department of Radiology, University of Minnesota
| | - Tanya Feldberg
- Center for Cardiovascular Repair, University of Minneosta
| | - Gabe Caron
- Center for Cardiovascular Repair, University of Minneosta
| | - Adam Kolb
- Center for Cardiovascular Repair, University of Minneosta
| | | | | | - Randy Motilall
- Center for Cardiovascular Repair, University of Minneosta
| | - Brian Breviu
- Center for Cardiovascular Repair, University of Minneosta
| | | |
Collapse
|
39
|
Stem cell-derived cardiomyocytes after bone marrow and heart transplantation. Bone Marrow Transplant 2007; 41:563-9. [PMID: 18037937 DOI: 10.1038/sj.bmt.1705939] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiomyocytes are a stable cell population with only limited potential for renewal after injury. Tissue regeneration may be due to infiltration of stem cells, which differentiate into cardiomyocytes. We have analysed the influx of stem cells in the heart of patients who received either a gender-mismatched BMT (male donor to female recipient) or a gender-mismatched cardiac transplant (HTX; female donor to male recipient). The proportion of infiltrating cells was determined by Y-chromosome in situ hybridization combined with immunohistochemical cell characterization. In BM transplanted patients and in cardiac allotransplant recipients, cardiomyocytes of apparent BM origin were detected. The proportions were similar in both groups and amounted up to 1% of all cardiomyocytes. The number of stem cell-derived cardiomyocytes did not alter significantly in time, but were relatively high in cases where large numbers of BM-derived Y-chromosome-positive infiltrating inflammatory cells were present. The number of Y-chromosome-positive endothelial cells was small and present only in small blood vessels. The number of BM-derived cardiomyocytes in both BMT and HTX is not significantly different between the two types of transplantation and is at most 1%.
Collapse
|
40
|
Abstract
The restoration of functional myocardium following heart failure still remains a formidable challenge among researchers. Irreversible damage caused by myocardial infarction is followed by left ventricular remodeling. The current pharmacologic and interventional strategies fail to regenerate dead myocardium and are usually insufficient to meet the challenge caused by necrotic cardiac myocytes. There is growing evidence, suggesting that the heart has the ability to regenerate through the activation of resident cardiac stem cells or through the recruitment of a stem cell population from other tissues such as bone marrow. These new findings belie the earlier conception about the poor regenerating ability of myocardial tissue. Stem cell therapy is a promising new approach for myocardial repair. However, it has been limited by the paucity of cell sources for functional human cardiomyocytes. Moreover, cells isolated from different sources exhibit idiosyncratic characteristics including modes of isolation, ease of expansion in culture, proliferative ability, characteristic markers, etc., which are the basis for several technical manipulations to achieve successful engraftment. Clinical trials show some evidence for the successful integration of stem cells of extracardiac origin in adult human heart with an improved functional outcome. This may be attributed to the discrepancies in the methods of detection, study subject selection (early or late post transplantation), presence of inflammation, and false identification of infiltrating leukocytes. This review discusses these issues in a comprehensive manner so that their physiological significance in animal as well as in human studies can be better understood.
Collapse
Affiliation(s)
- Rishi Sharma
- Division of Pharmacology, Central Drug Research Institute, POB-173, Lucknow-226001, India
| | | |
Collapse
|
41
|
Abstract
Cell transplantation is emerging as a new treatment designed to improve the poor outcome of patients with cardiac failure. Its rationale is that implantation of contractile cells into postinfarction scars could functionally rejuvenate these areas. Primarily for practical reasons, autologous skeletal myoblasts have been the first to be considered for a clinical use. A large number of experimental studies have consistently documented a robust engraftment of myoblasts, their in-scar differentiation into myotubes, and an associated improvement in left ventricular function. The early results of phase I clinical trials have then established both the feasibility and safety of this procedure with the caveat of arrhythmic events. Efficacy data are equally encouraging but definitely need to be validated by large prospective placebo-controlled, double-blind randomized trials such as the Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) study, the results of which are now pending. In addition to assessing the effect of myoblast transplantation on regional and global heart function, these results will also provide comprehensive safety data and thus allow a more objective assessment of the risk-benefit ratio. However, it is already apparent that the outcome of myoblast transfer could most likely be improved by optimizing the purity of the cell yield (by selecting muscle-derived progenitors less lineage-committed than the myoblasts), the mode of delivery (by increasing the accuracy of cell injections while decreasing their invasiveness), and the survival of the engrafted cells (by concomitant graft vascularization and incorporation of cells in three-dimensional matrices). Most, if not all, of these changes will have to be incorporated before skeletal myoblasts can acquire the status of therapeutic agents. Furthermore, there is increasing evidence that myoblasts may act by attenuating left ventricular remodeling or paracrinally affecting the surrounding myocardium but not by generating new cardiomyocytes because of their strict commitment to a myogenic lineage. Thus, improvement of function is not tantamount of myocardial regeneration, and if such a regeneration remains the primary objective, it is worth considering alternate cell types able to generate new cardiac cells that will be electromechanically coupled with the host cardiomyocytes. In the setting of this second generation of cells, human cardiac-specified embryonic stem cells may hold the greatest promise.
Collapse
Affiliation(s)
- Philippe Menasché
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, University Paris-Descartes, Faculté de Médecine, INSERM U 633, Paris, F-75015, France.
| |
Collapse
|
42
|
Cheng Y, George I, Yi GH, Reiken S, Gu A, Tao YK, Muraskin J, Qin S, He KL, Hay I, Yu K, Oz MC, Burkhoff D, Holmes J, Wang J. Bradycardic therapy improves left ventricular function and remodeling in dogs with coronary embolization-induced chronic heart failure. J Pharmacol Exp Ther 2007; 321:469-76. [PMID: 17277196 DOI: 10.1124/jpet.106.118109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both beta-adrenergic blockade and bradycardia may contribute to the therapeutic effect of beta-blockers in chronic heart failure (CHF). This study tested the relative importance of bradycardia by comparing cilobradine (Cilo), a sinus node inhibitor, with a beta-blocker, metoprolol (Meto), in an established canine model of CHF. Dogs were chronically instrumented for hemodynamic and left ventricular (LV) volume measurements. CHF was created by daily coronary embolization via a chronically implanted coronary (left anterior descending coronary artery) catheter. After establishment of CHF, control (n=6), Meto (30 mg/day, n=5), Cilo (low) (1 mg/kg/day, n=5), or Cilo (high) (3 mg/kg/day, n=5) was given orally for 12 weeks. Systemic hemodynamics, echocardiography, and pressure volume analysis were measured at baseline, at CHF, and 3 months after treatment in an awake state. Protein levels of cardiac sarcoplasmic reticulum calcium-ATPase (SERCA2a), ryanodine receptor (RyR2), and Na+-Ca2+ exchanger (NCX1) were measured by Western blot. RyR2 protein kinase A (PKA) phosphorylation was determined by back-phosphorylation. After 12 weeks, Meto and Cilo (high and low) produced similar bradycardic effects, accompanied by a significantly improved LV dP/dt versus control [Meto, 2602+/-70; Cilo (low), 2517+/-45; Cilo (high), 2579+/-78; control, 1922+/-115 mm Hg/s; p<0.05]. Both Meto and Cilo (high) normalized protein levels of SERCA2a and NCX1 and reversed PKA hyperphosphorylation of RyR2, in contrast to controls. High-dose cilobradine effectively produced bradycardia and improved cardiac function after CHF, comparable with metoprolol. Restored protein levels of SERCA2a and improved function of RyR2 may be important mechanisms associated with cilobradine therapy.
Collapse
Affiliation(s)
- Yanping Cheng
- The Institute of Molecular and Experimental Therapeutics, East China Normal University, Shanghai, and Department of Cardiac-Nephrology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sherman W, Cho C, Martens TP. Burning Questions in Heart Failure Management: Why Do Surgeons and Interventional Cardiologists Talk of Regenerative Cell Therapy? Heart Fail Clin 2007; 3:245-52. [PMID: 17643925 DOI: 10.1016/j.hfc.2007.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
That cardiac regeneration is remotely feasible elicits thoughts of curing one of the most debilitating of human diseases. The term stem cell brings to the surface many hopes, and concerns, among physicians and the public alike, both of which have come to expect frequent advances in medical therapeutics. The evolution of public opinion toward embryonic stem cell research is clear and positive, and, unfortunately, overshadows, even confuses, that of adult stem cells, despite their use in essentially all clinical studies of cardiovascular disease to date. Strange, perhaps, that the voices of cardiovascular specialists are not to be heard.
Collapse
Affiliation(s)
- Warren Sherman
- College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
44
|
George I, Cheng Y, Yi GH, He KL, Li X, Oz MC, Holmes J, Wang J. Effect of passive cardiac containment on ventricular synchrony and cardiac function in awake dogs. Eur J Cardiothorac Surg 2007; 31:55-64. [PMID: 17081764 DOI: 10.1016/j.ejcts.2006.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/18/2006] [Accepted: 09/20/2006] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Passive restraint of the left ventricle (LV) has been shown to have beneficial effects on acute hemodynamics and reverse remodeling in both animal and human models. The goals of this study were to test whether a left ventricular support device (LVSD) improves LV synchrony and/or affects cardiac performance. METHODS Ten dogs were chronically instrumented to measure hemodynamics and LV volume (sonomicrometry). Congestive heart failure (CHF) was induced by repeated intracoronary microembolization via a chronically implanted coronary catheter. The LVSD was implanted after establishment of CHF in five animals, and five animals were observed as controls. All animals were then observed for 8 weeks. A mathematical model to measure LV synchrony was used to evaluate LV motion over time. RESULTS Mean arterial pressure and LV pressures was significantly increased after LVSD therapy, and LV pressure-volume relationships were shifted leftwards, although no change was seen in ejection fraction, end-systolic elastance, or LV dP/dt versus control. There was no significant change in diastolic function in LVSD animals compared with control animals. End-diastolic volumes were reduced by 15% after 8 weeks with LVSD treatment, versus an increase of 8% in control animals (p<0.05). Synchrony was significantly improved with LVSD therapy compared with control (9% vs 76% of baseline) in 1 of 11 ventricular dimension axes (Anterior-Apex). CONCLUSIONS LVSD therapy provided only minimal improvement in ventricular synchrony and partially improved hemodynamics. Further study into mechanisms of benefit are warranted.
Collapse
Affiliation(s)
- Isaac George
- Department of Surgery, Division of Cardiothoracic Surgery, Columbia University, College of Physicians and Surgeons, New York, NY, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 2006; 114:2627-35. [PMID: 17130342 DOI: 10.1161/circulationaha.106.657270] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND To treat cardiac injuries created by myocardial infarcts, current approaches seek to add cells and/or synthetic extracellular matrices to the damaged ventricle to restore function. Because definitive myocardial regeneration remains undemonstrated, we propose that cardiac changes observed from implanted materials may result from altered mechanisms of the ventricle. METHODS AND RESULTS We exploited a validated finite element model of an ovine left ventricle with an anteroapical infarct to examine the short-term effect of injecting material to the left ventricular wall. The model's mesh and regional material properties were modified to simulate expected changes. Three sets of simulations were run: (1) single injection to the anterior border zone; (2) therapeutic multiple border zone injections; and (3) injection of material to the infarct region. Results indicate that additions to the border zone decrease end-systolic fiber stress proportionally to the fractional volume added, with stiffer materials improving this attenuation. As a potential therapy, small changes in wall volume (approximately 4.5%) reduce elevated border zone fiber stresses from mean end-systole levels of 28.2 kPa (control) to 23.3 kPa (treatment), similar to levels of 22.5 kPA computed in remote regions. In the infarct, injection improves ejection fraction and the stroke volume/end-diastolic volume relationship but has no effect on the stroke volume/end-diastolic pressure relationship. CONCLUSIONS Simulations indicate that the addition of noncontractile material to a damaged left ventricular wall has important effects on cardiac mechanics, with potentially beneficial reduction of elevated myofiber stresses, as well as confounding changes to clinical left ventricular metrics.
Collapse
Affiliation(s)
- Samuel T Wall
- University of California at Berkeley/San Francisco, Joint Graduate Group in Bioengineering, University of California at Berkeley, USA
| | | | | | | | | |
Collapse
|