1
|
El Ghazawi A, Skouri H, Sabra M, Ballout J, Elias J, Jaalouk DE, Refaat MM. Myocardial Repair and Molecular Changes Following Mechanical Unloading With Ventricular Assist Device. Cardiol Rev 2025:00045415-990000000-00502. [PMID: 40387335 DOI: 10.1097/crd.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Heart failure is a progressive condition with increased morbidity and mortality. There are several treatment options for heart failure, and these include medications, device therapy (cardiac resynchronization therapy, implantable cardioverter defibrillator), and left-ventricular assist devices (LVADs). The usage of LVADs in patients with end-stage heart failure has increased, especially following the introduction of second-generation LVADs with improved mechanics and hemodynamics. LVADs were initially used as a "bridge-to-transplantation." They were later found to reverse the molecular transformations that take place in the cardiomyocytes in patients with heart failure, eventually leading to partial or complete recovery in a subset of patients. And so, LVADs started being used as destination therapy. However, although most patients with heart failure who receive LVAD therapy show reverse remodeling, only a minority of them achieve partial recovery, and an even smaller minority achieve complete recovery. Therefore, several underlying mechanisms that contribute to reverse remodeling and recovery following LVAD therapy are probably still unknown and need further elucidation. In this review, we will then talk about how LVAD implantation contributes to reverse cardiac remodeling by affecting the microenvironment, and several intracellular processes and signaling pathways.
Collapse
Affiliation(s)
- Alaaeddine El Ghazawi
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Hadi Skouri
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad Sabra
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Jad Ballout
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Joseph Elias
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| | - Diana E Jaalouk
- Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Marwan M Refaat
- From the Department of Internal Medicine, Faculty of Medicine, Cardiovascular Division American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
Wei J, Gao C, Lu C, Wang L, Dong D, Sun M. The E2F family: a ray of dawn in cardiomyopathy. Mol Cell Biochem 2025; 480:825-839. [PMID: 38985251 DOI: 10.1007/s11010-024-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiomyopathies are a group of heterogeneous diseases, characterized by abnormal structure and function of the myocardium. For many years, it has been a hot topic because of its high morbidity and mortality as well as its complicated pathogenesis. The E2Fs, a group of transcription factors found extensively in eukaryotes, play a crucial role in governing cell proliferation, differentiation, and apoptosis, meanwhile their deregulated activity can also cause a variety of diseases. Based on accumulating evidence, E2Fs play important roles in cardiomyopathies. In this review, we describe the structural and functional characteristics of the E2F family and its role in cardiomyocyte processes, with a focus on how E2Fs are associated with the onset and development of cardiomyopathies. Moreover, we discuss the great potential of E2Fs as biomarkers and therapeutic targets, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, Liaoning, People's Republic of China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Huo Y, Wang W, Bai F, Gui Y. The Decreased Proliferation Capacity of Cardiomyocytes Induced By Androsterone Is Mediated By the Interactions Between Androgen Receptor and Retinoblastoma Protein. J Biochem Mol Toxicol 2024; 38:e70029. [PMID: 39492647 DOI: 10.1002/jbt.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Our previous study has demonstrated that the decline in cardiomyocytes proliferation capacity induced by maternal androgen excess was mainly attributed to the accumulation of androsterone in the heart. However, the underlying mechanism by which androsterone inhibits cardiomyocytes proliferation remains unknown. In this study, pregnant mice were injected subcutaneously daily with dihydrotestosterone (DHT) from gestational day (GD) 16.5 to GD18.5. On GD18.5, fetal heart tissue was dissected and used for analyzing androgen receptor (AR) levels. H9c2 cells and primary cardiomyocytes, isolated from fetal hearts, were applied to investigate the mechanism. H9c2 cells under androsterone treatment were subjected to RNA sequencing analysis and the results showed that genes were primarily enriched in cell cycle and DNA replication pathways. Elevated AR levels were observed in fetal cardiac tissue in the maternal DHT-treated group. Androsterone treatment increased the ratio of nuclear AR and cytoplasmic AR both in H9c2 cells and primary cardiomyocytes. The ablation and overexpression of AR can mildly reverse and aggravate cell cycle arrest induced by androsterone, respectively. ChIP-qPCR analysis suggested that AR can directly repress cell cycle and DNA replication-related gene expression, which was mediated by the recruitment of retinoblastoma protein (Rb). The repression of cell proliferation in response to androsterone was alleviated partly through the downregulation of Rb by siRNA transfection. In conclusion, AR repression to cell cycle and DNA replication-related gene expression, mediated by recruitment of Rb, may be one of the potential mechanisms of cell cycle arrest in cardiomyocytes induced by androsterone.
Collapse
Affiliation(s)
- Yu Huo
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Wenji Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Fan Bai
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yonghao Gui
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Huo Y, Wang W, Zhang J, Xu D, Bai F, Gui Y. Maternal androgen excess inhibits fetal cardiomyocytes proliferation through RB-mediated cell cycle arrest and induces cardiac hypertrophy in adulthood. J Endocrinol Invest 2024; 47:603-617. [PMID: 37642904 PMCID: PMC10904501 DOI: 10.1007/s40618-023-02178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Maternal hyperandrogenism during pregnancy is associated with adverse gestational outcomes and chronic non-communicable diseases in offspring. However, few studies are reported to demonstrate the association between maternal androgen excess and cardiac health in offspring. This study aimed to explore the relation between androgen exposure in utero and cardiac health of offspring in fetal and adult period. Its underlying mechanism is also illustrated in this research. METHODS Pregnant mice were injected with dihydrotestosterone (DHT) from gestational day (GD) 16.5 to GD18.5. On GD18.5, fetal heart tissue was collected for metabolite and morphological analysis. The hearts from adult offspring were also collected for morphological and qPCR analysis. H9c2 cells were treated with 75 μM androsterone. Immunofluorescence, flow cytometry, qPCR, and western blot were performed to observe cell proliferation and explore the underlying mechanism. RESULTS Intrauterine exposure to excessive androgen led to thinner ventricular wall, decreased number of cardiomyocytes in fetal offspring and caused cardiac hypertrophy, compromised cardiac function in adult offspring. The analysis of steroid hormone metabolites in fetal heart tissue by ultra performance liquid chromatography and tandem mass spectrometry showed that the content of androgen metabolite androsterone was significantly increased. Mechanistically, H9c2 cells treated with androsterone led to a significant decrease in phosphorylated retinoblastoma protein (pRB) and cell cycle-related protein including cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin D1 (CCND1) in cardiomyocytes. This resulted in cell cycle arrest at G1-S phase, which in turn inhibited cardiomyocyte proliferation. CONCLUSION Taken together, our results indicate that in utero exposure to DHT, its metabolite androsterone could directly decrease cardiomyocytes proliferation through cell cycle arrest, which has a life-long-lasting effect on cardiac health. Our study highlights the importance of monitoring sex hormones in women during pregnancy and the follow-up of cardiac function in offspring with high risk of intrauterine androgen exposure.
Collapse
Affiliation(s)
- Y Huo
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
| | - W Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510080, China
| | - J Zhang
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - D Xu
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
| | - F Bai
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China
| | - Y Gui
- National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 201102, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, 399 Wanyuan Road, Minhang, Shanghai, 201102, China.
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
5
|
Simayi J, Abulizi A, Nuermaimaiti M, Khan N, Hailati S, Han M, Talihati Z, Abudurousuli K, Maihemuti N, Nuer M, Zhou W, Wumaier A. UHPLC-Q-TOF-MS/MS and Network Pharmacology Analysis to Reveal Quality Markers of Xinjiang Cydonia oblonga Mill. for Antiatherosclerosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4176235. [PMID: 35669732 PMCID: PMC9167097 DOI: 10.1155/2022/4176235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
Cydonia oblonga Mill. (COM), mature fruit of genus Rosaceae, is consumed as a kind of traditional Chinese medicinal herb. Previous studies have shown that the components in COM extract have antioxidant, anti-inflammatory, blood pressure-lowering, blood lipid-lowering, antithrombotic, and other biological activities. However, the quality markers (Q-markers) of atherosclerosis (AS) have not been elucidated. The Q-marker is based on the five core principles of traceability, transferability, specificity, measurability, validity, and prescription dispensing. In this study, the quality markers of quince were investigated by applying the ultraperformance liquid chromatography-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) method and network pharmacology method to highlight the three core elements which are, respectively, traceability transmission, measurability, and validity. At the first step, 72 components were identified by applying the ultraperformance liquid chromatography-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) method. In the next step, 46 candidate components of COM anti-AS were obtained by network pharmacology, and then, 27 active components were filtered with the molecular docking assay. Finally, the 27 active components were intersected with 10 active components obtained by mass transfer and traceable quality markers. Four anti-AS Q-markers of COM were identified, including caffeic acid, chlorogenic acid, ellagic acid, and vanillic acid, which provided a reference for the quality control of quince. The methods and strategies can also be applied to other traditional Chinese medicines and their compound preparations, providing new ideas on the quantitative evaluation and identification of quality markers.
Collapse
Affiliation(s)
- Jimilihan Simayi
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Abulaiti Abulizi
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Maimaitiming Nuermaimaiti
- Institute of Traditional Uyghur Medicine, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Nawaz Khan
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Sendaer Hailati
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Mengyuan Han
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Ziruo Talihati
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | | | - Nulibiya Maihemuti
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Muhadaisi Nuer
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Wenting Zhou
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Ainiwaer Wumaier
- Department of Pharmacology, Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Bischof C, Mirtschink P, Yuan T, Wu M, Zhu C, Kaur J, Pham MD, Gonzalez-Gonoggia S, Hammer M, Rogg EM, Sharma R, Bottermann K, Gercken B, Hagag E, Berthonneche C, Sossalla S, Stehr SN, Maxeiner J, Duda MA, Latreille M, Zamboni N, Martelli F, Pedrazzini T, Dimmeler S, Krishnan J. Mitochondrial-cell cycle cross-talk drives endoreplication in heart disease. Sci Transl Med 2021; 13:eabi7964. [PMID: 34878823 DOI: 10.1126/scitranslmed.abi7964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.,Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Ting Yuan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Meiqian Wu
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Chaonan Zhu
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jaskiran Kaur
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Minh Duc Pham
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | - Marie Hammer
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Eva-Maria Rogg
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Rahul Sharma
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Katharina Bottermann
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Bettina Gercken
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Eman Hagag
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Corinne Berthonneche
- Cardiovascular Assessment Facility, University of Lausanne, CHUV, CH-1011 Lausanne, Switzerland
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany.,Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen, DZHK (German Centre for Cardiovascular Research), Robert-Koch Str. 40, D-37075 Goettingen, Germany
| | - Sebastian N Stehr
- Department of Anesthesiology and Critical Care Medicine, University Hospital Leipzig, Liebigstrasse 20, D-04103 Leipzig, Germany
| | - Joachim Maxeiner
- Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Maria Anna Duda
- Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Mathieu Latreille
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, 20097, San Donato Milanese, Milan, Italy
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, CHUV, MP14-220, 1011 Lausanne, Switzerland
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,DZHK Partner Site RheinMain, Mainz, Germany.,Cardio-Pulmonary Institute, Giessen, Germany
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.,Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Cardio-Pulmonary Institute, Giessen, Germany
| |
Collapse
|
7
|
Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med 2020; 5:14. [PMID: 32821434 PMCID: PMC7395755 DOI: 10.1038/s41536-020-00099-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cell dedifferentiation is the process by which cells grow reversely from a partially or terminally differentiated stage to a less differentiated stage within their own lineage. This extraordinary phenomenon, observed in many physiological processes, inspires the possibility of developing new therapeutic approaches to regenerate damaged tissue and organs. Meanwhile, studies also indicate that dedifferentiation can cause pathological changes. In this review, we compile the literature describing recent advances in research on dedifferentiation, with an emphasis on tissue-specific findings, cellular mechanisms, and potential therapeutic applications from an engineering perspective. A critical understanding of such knowledge may provide fresh insights for designing new therapeutic strategies for regenerative medicine based on the principle of cell dedifferentiation.
Collapse
Affiliation(s)
- Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
8
|
Kim S, Song J, Ernst P, Latimer MN, Ha CM, Goh KY, Ma W, Rajasekaran NS, Zhang J, Liu X, Prabhu SD, Qin G, Wende AR, Young ME, Zhou L. MitoQ regulates redox-related noncoding RNAs to preserve mitochondrial network integrity in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 2020; 318:H682-H695. [PMID: 32004065 PMCID: PMC7099446 DOI: 10.1152/ajpheart.00617.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/04/2023]
Abstract
Evidence suggests that mitochondrial network integrity is impaired in cardiomyocytes from failing hearts. While oxidative stress has been implicated in heart failure (HF)-associated mitochondrial remodeling, the effect of mitochondrial-targeted antioxidants, such as mitoquinone (MitoQ), on the mitochondrial network in a model of HF (e.g., pressure overload) has not been demonstrated. Furthermore, the mechanism of this regulation is not completely understood with an emerging role for posttranscriptional regulation via long noncoding RNAs (lncRNAs). We hypothesized that MitoQ preserves mitochondrial fusion proteins (i.e., mitofusin), likely through redox-sensitive lncRNAs, leading to improved mitochondrial network integrity in failing hearts. To test this hypothesis, 8-wk-old C57BL/6J mice were subjected to ascending aortic constriction (AAC), which caused substantial left ventricular (LV) chamber remodeling and remarkable contractile dysfunction in 1 wk. Transmission electron microscopy and immunostaining revealed defective intermitochondrial and mitochondrial-sarcoplasmic reticulum ultrastructure in AAC mice compared with sham-operated animals, which was accompanied by elevated oxidative stress and suppressed mitofusin (i.e., Mfn1 and Mfn2) expression. MitoQ (1.36 mg·day-1·mouse-1, 7 consecutive days) significantly ameliorated LV dysfunction, attenuated Mfn2 downregulation, improved interorganellar contact, and increased metabolism-related gene expression. Moreover, our data revealed that MitoQ alleviated the dysregulation of an Mfn2-associated lncRNA (i.e., Plscr4). In summary, the present study supports a unique mechanism by which MitoQ improves myocardial intermitochondrial and mitochondrial-sarcoplasmic reticulum (SR) ultrastructural remodeling in HF by maintaining Mfn2 expression via regulation by an lncRNA. These findings underscore the important role of lncRNAs in the pathogenesis of HF and the potential of targeting them for effective HF treatment.NEW & NOTEWORTHY We have shown that MitoQ improves cardiac mitochondrial network integrity and mitochondrial-SR alignment in a pressure-overload mouse heart-failure model. This may be occurring partly through preventing the dysregulation of a redox-sensitive lncRNA-microRNA pair (i.e., Plscr4-miR-214) that results in an increase in mitofusin-2 expression.
Collapse
Affiliation(s)
- Seulhee Kim
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jiajia Song
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mary N Latimer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chae-Myeong Ha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kah Yong Goh
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenxia Ma
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sumanth D Prabhu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Dassanayaka S, Brittian KR, Jurkovic A, Higgins LA, Audam TN, Long BW, Harrison LT, Militello G, Riggs DW, Chitre MG, Uchida S, Muthusamy S, Gumpert AM, Jones SP. E2f1 deletion attenuates infarct-induced ventricular remodeling without affecting O-GlcNAcylation. Basic Res Cardiol 2019; 114:28. [PMID: 31152247 DOI: 10.1007/s00395-019-0737-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023]
Abstract
Several post-translational modifications figure prominently in ventricular remodeling. The beta-O-linkage of N-acetylglucosamine (O-GlcNAc) to proteins has emerged as an important signal in the cardiovascular system. Although there are limited insights about the regulation of the biosynthetic pathway that gives rise to the O-GlcNAc post-translational modification, much remains to be elucidated regarding the enzymes, such as O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which regulate the presence/absence of O-GlcNAcylation. Recently, we showed that the transcription factor, E2F1, could negatively regulate OGT and OGA expression in vitro. The present study sought to determine whether E2f1 deletion would improve post-infarct ventricular function by de-repressing expression of OGT and OGA. Male and female mice were subjected to non-reperfused myocardial infarction (MI) and followed for 1 or 4 week. MI significantly increased E2F1 expression. Deletion of E2f1 alone was not sufficient to alter OGT or OGA expression in a naïve setting. Cardiac dysfunction was significantly attenuated at 1-week post-MI in E2f1-ablated mice. During chronic heart failure, E2f1 deletion also attenuated cardiac dysfunction. Despite the improvement in function, OGT and OGA expression was not normalized and protein O-GlcNAcyltion was not changed at 1-week post-MI. OGA expression was significantly upregulated at 4-week post-MI but overall protein O-GlcNAcylation was not changed. As an alternative explanation, we also performed guided transcriptional profiling of predicted targets of E2F1, which indicated potential differences in cardiac metabolism, angiogenesis, and apoptosis. E2f1 ablation increased heart size and preserved remote zone capillary density at 1-week post-MI. During chronic heart failure, cardiomyocytes in the remote zone of E2f1-deleted hearts were larger than wildtype. These data indicate that, overall, E2f1 exerts a deleterious effect on ventricular remodeling. Thus, E2f1 deletion improves ventricular remodeling with limited impact on enzymes regulating O-GlcNAcylation.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Kenneth R Brittian
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Andrea Jurkovic
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Lauren A Higgins
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Timothy N Audam
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Bethany W Long
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Linda T Harrison
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Giuseppe Militello
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Daniel W Riggs
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Mitali G Chitre
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Shizuka Uchida
- Division of Cardiovascular Medicine, Department of Medicine, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA
| | - Steven P Jones
- Division of Cardiovascular Medicine, Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street-321F, Delia Baxter Building-321F, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Syst 2019; 8:412-426.e7. [PMID: 31078528 DOI: 10.1016/j.cels.2019.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used to treat solid tumors but can be cardiotoxic. The molecular basis for this toxicity and its relationship to therapeutic mechanisms remain unclear; we therefore undertook a systems-level analysis of human cardiomyocytes (CMs) exposed to four TKIs. CMs differentiated from human induced pluripotent stem cells (hiPSCs) were exposed to sunitinib, sorafenib, lapatinib, or erlotinib, and responses were assessed by functional assays, microscopy, RNA sequencing, and mass spectrometry (GEO: GSE114686; PRIDE: PXD012043). TKIs have diverse effects on hiPSC-CMs distinct from inhibition of tyrosine-kinase-mediated signal transduction; cardiac metabolism is particularly sensitive. Following sorafenib treatment, oxidative phosphorylation is downregulated, resulting in a profound defect in mitochondrial energetics. Cells adapt by upregulating aerobic glycolysis. Adaptation makes cells less acutely sensitive to sorafenib but may have long-term negative consequences. Thus, CMs exhibit adaptive responses to anti-cancer drugs conceptually similar to those previously shown in tumors to mediate drug resistance.
Collapse
|
11
|
Fukushima A, Zhang L, Huqi A, Lam VH, Rawat S, Altamimi T, Wagg CS, Dhaliwal KK, Hornberger LK, Kantor PF, Rebeyka IM, Lopaschuk GD. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism. JCI Insight 2018; 3:99239. [PMID: 29769443 DOI: 10.1172/jci.insight.99239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
A dramatic increase in cardiac fatty acid oxidation occurs following birth. However, cardiac hypertrophy secondary to congenital heart diseases (CHDs) delays this process, thereby decreasing cardiac energetic capacity and function. Cardiac lysine acetylation is involved in modulating fatty acid oxidation. We thus investigated what effect cardiac hypertrophy has on protein acetylation during maturation. Eighty-four right ventricular biopsies were collected from CHD patients and stratified according to age and the absence (n = 44) or presence of hypertrophy (n = 40). A maturational increase in protein acetylation was evident in nonhypertrophied hearts but not in hypertrophied hearts. The fatty acid β-oxidation enzymes, long-chain acyl CoA dehydrogenase (LCAD) and β-hydroxyacyl CoA dehydrogenase (βHAD), were hyperacetylated and their activities positively correlated with their acetylation after birth in nonhypertrophied hearts but not hypertrophied hearts. In line with this, decreased cardiac fatty acid oxidation and reduced acetylation of LCAD and βHAD occurred in newborn rabbits subjected to cardiac hypertrophy due to an aortocaval shunt. Silencing the mRNA of general control of amino acid synthesis 5-like protein 1 reduced acetylation of LCAD and βHAD as well as fatty acid oxidation rates in cardiomyocytes. Thus, hypertrophy in CHDs prevents the postnatal increase in myocardial acetylation, resulting in a delayed maturation of cardiac fatty acid oxidation.
Collapse
Affiliation(s)
- Arata Fukushima
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Liyan Zhang
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alda Huqi
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria H Lam
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sonia Rawat
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tariq Altamimi
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cory S Wagg
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Khushmol K Dhaliwal
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa K Hornberger
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Paul F Kantor
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ivan M Rebeyka
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Xu S, Tao J, Yang L, Zhang E, Boriboun C, Zhou J, Sun T, Cheng M, Huang K, Shi J, Dong N, Liu Q, Zhao TC, Qiu H, Harris RA, Chandel NS, Losordo DW, Qin G. E2F1 Suppresses Oxidative Metabolism and Endothelial Differentiation of Bone Marrow Progenitor Cells. Circ Res 2018; 122:701-711. [PMID: 29358228 DOI: 10.1161/circresaha.117.311814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
RATIONALE The majority of current cardiovascular cell therapy trials use bone marrow progenitor cells (BM PCs) and achieve only modest efficacy; the limited potential of these cells to differentiate into endothelial-lineage cells is one of the major barriers to the success of this promising therapy. We have previously reported that the E2F transcription factor 1 (E2F1) is a repressor of revascularization after ischemic injury. OBJECTIVE We sought to define the role of E2F1 in the regulation of BM PC function. METHODS AND RESULTS Ablation of E2F1 (E2F1 deficient) in mouse BM PCs increases oxidative metabolism and reduces lactate production, resulting in enhanced endothelial differentiation. The metabolic switch in E2F1-deficient BM PCs is mediated by a reduction in the expression of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase kinase 2; overexpression of pyruvate dehydrogenase kinase 4 reverses the enhancement of oxidative metabolism and endothelial differentiation. Deletion of E2F1 in the BM increases the amount of PC-derived endothelial cells in the ischemic myocardium, enhances vascular growth, reduces infarct size, and improves cardiac function after myocardial infarction. CONCLUSION Our results suggest a novel mechanism by which E2F1 mediates the metabolic control of BM PC differentiation, and strategies that inhibit E2F1 or enhance oxidative metabolism in BM PCs may improve the effectiveness of cell therapy.
Collapse
Affiliation(s)
- Shiyue Xu
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Jun Tao
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Liu Yang
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Eric Zhang
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Chan Boriboun
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Junlan Zhou
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Tianjiao Sun
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Min Cheng
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Kai Huang
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Jiawei Shi
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Nianguo Dong
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Qinghua Liu
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Ting C Zhao
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Hongyu Qiu
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Robert A Harris
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Navdeep S Chandel
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Douglas W Losordo
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.)
| | - Gangjian Qin
- From the Department of Biomedical Engineering, Molecular Cardiology Program, School of Medicine and School of Engineering, University of Alabama at Birmingham (S.X., L.Y., E.Z., C.B., G.Q.); Feinberg Cardiovascular Research Institute (S.X., J.Z., T.S., D.W.L., G.Q.) and Department of Medicine - Pulmonary and Critical Care Medicine (N.S.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (S.X., J.T.); Department of Cardiology (L.Y., M.C., K.H.) and Department of Cardiovascular Surgery (J.S., N.D.), Union Hospital of Huazhong University of Science and Technology Tongji Medical College, Wuhan, China; Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China (Q.L.); Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI (T.C.Z.); Department of Basic Science, School of Medicine, Loma Linda University, CA (H.Q.); and Roudebush VA Medical Center and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis (R.A.H.).
| |
Collapse
|
13
|
E2F6 protein levels modulate drug induced apoptosis in cardiomyocytes. Cell Signal 2017; 40:230-238. [PMID: 28964969 DOI: 10.1016/j.cellsig.2017.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
The E2F/Rb pathway regulates cell growth, differentiation, and death. In particular, E2F1 promotes apoptosis in all cells including those of the heart. E2F6, which represses E2F activity, was found to induce dilated cardiomyopathy in the absence of apoptosis in murine post-natal heart. Here we evaluate the anti-apoptotic potential of E2F6 in neonatal cardiomyocytes (NCM) from E2F6-Tg hearts which showed significantly less caspase-3 cleavage, a lower Bax/Bcl2 ratio, and improved cell viability in response to CoCl2 exposure. This correlated with a decrease in the pro-apoptotic E2F3 protein levels. In contrast, no difference in apoptotic markers or cell viability was observed in response to Doxorubicin (Dox) treatment between Wt and Tg-NCM. Dox caused a rapid and dramatic loss of the E2F6 protein in Tg-NCM within 6h and was undetectable after 12h. The level of e2f6 transcript was unchanged in Wt NCM, but was dramatically decreased in Tg cells in response to both Dox and CoCl2. This was related to an impact of the drugs on the α-myosin heavy chain promoter used to drive the E2F6 transgene. By comparison in HeLa, Dox induced apoptosis through upregulation of endogenous E2F1 involving post-transcriptional mechanisms, while E2F6 was down regulated with induction of the Checkpoint kinase-1 and proteasome degradation. These data imply that E2F6 serves to modulate E2F activity and protect cells including cardiomyocytes from apoptosis and improve survival. Strategies to modulate E2F6 levels may be therapeutically useful to mitigate cell death associated disorders.
Collapse
|
14
|
Abstract
After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - John Mignone
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| | - W Robb MacLellan
- Center for Cardiovascular Biology, Institute for Stem Cell Research and Division of Cardiology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Major JL, Salih M, Tuana BS. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. J Mol Cell Cardiol 2015; 84:179-90. [PMID: 25944088 DOI: 10.1016/j.yjmcc.2015.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/15/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
The E2F/Pocket protein (Rb) pathway regulates cell growth, differentiation, and death by modulating gene expression. We previously examined this pathway in the myocardium via manipulation of the unique E2F repressor, E2F6, which is believed to repress gene activity independently of Rb. Mice with targeted expression of E2F6 in postnatal myocardium developed dilated cardiomyopathy (DCM) without hypertrophic growth. We assessed the mechanisms of the apparent failure of compensatory hypertrophic growth as well as their response to the β-adrenergic agonist isoproterenol. As early as 2 weeks, E2F6 transgenic (Tg) mice present with dilated thinner left ventricles and significantly reduced ejection fraction and fractional shortening which persists at 6 weeks of age, but with no apparent increase in left ventricle weight: body weight (LVW:BW). E2F6-Tg mice treated with isoproterenol (6.1 mg/kg/day) show double the increase in LVW:BW than their Wt counterparts (32% vs 16%, p-value: 0.007). Western blot analysis revealed the activation of the adrenergic pathway in Tg heart tissue under basal conditions with ~2-fold increase in the level of β2-adrenergic receptors (p-value: 8.9E-05), protein kinase A catalytic subunit (PKA-C) (p-value: 0.0176), activated c-Src tyrosine-protein kinase (p-value: 0.0002), extracellular receptor kinase 2 (ERK2) (p-value: 0.0005), and induction of the anti-apoptotic protein Bcl2 (p-value 0. 0.00001). In contrast, a ~60% decrease in the cardiac growth regulator: AKT1 (p-value 0.0001) and a ~four fold increase in cyclic AMP dependent phosphodiesterase 4D (PDE4D), the negative regulator of PKA activity, were evident in the myocardium of E2F6-Tg mice. The expression of E2F3 was down-regulated by E2F6, but was restored by isoproterenol. Further, Rb expression was down-regulated in Tg mice in response to isoproterenol implying a net activation of the E2F pathway. Thus the unique regulation of E2F activity by E2F6 renders the myocardium hypersensitive to adrenergic stimulus resulting in robust hypertrophic growth. These data reveal a novel interplay between the E2F pathway, β2-adrenergic/PKA/PDE4D, and ERK/c-Src axis in fine tuning the pathological hypertrophic growth response. E2F6 deregulates E2F3 such that pro-hypertrophic growth and survival are enhanced via β2-adrenergic signaling however this response is outweighed by the induction of anti-hypertrophic signals so that left ventricle dilation proceeds without any increase in muscle mass.
Collapse
Affiliation(s)
- Jennifer L Major
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada; University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada.
| |
Collapse
|
16
|
Wu M, Zhou J, Cheng M, Boriboun C, Biyashev D, Wang H, Mackie A, Thorne T, Chou J, Wu Y, Chen Z, Liu Q, Yan H, Yang Y, Jie C, Tang YL, Zhao TC, Taylor RN, Kishore R, Losordo DW, Qin G. E2F1 suppresses cardiac neovascularization by down-regulating VEGF and PlGF expression. Cardiovasc Res 2014; 104:412-22. [PMID: 25341896 DOI: 10.1093/cvr/cvu222] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS The E2F transcription factors are best characterized for their roles in cell-cycle regulation, cell growth, and cell death. Here we investigated the potential role of E2F1 in cardiac neovascularization. METHODS AND RESULTS We induced myocardial infarction (MI) by ligating the left anterior descending artery in wild-type (WT) and E2F1(-/-) mice. E2F1(-/-) mice demonstrated a significantly better cardiac function and smaller infarct sizes than WT mice. At infarct border zone, capillary density and endothelial cell (EC) proliferation were greater, apoptotic ECs were fewer, levels of VEGF and placental growth factor (PlGF) were higher, and p53 level was lower in E2F1(-/-) than in WT mice. Blockade of VEGF receptor 2 (VEGFR2) signalling with the selective inhibitor SU5416 or with the VEGFR2-blocking antibody DC101 abolished the differences between E2F1(-/-) mice and WT mice in cardiac function, infarct size, capillary density, EC proliferation, and EC apoptosis. In vitro, hypoxia-induced VEGF and PlGF up-regulation was significantly greater in E2F1(-/-) than in WT cardiac fibroblasts, and E2F1 overexpression suppressed PlGF up-regulation in both WT and p53(-/-) cells; however, VEGF up-regulation was suppressed only in WT cells. E2F1 interacted with and stabilized p53 under hypoxic conditions, and both E2F1 : p53 binding and the E2F1-induced suppression of VEGF promoter activity were absent in cells that expressed an N-terminally truncated E2F1 mutant. CONCLUSION E2F1 limits cardiac neovascularization and functional recovery after MI by suppressing VEGF and PlGF up-regulation through p53-dependent and -independent mechanisms, respectively.
Collapse
Affiliation(s)
- Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Junlan Zhou
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chan Boriboun
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Dauren Biyashev
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Hong Wang
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Alexander Mackie
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Tina Thorne
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Jonathan Chou
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhishui Chen
- Organ Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hongbin Yan
- Cardiology Department, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Yang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Chunfa Jie
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yao-Liang Tang
- Department of Medicine, Vascular Biology Center, Medical College of Georgia/Georgia Regents University, Augusta, GA, USA
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raj Kishore
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Douglas W Losordo
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| | - Gangjian Qin
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Tarry 14-721, Chicago, IL 60611, USA
| |
Collapse
|
17
|
Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, Wagg CS, Kassiri Z, Lopaschuk GD, Oudit GY. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail 2012; 5:493-503. [PMID: 22705769 DOI: 10.1161/circheartfailure.112.966705] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Activation of the renin-angiotensin and sympathetic nervous systems may alter the cardiac energy substrate preference, thereby contributing to the progression of heart failure with normal ejection fraction. We assessed the qualitative and quantitative effects of angiotensin II (Ang II) and the α-adrenergic agonist, phenylephrine (PE), on cardiac energy metabolism in experimental models of hypertrophy and diastolic dysfunction and the role of the Ang II type 1 receptor. METHODS AND RESULTS Ang II (1.5 mg·kg(-1)·day(-1)) or PE (40 mg·kg(-1)·day(-1)) was administered to 9-week-old male C57/BL6 wild-type mice for 14 days via implanted microosmotic pumps. Echocardiography showed concentric hypertrophy and diastolic dysfunction, with preserved systolic function in Ang II- and PE-treated mice. Ang II induced marked reduction in cardiac glucose oxidation and lactate oxidation, with no change in glycolysis and fatty acid β-oxidation. Tricarboxylic acid acetyl coenzyme A production and ATP production were reduced in response to Ang II. Cardiac pyruvate dehydrogenase kinase 4 expression was upregulated by Ang II and PE, resulting in a reduction in the pyruvate dehydrogenase activity, the rate-limiting step for carbohydrate oxidation. Pyruvate dehydrogenase kinase 4 upregulation correlated with the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway in response to Ang II. Ang II type 1 receptor blockade normalized the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway and prevented the reduction in glucose oxidation but increased fatty acid oxidation. CONCLUSIONS Ang II- and PE-induced hypertrophy and diastolic dysfunction is associated with reduced glucose oxidation because of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F-induced upregulation of pyruvate dehydrogenase kinase 4, and targeting these pathways may provide novel therapy for heart failure with normal ejection fraction.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chong ZZ, Wang S, Shang YC, Maiese K. Targeting cardiovascular disease with novel SIRT1 pathways. Future Cardiol 2012; 8:89-100. [PMID: 22185448 DOI: 10.2217/fca.11.76] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sirtuin (the mammalian homolog of silent information regulation 2 of yeast Saccharomyces cerevisiae) 1 (SIRT1), a NAD-dependent histone deacetylase, has emerged as a critical regulator in response to oxidative stress. Through antagonism of oxidative stress-induced cell injury and through the maintenance of metabolic homeostasis in the body, SIRT1 can block vascular system injury. SIRT1 targets multiple cellular proteins, such as peroxisome proliferator-activated receptor-γ and its coactivator-1α, forkhead transcriptional factors, AMP-activated protein kinase, NF-κB and protein tyrosine phosphatase to modulate intricate cellular pathways of multiple diseases. In the cardiovascular system, activation of SIRT1 can not only protect against oxidative stress at the cellular level, but can also offer increased survival at the systemic level to limit coronary heart disease and cerebrovascular disease. Future knowledge regarding SIRT1 and its novel pathways will open new directions for the treatment of cardiovascular disease as well as offer the potential to limit disability from several related disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular & Molecular Signaling, Department of Neurology & Neurosciences, Cancer Center, University of Medicine & Dentistry, New Jersey Medical School, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
19
|
Westendorp B, Major JL, Nader M, Salih M, Leenen FHH, Tuana BS. The E2F6 repressor activates gene expression in myocardium resulting in dilated cardiomyopathy. FASEB J 2012; 26:2569-79. [PMID: 22403008 DOI: 10.1096/fj.11-203174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The E2F/Rb pathway regulates cardiac growth and development and holds great potential as a therapeutic target. The E2F6 repressor is a unique E2F member that acts independently of pocket proteins. Forced expression of E2F6 in mouse myocardium induced heart failure and mortality, with severity of symptoms correlating to E2F6 levels. Echocardiography demonstrated a 37% increase (P<0.05) in left ventricular end-diastolic diameter and reduced ejection fraction (<40%, P<0.05) in young transgenic (Tg) mice. Microarray and qPCR analysis revealed a paradoxical increase in E2F-responsive genes, which regulate the cell cycle, without changes in cardiomyocyte cell number or size in Tg mice. Young adult Tg mice displayed a 75% (P<0.01) decrease in gap junction protein connexin-43, resulting in abnormal electrocardiogram including a 24% (P<0.05) increase in PR interval. Further, mir-206, which targets connexin-43, was up-regulated 10-fold (P<0.05) in Tg myocardium. The mitogen-activated protein kinase pathway, which regulates the levels of miR-206 and connexin-43, was activated in Tg hearts. Thus, deregulated E2F6 levels evoked abnormal gene expression at transcriptional and post-transcriptional levels, leading to cardiac remodeling and dilated cardiomyopathy. The data highlight an unprecedented role for the strict regulation of the E2F pathway in normal postnatal cardiac function.
Collapse
Affiliation(s)
- Bart Westendorp
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Chong ZZ, Shang YC, Wang S, Maiese K. SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 2012; 16:167-78. [PMID: 22233091 DOI: 10.1517/14728222.2012.648926] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The sirtuin SIRT1 is expressed throughout the body, has broad biological effects and can significantly affect both cellular survival and longevity during acute and long-term injuries, which involve both oxidative stress and cell metabolism. AREAS COVERED SIRT1 has an intricate role in the pathology, progression, and treatment of several disease entities, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, tumorigenesis, cardiovascular disease with myocardial injury and atherosclerosis, metabolic disease, and aging-related disease. New areas of study in these disciplines, with discussion of the cellular biology, are highlighted. EXPERT OPINION Novel signaling pathways for SIRT1, which can be targeted to enhance cellular protection and potentially extend lifespan, continue to emerge. Investigations that can further determine the intracellular signaling, trafficking and post-translational modifications that occur with SIRT1 in a variety of cell systems and environments will allow us to further translate this knowledge into effective therapeutic strategies that will be applicable to multiple systems of the body.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- University of Medicine and Dentistry - New Jersey Medical School, Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
21
|
Wohlschlaeger J, Meier B, Schmitz KJ, Takeda A, Takeda N, Vahlhaus C, Levkau B, Stypmann J, Schmid C, Werner Schmid K, Baba HA. Cardiomyocyte survivin protein expression is associated with cell size and DNA content in the failing human heart and is reversibly regulated after ventricular unloading. J Heart Lung Transplant 2010; 29:1286-92. [DOI: 10.1016/j.healun.2010.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 11/15/2022] Open
|