1
|
Keller MB, Newman D, Alnababteh M, Bon A, Ponor L, Shah P, Mathew J, Kong H, Andargie T, Park W, Charya A, Luikart H, Intrieri T, Aryal S, Nathan SD, Orens JB, Khush KK, Jang M, Agbor-Enoh S. Molecular criteria for pulmonary antibody-mediated rejection are associated with an increased risk of allograft failure. J Heart Lung Transplant 2025:S1053-2498(25)01853-4. [PMID: 40120999 DOI: 10.1016/j.healun.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Current International Society for Heart and Lung Transplantation (ISHLT) criteria for pulmonary antibody-mediated rejection (AMR) is predicated on a constellation of clinical, laboratory and histopathological parameters, including the presence of donor-specific antibodies (DSA). However, molecular evidence of allograft injury is not considered. The aim of this study was to investigate if allograft injury on the molecular level, as measured by donor-derived cell-free DNA (dd-cfDNA), identifies DSA positive patients experiencing a form of AMR associated with increased risk of chronic lung allograft dysfunction (CLAD) or death. METHODS This multicenter, observational analysis included adult lung transplant recipients from 2 prospective cohort studies. Serial plasma samples were collected for dd-cfDNA measurement by shotgun sequencing. Molecular AMR was defined as the presence of DSA and dd-cfDNA level >1% occurring >30 days post-transplant. Clinical AMR was defined using ISHLT criteria. Time-dependent multivariable Cox regression models were used to determine the association of Clinical AMR or Molecular AMR with the composite outcome of CLAD or death. RESULTS The final analysis included 209 subjects. Sixty-one subjects met criteria for molecular AMR. Molecular AMR captured 42/46 (91%) of patients who experienced Clinical AMR. Molecular AMR was associated with an increased risk of CLAD or death (HR 2.00, 95% CI: 1.18-3.38, p = 0.010). The results remained consistent analyzing Molecular AMR subjects without concomitant ISHLT Clinical AMR, acute rejection, or infection (HR 2.45, 95% CI: 1.01-5.94, p = 0.047). CONCLUSIONS Molecular AMR identifies a population of lung transplant recipients potentially experiencing antibody-mediated rejection not captured by current ISHLT criteria.
Collapse
Affiliation(s)
- Michael B Keller
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - David Newman
- College of Nursing, Florida Atlantic University, Boca Raton, Florida
| | - Muhtadi Alnababteh
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Ann Bon
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Lucia Ponor
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Hospital Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Pali Shah
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Joby Mathew
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Hyesik Kong
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Temesgen Andargie
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Woojin Park
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Ananth Charya
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Helen Luikart
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California; Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Tyler Intrieri
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California; Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Shambhu Aryal
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary Division, Inova Fairfax Hospital, Falls Church, Virginia
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary Division, Inova Fairfax Hospital, Falls Church, Virginia
| | - Jonathan B Orens
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Moon Jang
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland
| | - Sean Agbor-Enoh
- Laborarory of Applied Precision Omics (APO) National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland.
| |
Collapse
|
2
|
Liao F, Zhou D, Cano M, Liu Z, Scozzi D, Tague LK, Byers DE, Li W, Sivapackiam J, Sharma V, Krupnick AS, Frank DW, Kreisel D, Kulkarni HS, Hachem RR, Gelman AE. Pseudomonas aeruginosa infection induces intragraft lymphocytotoxicity that triggers lung transplant antibody-mediated rejection. Sci Transl Med 2025; 17:eadp1349. [PMID: 39908350 DOI: 10.1126/scitranslmed.adp1349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
How pathogens inhibit transplant tolerance remains unclear. Here, we found that Pseudomonas aeruginosa infection, but not other common bacterial respiratory infections, increases antibody-mediated rejection (AMR) risk in recipients of lung transplants. To explore this relationship, we performed orthotopic lung transplants in mice, infected recipients with P. aeruginosa, and observed for the development of AMR. Intravital two-photon microscopy showed that P. aeruginosa rapidly invaded bronchial-associated lymphoid tissues, which resulted in acute lymphocytotoxicity, including the death of forkhead box P3 (Foxp3)+CD4+ T cells that are required to suppress AMR. P. aeruginosa-mediated AMR required expression of the type III secretion system (T3SS), which injects exotoxins into the cell cytoplasm. Through a combination of mutagenesis and epitope tagging experiments, we revealed that T3SS exotoxin T ADP ribosyl-transferase activity was sufficient for graft-resident Foxp3+CD4+ T cell apoptosis, leading to myeloid differentiation primary response 88 (Myd88)-dependent generation of T-box expressed in T cells (T-bet)- and C-X-C motif chemokine receptor 3 (CXCR3)-positive germinal center and memory B cells with high donor antigen avidity. We also found that T-bet+ and CXCR3+ B cells were elevated in biopsies from recipients of lung transplants who were diagnosed with AMR. In mice, CXCR3 deficiency restricted to B cells or CXCR3 blockade prevented AMR despite P. aeruginosa infection. Our work has identified a previously unrecognized role of bacterial virulence in lung allograft rejection and suggests potential strategies to prevent AMR for those at high risk of P. aeruginosa infection after transplant.
Collapse
Affiliation(s)
- Fuyi Liao
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dequan Zhou
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marlene Cano
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiyi Liu
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laneshia K Tague
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Derek E Byers
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wenjun Li
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander S Krupnick
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel Kreisel
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonology & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramsey R Hachem
- Department of Internal Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | - Andrew E Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Beeckmans H, Kerckhof P, Acet Öztürk N, Zajacova A, Van Slambrouck J, Bos S, Vermant M, Van Dieren LO, Goeminne T, Vandervelde C, Bardyn J, Willems E, Lauriers S, Brusselmans M, Langenhoven LV, Emonds MP, De Pelsmaeker S, Kerkhofs J, Sadeleer LD, Godinas L, Dupont LJ, Raemdonck DEV, Ceulemans LJ, Vanaudenaerde BM, Vos R. Clinical predictors for restrictive allograft syndrome: a nested case-control study. Am J Transplant 2025:S1600-6135(25)00042-5. [PMID: 39892791 DOI: 10.1016/j.ajt.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Risk factors for restrictive allograft syndrome (RAS), a severe phenotype of chronic lung allograft dysfunction (CLAD) after lung transplantation, are currently not well known. In this retrospective nested case-control-study, we analyzed 69 patients with RAS and 69 matched non-CLAD controls to identify clinical risk factors for RAS. Patients with RAS demonstrated overall higher blood eosinophils (P = .02), increased bronchoalveolar eosinophils (P < .001) and lymphocytes (P = .03), and higher incidence of infections, particularly Pseudomonas species infection (P = .003), invasive fungal disease (P < .001, mainly due to Aspergillus species), SARS-CoV-2 (P < .001), and cytomegalovirus infection (P = .04), compared with non-CLAD controls. Antihuman leukocyte antigen (anti-HLA) antibodies, especially persistent donor-specific antibodies (P < 0.001), specifically targeting HLA-DQ and HLA-DR loci, and antibody-mediated rejection (P < .001), were strongly associated with later RAS. Histopathologic lung injury patterns on transbronchial biopsy (P < .001), and persistent chest computed tomography opacities in absence of pulmonary dysfunction (P < .001) were identified as early indicators of later RAS. Proactive detection and management of these risk factors could help mitigate future decline in allograft function and reduce progression to clinical RAS. Future studies should explore early treatment strategies targeting these modifiable factors to preserve allograft function and improve long-term outcomes for lung transplant recipients.
Collapse
Affiliation(s)
- Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium.
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium
| | - Nilufer Acet Öztürk
- Department of Pulmonology, Uludağ University Faculty of Medicine, Bursa, Turkey
| | - Andrea Zajacova
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Saskia Bos
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Marie Vermant
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lyne O Van Dieren
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Tessa Goeminne
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Christelle Vandervelde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium
| | - Josephine Bardyn
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Elisabeth Willems
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Sam Lauriers
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Marie Paule Emonds
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross Flanders, Mechelen, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Steffi De Pelsmaeker
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross Flanders, Mechelen, Belgium
| | - Johan Kerkhofs
- Histocompatibility and Immunogenetics Laboratory (HILA), Belgian Red Cross Flanders, Mechelen, Belgium
| | - Laurens De Sadeleer
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Laurent Godinas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Wodajo A, Sarode R, De Simone N, Kaza V, Usmani A. Efficacy of a Standardized Regimen of Therapeutic Plasma Exchange and IVIG for Treatment of Antibody-Mediated Rejection in Lung Transplant Recipients. J Clin Apher 2024; 39:e22151. [PMID: 39511735 PMCID: PMC11579234 DOI: 10.1002/jca.22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Antibody-mediated rejection (AMR) in lung transplantation has been associated with poor long-term clinical course and is a risk factor for chronic lung allograft dysfunction and graft loss. Appropriate management of AMR is necessary to improve graft survival in lung transplant recipients. There is currently no standardized approach to the treatment of lung AMR, and practices vary by institution. We sought to examine the efficacy of a standardized protocol of plasma exchange (PLEX) and IVIG in decreasing donor-specific antibodies (DSAs) and improving AMR in lung transplant recipients. A retrospective chart review was conducted on all lung transplant recipients who completed a course of PLEX per UT Southwestern AMR protocol between January 2012 and December 2019 for diagnosis of AMR. Data were collected on the patient clinical course, treatment regimen, pre-PLEX DSA, post-PLEX DSA, follow-up (> 1-month post-PLEX) DSA, and pre-and post-PLEX biopsy, when available. Of 527 patients who underwent lung transplantation during the study period, 56 (11%) received an acute course of PLEX every other day per protocol for AMR of lung transplant. Forty (71%) of 56 patients had one episode of AMR requiring PLEX; 16 patients (29%) had repeat episodes of AMR within 6 weeks to 47 months of the first episode. Most patients showed improvement in AMR on biopsy (69%) and a decline in DSA (68%). Our data suggest that treatment with combined PLEX and IVIG protocol appears effective for treating lung AMR.
Collapse
Affiliation(s)
- Amelework Wodajo
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
| | - Ravi Sarode
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
- Department of Internal Medicine (Hematology/Oncology)UT Southwestern Medical CenterDallasTexasUSA
| | - Nicole De Simone
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
- Carter BloodCareBedfordTexasUSA
| | - Vaidehi Kaza
- Department of Internal Medicine, Pulmonary Disease, UT Southwestern Medical CenterDallasTexasUSA
| | - Amena Usmani
- Department of PathologyUT Southwestern Medical CenterDallasTexasUSA
- Department of PathologyUniversity of California, San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
5
|
McDermott JK, Castaneda SJ, Mietz SM, Lawson CK, Gerlach JA, Hadley RJ, Sathiyamoorthy G, Krishnan S, Murphy ET, Girgis RE. Preemptive Treatment of De Novo Donor Specific Anti-HLA Antibodies With IVIG Monotherapy after Lung Transplantation. Transpl Int 2024; 37:13431. [PMID: 39364119 PMCID: PMC11446803 DOI: 10.3389/ti.2024.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Jennifer K. McDermott
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Skye J. Castaneda
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Sarah M. Mietz
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Cameron K. Lawson
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - John A. Gerlach
- Biomedical Laboratory Diagnostics Program, Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, United States
| | - Ryan J. Hadley
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Gayathri Sathiyamoorthy
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Sheila Krishnan
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Edward T. Murphy
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Reda E. Girgis
- Richard DeVos Heart and Lung Transplant Program, Corewell Health and Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
6
|
Aburahma K, de Manna ND, Kuehn C, Salman J, Greer M, Ius F. Pushing the Survival Bar Higher: Two Decades of Innovation in Lung Transplantation. J Clin Med 2024; 13:5516. [PMID: 39337005 PMCID: PMC11432129 DOI: 10.3390/jcm13185516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Survival after lung transplantation has significantly improved during the last two decades. The refinement of the already existing extracorporeal life support (ECLS) systems, such as extracorporeal membrane oxygenation (ECMO), and the introduction of new techniques for donor lung optimization, such as ex vivo lung perfusion (EVLP), have allowed the extension of transplant indication to patients with end-stage lung failure after acute respiratory distress syndrome (ARDS) and the expansion of the donor organ pool, due to the better evaluation and optimization of extended-criteria donor (ECD) lungs and of donors after circulatory death (DCD). The close monitoring of anti-HLA donor-specific antibodies (DSAs) has allowed the early recognition of pulmonary antibody-mediated rejection (AMR), which requires a completely different treatment and has a worse prognosis than acute cellular rejection (ACR). As such, the standardization of patient selection and post-transplant management has significantly contributed to this positive trend, especially at high-volume centers. This review focuses on lung transplantation after ARDS, on the role of EVLP in lung donor expansion, on ECMO as a principal cardiopulmonary support system in lung transplantation, and on the diagnosis and therapy of pulmonary AMR.
Collapse
Affiliation(s)
- Khalil Aburahma
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Nunzio Davide de Manna
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Kuehn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| | - Mark Greer
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Lung Research (DZL/BREATH), 35392 Hannover, Germany
| |
Collapse
|
7
|
Costa D, Picascia A, Grimaldi V, Amarelli C, Petraio A, Levi A, Di Donato M, Pirozzi AVA, Fiorito C, Moccia G, Gallo A, Strozziero M, Marra C, De Feo M, Cacciatore F, Maiello C, Napoli C. Role of HLA matching and donor specific antibody development in long-term survival, acute rejection and cardiac allograft vasculopathy. Transpl Immunol 2024; 83:102011. [PMID: 38403197 DOI: 10.1016/j.trim.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Although there are different data supporting benefits of HLA matching in kidney transplantation, its role in heart transplantation is still unclear. HLA mismatch (MM) between donor and recipient can lead to the development of donor-specific antibodies (DSA) which produces negative events on the outcome of heart transplantation. Moreover, DSAs are involved in the development of antibody-mediated rejection (AMR) and are associated with an increase in cardiac allograft vasculopathy (CAV). In this study it is analyzed retrospectively the influence of HLA matching and anti-HLA antibodies on overall survival, AMR and CAV in heart transplantation. For this retrospective study are recruited heart transplanted patients at the Cardiac Transplantation Centre of Naples between 2000 and 2019. Among the 155 heart transplant patients, the mean number of HLA-A, B, -DR MM (0 to 6) between donor and recipient was 4.5 ± 1.1. The results show a negative association between MM HLA-DR and survival (p = 0.01). Comparison of patients with 0-1 MM at each locus to all others with 2 MM, for both HLA class I and class II, has not showed significant differences in the development of CAV. Our analysis detected DSA in 38.1% of patients. The production of de novo DSA reveals that there is not an influence on survival (p = 0.72) and/or AMR (p = 0.39). Instead, there is an association between the production of DSA class II and the probability of CAV development (p = 0.03). Mean fluorescence intensity (MFI) values were significantly higher in CAV-positive patients that CAV-negative patients (p = 0.02). Prospective studies are needed to evaluate HLA class II matching as an additional parameter for heart allocation, especially considering the increment of waiting list time.
Collapse
Affiliation(s)
- Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Antonietta Picascia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Cristiano Amarelli
- Cardiac Transplantation Unit, Department of Cardiac Surgery and Transplantation, Ospedali dei Colli, Naples, Italy
| | - Andrea Petraio
- Cardiac Transplantation Unit, Department of Cardiac Surgery and Transplantation, Ospedali dei Colli, Naples, Italy
| | - Anna Levi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Mario Di Donato
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Virginia Adriana Pirozzi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Carmela Fiorito
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giusi Moccia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Aurora Gallo
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Claudio Marra
- Cardiac Transplantation Unit, Department of Cardiac Surgery and Transplantation, Ospedali dei Colli, Naples, Italy
| | - Marisa De Feo
- Cardiac Transplantation Unit, Department of Cardiac Surgery and Transplantation, Ospedali dei Colli, Naples, Italy
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Ciro Maiello
- Cardiac Transplantation Unit, Department of Cardiac Surgery and Transplantation, Ospedali dei Colli, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Xu Q, Elrefaei M, Taupin JL, Hitchman KMK, Hiho S, Gareau AJ, Iasella CJ, Marrari M, Belousova N, Bettinotti M, Narula T, Alvarez F, Sanchez PG, Levvey B, Westall G, Snell G, Levine DJ, Zeevi A, Roux A. Chronic lung allograft dysfunction is associated with an increased number of non-HLA antibodies. J Heart Lung Transplant 2024; 43:663-672. [PMID: 38141896 DOI: 10.1016/j.healun.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) is the major cause of adverse outcomes in lung transplant recipients. Multiple factors, such as infection, alloimmunity, and autoimmunity, may lead to CLAD. Here, we aim to examine the role of non-human leukocytes antigen (HLA) antibodies in CLAD in a large retrospective cohort. METHODS We analyzed non-HLA antibodies in the pre- and post-transplant sera of 226 (100 CLAD, 126 stable) lung transplant recipients from 5 centers, and we used a separate cohort to confirm our findings. RESULTS A panel of 18 non-HLA antibodies was selected for analysis based on their significantly higher positive rates in CLAD vs stable groups. The panel-18 non-HLA antibodies (n > 3) may be positive pre- or post-transplant; the risk for CLAD is higher in the latter. The presence of both non-HLA antibody and HLA donor-specific antibody (DSA) was associated with an augmented risk of CLAD (HR=25.09 [5.52-14.04], p < 0.001), which was higher than that for single-positive patients. In the independent confirmatory cohort of 61 (20 CLAD, 41 stable) lung transplant recipients, the risk for CLAD remained elevated in double-positive patients (HR=10.67 [0.98-115.68], p = 0.052). After adjusting for nonstandard immunosuppression, patients with double-positive DSA/Non-HLA antibodies had an elevated risk for graft loss (HR=2.53 [1.29-4.96], p = 0.007). CONCLUSIONS Circulating non-HLA antibodies (n > 3) were independently associated with a higher risk for CLAD. Furthermore, when non-HLA antibodies and DSA were detected concomitantly, the risk for CLAD and graft loss was significantly increased. These results show that humoral immunity to HLA and non-HLA antigens may contribute to CLAD development.
Collapse
Affiliation(s)
- Qingyong Xu
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Mohamed Elrefaei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Kelley M K Hitchman
- Department of Pathology and Lab Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Steven Hiho
- Australian Red Cross Life Blood, Victorian and Immunogenetics, Melbourne, Victoria, Australia
| | - Alison J Gareau
- Immunogenetics Laboratory, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carlo J Iasella
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marilyn Marrari
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Maria Bettinotti
- Immunogenetics Laboratory, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Tathagat Narula
- Division of Lung Failure and Transplant, Mayo Clinic, Jacksonville, Florida
| | - Francisco Alvarez
- Division of Lung Failure and Transplant, Mayo Clinic, Jacksonville, Florida
| | - Pablo G Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Bronwyn Levvey
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Glen Westall
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Gregory Snell
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Deborah J Levine
- Department of Medicine, Stanford University, Palo Alto, California
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Antoine Roux
- Department of Pneumology, Hôpital Foch, Suresnes, France
| |
Collapse
|
9
|
Hirama T, Akiba M, Watanabe T, Watanabe Y, Oishi H, Okada Y. A Single-Center Analysis of How HLA Mismatch and Donor-Specific Antibodies Affect Short-Term Outcome After Lung Transplantation: A Pilot Study Before a Country-Wide Histocompatibility Study in Japan. Transplant Proc 2024; 56:363-368. [PMID: 38320866 DOI: 10.1016/j.transproceed.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Analyzing HLA polymorphism in lung transplantation (LTx) is important, given its impact on LTx recipient survival and graft function. Accordingly, we conducted a retrospective study to examine the influence of HLA mismatch and donor-specific antibodies (DSA) on short-term outcomes and early-phase post-LTx complications. METHOD HLA antigen or eplet mismatch in LTx patients at Tohoku University Hospital from 2018 to 2023 was determined, and DSA was measured on admission for surgery to identify preformed DSA and at weeks 4 to 12 post-LTx for de novo DSA, respectively. RESULTS The participants were 45 LTx recipients, HLA-A/B/DR antigen mismatch (5-6 of 6) being identified in 57%, HLA-A/B/Cw/DR/DQ mismatch (8-10 of 10) in 57%, and HLA eplet mismatch (>61) in 46%. The prevalence of preformed DSA was 24%, and persistence (uncleared) was 16%. The incidence of de novo DSA was 16% after LTx. During the study,16 recipients experienced grade 3 primary graft dysfunction (PGD), 8 developed acute rejection, and 5 died. No HLA-related variables were significantly associated with post-LTx mortality and were not risk factors for high-grade PGD or acute rejection. CONCLUSION Despite limitations in sample size, resulting in tentative findings, the study serves as a crucial pilot study for an ongoing multicenter prospective trial in Japan.
Collapse
Affiliation(s)
- Takashi Hirama
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Division of Organ Transplantation, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Miki Akiba
- Division of Organ Transplantation, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Toshikazu Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yui Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan; Division of Organ Transplantation, Tohoku University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Noda K, Snyder ME, Xu Q, Peters D, McDyer JF, Zeevi A, Sanchez PG. Single center study investigating the clinical association of donor-derived cell-free DNA with acute outcomes in lung transplantation. FRONTIERS IN TRANSPLANTATION 2024; 2:1339814. [PMID: 38993874 PMCID: PMC11235270 DOI: 10.3389/frtra.2023.1339814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 07/13/2024]
Abstract
Background Circulating donor-derived cell-free DNA (dd-cfDNA) levels have been proposed as a potential tool for the diagnosis of graft injury. In this study, we prospectively investigated dd-cfDNA plasma levels and their association with severe primary graft dysfunction (PGD) and graft rejection after lung transplant. Methods A total of 40 subjects undergoing de-novo lung transplants at our institution were recruited in this study. Blood samples were collected at various time points before and after lung transplant for 1 year. Dd-cfDNA in samples was determined using AlloSure assay (CareDx Inc.). The correlation of the value of %dd-cfDNA was investigated with the incidence of PGD, acute cellular rejection (ACR), and donor-specific antibody. Results We observed a rapid increase of %dd-cfDNA in the blood of recipients after lung transplantation compared to baseline. The levels of dd-cfDNA decreased during the first two weeks. The peak was observed within 72 h after transplantation. The peak values of %dd-cfDNA varied among subjects and did not correlate with severe PGD incidence. We observed an association between levels of %dd-cfDNA from blood collected at the time of transbronchial biopsy and the histological diagnosis of ACR at 3 weeks. Conclusion Our data show that circulating dd-cfDNA levels are associated with ACR early after transplantation but not with severe PGD. Plasma levels of dd-cfDNA may be a less invasive tool to estimate graft rejection after lung transplantation however larger studies are still necessary to better identify thresholds.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark E. Snyder
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qingyong Xu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Peters
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Human Genetics and Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F. McDyer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pablo G. Sanchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Brandon W, Dunn C, Bollineni S, Joerns J, Lawrence A, Mohanka M, Timofte I, Torres F, Kaza V. Management of donor-specific antibodies in lung transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1248284. [PMID: 38993917 PMCID: PMC11235237 DOI: 10.3389/frtra.2023.1248284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 07/13/2024]
Abstract
The formation of antibodies against donor human leukocyte antigens poses a challenging problem both for donor selection as well as postoperative graft function in lung transplantation. These donor-specific antibodies limit the pool of potential donor organs and are associated with episodes of antibody-mediated rejection, chronic lung allograft dysfunction, and increased mortality. Optimal management strategies for clearance of DSAs are poorly defined and vary greatly by institution; most of the data supporting any particular strategy is limited to small-scale retrospective cohort studies. A typical approach to antibody depletion may involve the use of high-dose steroids, plasma exchange, intravenous immunoglobulin, and possibly other immunomodulators or small-molecule therapies. This review seeks to define the current understanding of the significance of DSAs in lung transplantation and outline the literature supporting strategies for their management.
Collapse
Affiliation(s)
- William Brandon
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Colin Dunn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Srinivas Bollineni
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John Joerns
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adrian Lawrence
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Manish Mohanka
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Irina Timofte
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fernando Torres
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vaidehi Kaza
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Kayawake H, Tanaka S, Yutaka Y, Yamada Y, Ohsumi A, Hamaji M, Nakajima D, Yurugi K, Hishida R, Date H. Impact of Spousal Donation on Postoperative Outcomes of Living-donor Lobar Lung Transplantation. Transplantation 2023; 107:1786-1794. [PMID: 36895091 DOI: 10.1097/tp.0000000000004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
BACKGROUND The effect of human leukocyte antigen mismatches between donors and recipients on postoperative outcomes of lung transplantation remains controversial. We retrospectively reviewed adult recipients receiving living-donor lobar lung transplantation (LDLLT) to examine the difference in de novo donor-specific antibody (dnDSA) development and clinically diagnosed unilateral chronic lung allograft dysfunction per graft (unilateral CLAD) between lung grafts donated by spouses (nonblood relatives) and nonspouses (relatives within the third degree). We also investigated the difference in prognoses between recipients undergoing LDLLTs including spouse donors (spousal LDLLTs) and not including spouse donors (nonspousal LDLLTs). METHODS In this study, 63 adult recipients undergoing LDLLTs (61 bilateral and 2 unilateral LDLLTs from 124 living donors) between 2008 and 2020 were enrolled. The cumulative incidence of dnDSAs per lung graft was calculated, and prognoses were compared between recipients undergoing spousal and nonspousal LDLLTs. RESULTS The cumulative incidence of both dnDSAs and unilateral CLAD in grafts donated by spouses was significantly higher than that in grafts donated by nonspouses (5-y incidence of dnDSAs: 18.7% versus 6.4%, P = 0.038; 5-y incidence of unilateral CLAD: 45.6% versus 19.4%, P = 0.011). However, there were no significant differences in the overall survival or chronic lung allograft dysfunction-free survival between recipients undergoing spousal and nonspousal LDLLTs ( P > 0.99 and P = 0.434, respectively). CONCLUSIONS Although there were no significant differences in prognoses between spousal and nonspousal LDLLTs, more attention should be paid to spousal LDLLTs because of the higher development rate of dnDSAs and unilateral CLAD.
Collapse
Affiliation(s)
- Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
- Department of Thoracic Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | | | | | - Kimiko Yurugi
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Rie Hishida
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Tian D, Zheng X, Tang H, Huang H, Wang J, Xu L, Li C, Yan H, Yu R, Nan J, Liu M, Guo X, Jian S, Wang T, Deng S, Pu Q, Liu L. Metformin attenuates chronic lung allograft dysfunction: evidence in rat models. Respir Res 2023; 24:192. [PMID: 37516880 PMCID: PMC10386298 DOI: 10.1186/s12931-023-02492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) directly causes an abysmal long-term prognosis after lung transplantation (LTx), but effective and safe drugs are not available. Metformin exhibits high therapeutic potential due to its antifibrotic and immunomodulatory effects; however, it is unclear whether metformin exerts a therapeutic effect in CLAD. We sought to investigate the effect of metformin on CLAD based on rat models. METHODS Allogeneic LTx rats were treated with Cyclosporin A (CsA) in the first week, followed by metformin, CsA, or vehicle treatment. Syngeneic LTx rats received only vehicles. All rats were sacrificed on post-transplant week 4. Pathology of lung graft, spleen, and thymus, extent of lung fibrosis, activity of profibrotic cytokines and signaling pathway, adaptive immunity, and AMPK activity were then studied. RESULTS Allogeneic recipients without maintenance CsA treatment manifested CLAD pathological characteristics, but these changes were not observed in rats treated with metformin. For the antifibrotic effect, metformin suppressed the fibrosis extent and profibrotic cytokine expression in lung grafts. Regarding immunomodulatory effect, metformin reduced T- and B-cell infiltration in lung grafts, spleen and thymus weights, the T- and B-cell zone areas in the spleen, and the thymic medullary area. In addition, metformin activated AMPK in lung allografts and in α-SMA+ cells and T cells in the lung grafts. CONCLUSIONS Metformin attenuates CLAD in rat models, which could be attributed to the antifibrotic and immunomodulatory effects. AMPK activation suggests the potential molecular mechanism. Our study provides an experimental rationale for further clinical trials.
Collapse
Affiliation(s)
- Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangyun Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Hongtao Tang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Heng Huang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Junjie Wang
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Lin Xu
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Caihan Li
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Haoji Yan
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Ruixuan Yu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Nan
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Menggen Liu
- Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoguang Guo
- Department of Pathology, Nanchong Central Hospital, Nanchong, 637000, China
| | - Shunhai Jian
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
- Department of Respiratory and Critical Care Medicine, University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, 518000, China
| | - Senyi Deng
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
14
|
Keller M, Yang S, Ponor L, Bon A, Cochrane A, Philogene M, Bush E, Shah P, Mathew J, Brown AW, Kong H, Charya A, Luikart H, Nathan SD, Khush KK, Jang M, Agbor-Enoh S. Preemptive treatment of de novo donor-specific antibodies in lung transplant patients reduces subsequent risk of chronic lung allograft dysfunction or death. Am J Transplant 2023; 23:559-564. [PMID: 36732088 PMCID: PMC10079558 DOI: 10.1016/j.ajt.2022.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
The development of donor-specific antibodies after lung transplantation is associated with downstream acute cellular rejection, antibody-mediated rejection (AMR), chronic lung allograft dysfunction (CLAD), or death. It is unknown whether preemptive (early) treatment of de novo donor-specific antibodies (dnDSAs), in the absence of clinical signs and symptoms of allograft dysfunction, reduces the risk of subsequent CLAD or death. We performed a multicenter, retrospective cohort study to determine if early treatment of dnDSAs in lung transplant patients reduces the risk of the composite endpoint of CLAD or death. In the cohort of 445 patients, 145 patients developed dnDSAs posttransplant. Thirty patients received early targeted treatment for dnDSAs in the absence of clinical signs and symptoms of AMR. Early treatment of dnDSAs was associated with a decreased risk of CLAD or death (hazard ratio, 0.36; 95% confidence interval, 0.17-0.76; P < .01). Deferring treatment until the development of clinical AMR was associated with an increased risk of CLAD or death (hazard ratio, 3.00; 95% confidence interval, 1.46-6.18; P < .01). This study suggests that early, preemptive treatment of donor-specific antibodies in lung transplant patients may reduce the subsequent risk of CLAD or death.
Collapse
Affiliation(s)
- Michael Keller
- Laboratory of Applied Precision Omics (APO),National Heart,Lung and Blood Institute (NHLBI),National Institutes of Health,Bethesda,Maryland,USA; Laboratory of Transplantation Genomics, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Song Yang
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Lucia Ponor
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Division of Hospital Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Ann Bon
- Laboratory of Applied Precision Omics (APO),National Heart,Lung and Blood Institute (NHLBI),National Institutes of Health,Bethesda,Maryland,USA; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | | | - Mary Philogene
- Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA; Johns Hopkins Immunogenetics Laboratory, Baltimore, Maryland, USA
| | - Errol Bush
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Pali Shah
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Joby Mathew
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Anne W Brown
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hyesik Kong
- Laboratory of Applied Precision Omics (APO),National Heart,Lung and Blood Institute (NHLBI),National Institutes of Health,Bethesda,Maryland,USA; Laboratory of Transplantation Genomics, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA
| | - Ananth Charya
- Division of Pulmonary and Critical Care Medicine, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Helen Luikart
- Genome Transplant Genomics (GTD), Stanford University School of Medicine, Palo Alto, California, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA; Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Kiran K Khush
- Genome Transplant Genomics (GTD), Stanford University School of Medicine, Palo Alto, California, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Moon Jang
- Laboratory of Applied Precision Omics (APO),National Heart,Lung and Blood Institute (NHLBI),National Institutes of Health,Bethesda,Maryland,USA; Laboratory of Transplantation Genomics, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA
| | - Sean Agbor-Enoh
- Laboratory of Applied Precision Omics (APO),National Heart,Lung and Blood Institute (NHLBI),National Institutes of Health,Bethesda,Maryland,USA; Laboratory of Transplantation Genomics, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA; Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland, USA; Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Biomarkers for Chronic Lung Allograft Dysfunction: Ready for Prime Time? Transplantation 2023; 107:341-350. [PMID: 35980878 PMCID: PMC9875844 DOI: 10.1097/tp.0000000000004270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains a major hurdle impairing lung transplant outcome. Parallel to the better clinical identification and characterization of CLAD and CLAD phenotypes, there is an increasing urge to find adequate biomarkers that could assist in the earlier detection and differential diagnosis of CLAD phenotypes, as well as disease prognostication. The current status and state-of-the-art of biomarker research in CLAD will be discussed with a particular focus on radiological biomarkers or biomarkers found in peripheral tissue, bronchoalveolar lavage' and circulating blood' in which significant progress has been made over the last years. Ultimately, although a growing number of biomarkers are currently being embedded in the follow-up of lung transplant patients, it is clear that one size does not fit all. The future of biomarker research probably lies in the rigorous combination of clinical information with findings in tissue, bronchoalveolar lavage' or blood. Only by doing so, the ultimate goal of biomarker research can be achieved, which is the earlier identification of CLAD before its clinical manifestation. This is desperately needed to improve the prognosis of patients with CLAD after lung transplantation.
Collapse
|
16
|
Charya AV, Ponor IL, Cochrane A, Levine D, Philogene M, Fu YP, Jang MK, Kong H, Shah P, Bon AM, Krishnan A, Mathew J, Luikart H, Khush KK, Berry G, Marboe C, Iacono A, Orens JB, Nathan SD, Agbor-Enoh S. Clinical features and allograft failure rates of pulmonary antibody-mediated rejection categories. J Heart Lung Transplant 2023; 42:226-235. [PMID: 36319530 DOI: 10.1016/j.healun.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Pulmonary antibody-mediated rejection (AMR) consensus criteria categorize AMR by diagnostic certainty. This study aims to define the clinical features and associated outcomes of these recently defined AMR categories. METHODS Adjudication committees reviewed clinical data of 335 lung transplant recipients to define clinical or subclinical AMR based on the presence of allograft dysfunction, and the primary endpoints, time from transplant to allograft failure, a composite endpoint of chronic lung allograft dysfunction and/or death. Clinical AMR was subcategorized based on diagnostic certainty as definite, probable or possible AMR if 4, 3, or 2 characteristic features were present, respectively. Allograft injury was assessed via plasma donor-derived cell-free DNA (ddcfDNA). Risk of allograft failure and allograft injury was compared for AMR categories using regression models. RESULTS Over the 38.5 months follow-up, 28.7% of subjects developed clinical AMR (n = 96), 18.5% developed subclinical AMR (n = 62) or 58.3% were no AMR (n = 177). Clinical AMR showed higher risk of allograft failure and ddcfDNA levels compared to subclinical or no AMR. Clinical AMR included definite/probable (n = 21) or possible AMR (n = 75). These subcategories showed similar clinical characteristics, ddcfDNA levels, and risk of allograft failure. However, definite/probable AMR showed greater measures of AMR severity, including degree of allograft dysfunction and risk of death compared to possible AMR. CONCLUSIONS Clinical AMR showed greater risk of allograft failure than subclinical AMR or no AMR. Subcategorization of clinical AMR based on diagnostic certainty correlated with AMR severity and risk of death, but not with the risk of allograft failure.
Collapse
Affiliation(s)
- Ananth V Charya
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care, University of Maryland Medical Center, Baltimore, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Ileana L Ponor
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; Division of Hospital Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Adam Cochrane
- Advanced Lung Disease and Lung Transplantation Program, Inova Fairfax Hospital, Fairfax, Virginia
| | - Deborah Levine
- Lung Transplantation Program, University of Texas, San Antonio, Texas
| | - Mary Philogene
- Histocompatibility and Molecular Genetics Laboratory, Philadelphia, Pennsylvania
| | - Yi-Ping Fu
- Biostatistics, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Moon K Jang
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Pali Shah
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ann Mary Bon
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Aravind Krishnan
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Joby Mathew
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Helen Luikart
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Gerald Berry
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Charles Marboe
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Department of Pathology, New York Presbyterian University Hospital of Cornell and Columbia, New York, New York
| | - Aldo Iacono
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care, University of Maryland Medical Center, Baltimore, Maryland
| | - Jonathan B Orens
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Steven D Nathan
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Advanced Lung Disease and Lung Transplantation Program, Inova Fairfax Hospital, Fairfax, Virginia.
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), Bethesda, Maryland; Laboratory of Applied Precision Omics, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Clinical recommendations for posttransplant assessment of anti-HLA (Human Leukocyte Antigen) donor-specific antibodies: A Sensitization in Transplantation: Assessment of Risk consensus document. Am J Transplant 2023; 23:115-132. [PMID: 36695614 DOI: 10.1016/j.ajt.2022.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 01/13/2023]
Abstract
Although anti-HLA (Human Leukocyte Antigen) donor-specific antibodies (DSAs) are commonly measured in clinical practice and their relationship with transplant outcome is well established, clinical recommendations for anti-HLA antibody assessment are sparse. Supported by a careful and critical review of the current literature performed by the Sensitization in Transplantation: Assessment of Risk 2022 working group, this consensus report provides clinical practice recommendations in kidney, heart, lung, and liver transplantation based on expert assessment of quality and strength of evidence. The recommendations address 3 major clinical problems in transplantation and include guidance regarding posttransplant DSA assessment and application to diagnostics, prognostics, and therapeutics: (1) the clinical implications of positive posttransplant DSA detection according to DSA status (ie, preformed or de novo), (2) the relevance of posttransplant DSA assessment for precision diagnosis of antibody-mediated rejection and for treatment management, and (3) the relevance of posttransplant DSA for allograft prognosis and risk stratification. This consensus report also highlights gaps in current knowledge and provides directions for clinical investigations and trials in the future that will further refine the clinical utility of posttransplant DSA assessment, leading to improved transplant management and patient care.
Collapse
|
18
|
Tambur AR, Bestard O, Campbell P, Chong AS, Barrio MC, Ford ML, Gebel HM, Heidt S, Hickey M, Jackson A, Kosmoliaptsis V, Lefaucheur C, Louis K, Mannon RB, Mengel M, Morris A, Pinelli DF, Reed EF, Schinstock C, Taupin JL, Valenzuela N, Wiebe C, Nickerson P. Sensitization in transplantation: Assessment of Risk 2022 Working Group Meeting Report. Am J Transplant 2023; 23:133-149. [PMID: 36695615 DOI: 10.1016/j.ajt.2022.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 01/13/2023]
Abstract
The Sensitization in Transplantation: Assessment of Risk workgroup is a collaborative effort of the American Society of Transplantation and the American Society of Histocompatibility and Immunogenetics that aims at providing recommendations for clinical testing, highlights gaps in current knowledge, and proposes areas for further research to enhance histocompatibility testing in support of solid organ transplantation. This report provides updates on topics discussed by the previous Sensitization in Transplantation: Assessment of Risk working groups and introduces 2 areas of exploration: non-human leukocyte antigen antibodies and utilization of human leukocyte antigen antibody testing measurement to evaluate the efficacy of antibody-removal therapies.
Collapse
Affiliation(s)
- Anat R Tambur
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA.
| | - Oriol Bestard
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Patricia Campbell
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Martha Crespo Barrio
- Department of Nephrology, Hospital del Mar & Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University, Atlanta, Georgia, USA
| | - Howard M Gebel
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Netherlands
| | - Michelle Hickey
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Annette Jackson
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Kevin Louis
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael Mengel
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anna Morris
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Pinelli
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Jean-Luc Taupin
- Department of Immunology, Saint Louis Hospital and University Paris-Cité, Paris, France
| | - Nicole Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Louis K, Lefaucheur C. DSA in solid organ transplantation: is it a matter of specificity, amount, or functional characteristics? Curr Opin Organ Transplant 2022; 27:392-398. [PMID: 35881421 DOI: 10.1097/mot.0000000000001006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The present review describes the clinical relevance of human leukocyte antigen (HLA) donor-specific antibodies (HLA-DSAs) as biomarkers of alloimmunity and summarizes recent improvements in their characterization that provide insights into immune risk assessment, precision diagnosis, and prognostication in transplantation. RECENT FINDINGS Recent studies have addressed the clinical utility of HLA-DSAs as biomarkers for immune risk assessment in pretransplant and peritransplant, diagnosis and treatment evaluation of antibody-mediated rejection, immune monitoring posttransplant, and risk stratification. SUMMARY HLA-DSAs have proved to be the most advanced immune biomarkers in solid organ transplantation in terms of analytical validity, clinical validity and clinical utility. Recent studies are integrating multiple HLA-DSA characteristics including antibody specificity, HLA class, quantity, immunoglobulin G subclass, and complement-binding capacity to improve risk assessment peritransplant, diagnosis and treatment evaluation of antibody-mediated rejection, immune monitoring posttransplant, and transplant prognosis evaluation. In addition, integration of HLA-DSAs to clinical, functional and histological transplant parameters has further consolidated the utility of HLA-DSAs as robust biomarkers and allows to build new tools for monitoring, precision diagnosis, and risk stratification for individual patients. However, prospective and randomized-controlled studies addressing the clinical benefit and cost-effectiveness of HLA-DSA-based monitoring and patient management strategies are required to demonstrate that the use of HLA-DSAs as biomarkers can improve current clinical practice and transplant outcomes.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris
- Human Immunology and Immunopathology, Université de Paris
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| |
Collapse
|
20
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Abstract
BACKGROUND Vascularized composite allotransplantation has redefined the frontiers of plastic and reconstructive surgery. At the cutting edge of this evolving paradigm, the authors present the first successful combined full face and bilateral hand transplant. METHODS A 21-year-old man presented for evaluation with sequelae of an 80 percent total body surface area burn injury sustained after a motor vehicle accident. The injury included full face and bilateral upper extremity composite tissue defects, resulting in reduced quality of life and loss of independence. Multidisciplinary evaluation confirmed eligibility for combined face and bilateral hand transplantation. The operative approach was validated through 11 cadaveric rehearsals utilizing computerized surgical planning. Institutional review board and organ procurement organization approvals were obtained. The recipient, his caregiver, and the donor family consented to the procedure. RESULTS Combined full face (i.e., eyelids, ears, nose, lips, and skeletal subunits) and bilateral hand transplantation (i.e., forearm level) was performed over 23 hours on August 12 to 13, 2020. Triple induction and maintenance immunosuppressive therapy and infection prophylaxis were administered. Plasmapheresis was necessary postoperatively. Minor revisions were performed over seven subsequent operations, including five left upper extremity, seven right upper extremity, and seven facial secondary procedures. At 8 months, the patient was approaching functional independence and remained free of acute rejection. He had significantly improved range of motion, motor power, and sensation of the face and hand allografts. CONCLUSIONS Combined face and bilateral hand transplantation is feasible. This was the most comprehensive vascularized composite allotransplantation procedure successfully performed to date, marking a new milestone in plastic and reconstructive surgery for patients with otherwise irremediable injuries.
Collapse
|
22
|
Silva TD, Voisey J, Hopkins P, Apte S, Chambers D, O'Sullivan B. Markers of rejection of a lung allograft: state of the art. Biomark Med 2022; 16:483-498. [PMID: 35315284 DOI: 10.2217/bmm-2021-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) affects approximately 50% of all lung transplant recipients by 5 post-operative years and is the leading cause of death in lung transplant recipients. Early CLAD diagnosis or ideally prediction of CLAD is essential to enable early intervention before significant lung injury occurs. New technologies have emerged to facilitate biomarker discovery, including epigenetic modification and single-cell RNA sequencing. This review examines new and existing technologies for biomarker discovery and the current state of research on biomarkers for identifying lung transplant rejection.
Collapse
Affiliation(s)
- Tharushi de Silva
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia
| | - Joanne Voisey
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter Hopkins
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Daniel Chambers
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Brendan O'Sullivan
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Novel biomarkers of chronic lung allograft dysfunction: is there anything reliable? Curr Opin Organ Transplant 2022; 27:1-6. [PMID: 34939958 DOI: 10.1097/mot.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chronic lung allograft dysfunction (CLAD) remains a major barrier preventing long-term survival following lung transplantation. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers to predict development of CLAD, phenotype of CLAD or prognosis post-CLAD diagnosis are definitely needed. RECENT FINDINGS Radiological and physiological markers are gradually entering routine clinical practice. In-depth investigation of biological samples including broncho-alveolar lavage, biopsy and serum has generated potential biomarkers involved in fibrogenesis, airway injury and inflammation but none of these are universally accepted or implemented although progress has been made, specifically regarding donor-derived cell-free DNA and donor-specific antibodies. SUMMARY Although a lot of promising biomarkers have been put forward, a very limited number has made it to routine clinical practice. Nevertheless, a biomarker that leads to earlier detection or more adequate disease phenotyping would advance the field enormously.
Collapse
|
24
|
Sweet SC, Armstrong B, Blatter J, Chin H, Conrad C, Goldfarb S, Hayes D, Heeger PS, Lyou V, Melicoff-Portillo E, Mohanakumar T, Odim J, Ravichandran R, Schecter M, Storch GA, Visner G, Williams NM, Danziger-Isakov L. CTOTC-08: A multicenter randomized controlled trial of rituximab induction to reduce antibody development and improve outcomes in pediatric lung transplant recipients. Am J Transplant 2022; 22:230-244. [PMID: 34599540 DOI: 10.1111/ajt.16862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
We conducted a randomized, placebo-controlled, double-blind study of pediatric lung transplant recipients, hypothesizing that rituximab plus rabbit anti-thymocyte globulin induction would reduce de novo donor-specific human leukocyte antigen antibodies (DSA) development and improve outcomes. We serially obtained clinical data, blood, and respiratory samples for at least one year posttransplant. We analyzed peripheral blood lymphocytes by flow cytometry, serum for antibody development, and respiratory samples for viral infections using multiplex PCR. Of 45 subjects enrolled, 34 were transplanted and 27 randomized to rituximab (n = 15) or placebo (n = 12). No rituximab-treated subjects versus five placebo-treated subjects developed de novo DSA with mean fluorescence intensity >2000. There was no difference between treatment groups in time to the primary composite outcome endpoint (death, bronchiolitis obliterans syndrome [BOS] grade 0-p, obliterative bronchiolitis or listing for retransplant). A post-hoc analysis substituting more stringent chronic lung allograft dysfunction criteria for BOS 0-p showed no difference in outcome (p = .118). The incidence of adverse events including infection and rejection episodes was no different between treatment groups. Although the study was underpowered, we conclude that rituximab induction may have prevented early DSA development in pediatric lung transplant recipients without adverse effects and may improve outcomes (Clinical Trials: NCT02266888).
Collapse
Affiliation(s)
| | | | | | | | - Carol Conrad
- Lucile Packard Children's Hospital/Stanford Children's Health, Palo Alto, California
| | - Samuel Goldfarb
- Masonic Children's Hospital, University of Minnesota, Minneapolis, Minnesota
| | - Don Hayes
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Lyou
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Jonah Odim
- NIAID, National Institutes of Health, Bethesda, Maryland
| | | | - Marc Schecter
- University of Florida College of Medicine, Gainesville, Florida
| | | | - Gary Visner
- Boston Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
25
|
Rozenberg D, McInnis M, Chow CW. Utilizing Automated Radiographic Signatures to Prognosticate Chronic Lung Allograft Dysfunction: What Does the Future Hold? Am J Respir Crit Care Med 2021; 204:883-885. [PMID: 34384039 PMCID: PMC8534617 DOI: 10.1164/rccm.202107-1726ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dmitry Rozenberg
- University Health Network, 7989, Medicine, Respirology and Lung Transplantation , Toronto, Ontario, Canada;
| | - Micheal McInnis
- University Health Network, 7989, Joint Department of Medical Imaging, Toronto, Ontario, Canada
| | - Chung-Wai Chow
- University of Toronto, 7938, Medicine, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Narula T, Khouzam S, Alvarez F, Erasmus D, Li Z, Abdelmoneim Y, Elrefaei M. Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibody detection in lung transplant recipients: A single-center experience. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1418-1427. [PMID: 34310850 PMCID: PMC8589359 DOI: 10.1002/iid3.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Purpose Induction immunosuppression has improved the long‐term outcomes after lung transplant. This is the first report exploring the association of induction immunosuppression with the development of de novo donor‐specific human leukocyte antigen (HLA) antibodies (DSA) in lung transplant recipients (LTR). Methods Sixty‐seven consecutive primary LTR were followed for 3 years posttransplant. A total of 41/67 (61%) LTR‐received induction immunosuppression using a single dose of rabbit Antithymocyte Globulin (rATG; 1.5 mg/kg) within 24 h of transplant. All recipients had a negative flow cytometry crossmatch on the day of transplant. Serum samples at 1, 3, 6, and 12 months posttransplant were assessed for the presence of de novo HLA DSA. Results De novo HLA DSA were detected in 22/67 (32.8%) LTR within 1‐year posttransplant. Of these, 9/41 (21.9%) occurred in the induction therapy group and 13/26 (50%) in the noninduction group. Class II DSA were detected in 3/41 (7.3%) LTR who received induction compared to 9/26 (34.6%) LTR without induction immunosuppression (p = .005). Differences in overall survival or freedom from chronic lung allograft dysfunction rates between the two groups were not statistically significant. Conclusion Induction immunosuppression utilizing a modified regimen of single‐dose rATG is associated with a significant reduction in de novo DSA production in LTR.
Collapse
Affiliation(s)
- Tathagat Narula
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Samir Khouzam
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Francisco Alvarez
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - David Erasmus
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Zhuo Li
- Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Yousif Abdelmoneim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mohamed Elrefaei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
27
|
Klouda T, Vargas SO, Midyat L. Restrictive allograft syndrome after lung transplantation. Pediatr Transplant 2021; 25:e14000. [PMID: 33728767 DOI: 10.1111/petr.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Despite recent advances over the past decade in lung transplantation including improved surgical technique and immunotherapy, the diagnosis and treatment of chronic lung allograft dysfunction remains a significant barrier to recipient survival. Aside from bronchiolitis obliterans syndrome, a restrictive phenotype called restrictive allograft syndrome has recently been recognized and affects up to 35% of all patients with CLAD. The main characteristics of RAS include a persistent and unexplained decline in lung function compared to baseline and persistent parenchymal infiltrates on imaging. The median survival after diagnosis of RAS is 6 to 18 months, significantly shorter than other forms of CLAD. Treatment options are limited, as therapies used for BOS are typically ineffective at halting disease progression. Specific medications such as fibrinolytics are lacking large, multicenter prospective studies. In this manuscript, we discuss the definition, mechanism, and characteristics of RAS while highlighting the similarities and differences between other forms of CLAD. We also review the diagnoses along with current and potential treatment options that are available for patients. Finally, we discuss the existing knowledge gaps and areas for future research to improve patient outcomes and understanding of RAS.
Collapse
Affiliation(s)
- Timothy Klouda
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Levent Midyat
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|