1
|
Richardson ML, Luo J, Zeng FG. Attention-Modulated Cortical Responses as a Biomarker for Tinnitus. Brain Sci 2024; 14:421. [PMID: 38790400 PMCID: PMC11118879 DOI: 10.3390/brainsci14050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Attention plays an important role in not only the awareness and perception of tinnitus but also its interactions with external sounds. Recent evidence suggests that attention is heightened in the tinnitus brain, likely as a result of relatively local cortical changes specific to deafferentation sites or global changes that help maintain normal cognitive capabilities in individuals with hearing loss. However, most electrophysiological studies have used passive listening paradigms to probe the tinnitus brain and produced mixed results in terms of finding a distinctive biomarker for tinnitus. Here, we designed a selective attention task, in which human adults attended to one of two interleaved tonal (500 Hz and 5 kHz) sequences. In total, 16 tinnitus (5 females) and 13 age- and hearing-matched control (8 females) subjects participated in the study, with the tinnitus subjects matching the tinnitus pitch to 5.4 kHz (range = 1.9-10.8 kHz). Cortical responses were recorded in both passive and attentive listening conditions, producing no differences in P1, N1, and P2 between the tinnitus and control subjects under any conditions. However, a different pattern of results emerged when the difference was examined between the attended and unattended responses. This attention-modulated cortical response was significantly greater in the tinnitus than control subjects: 3.9-times greater for N1 at 5 kHz (95% CI: 2.9 to 5.0, p = 0.007, ηp2 = 0.24) and 3.0 for P2 at 500 Hz (95% CI: 1.9 to 4.5, p = 0.026, ηp2 = 0.17). We interpreted the greater N1 modulation as local neural changes specific to the tinnitus frequency and the greater P2 as global changes to hearing loss. These two cortical measures were used to differentiate between the tinnitus and control subjects, producing 83.3% sensitivity and 76.9% specificity (AUC = 0.81, p = 0.006). These results suggest that the tinnitus brain is more plastic than that of the matched non-tinnitus controls and that the attention-modulated cortical response can be developed as a clinically meaningful biomarker for tinnitus.
Collapse
Affiliation(s)
- Matthew L. Richardson
- Department of Otolaryngology—Head and Neck Surgery, University of California at Irvine, Irvine, CA 92697, USA;
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
| | - Jiaxin Luo
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
| | - Fan-Gang Zeng
- Department of Otolaryngology—Head and Neck Surgery, University of California at Irvine, Irvine, CA 92697, USA;
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
- Departments of Anatomy and Neurobiology, Cognitive Sciences, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Shahin AJ, Gonzales MG, Dimitrijevic A. Cross-Modal Tinnitus Remediation: A Tentative Theoretical Framework. Brain Sci 2024; 14:95. [PMID: 38275515 PMCID: PMC10813772 DOI: 10.3390/brainsci14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Tinnitus is a prevalent hearing-loss deficit manifested as a phantom (internally generated by the brain) sound that is heard as a high-frequency tone in the majority of afflicted persons. Chronic tinnitus is debilitating, leading to distress, sleep deprivation, anxiety, and even suicidal thoughts. It has been theorized that, in the majority of afflicted persons, tinnitus can be attributed to the loss of high-frequency input from the cochlea to the auditory cortex, known as deafferentation. Deafferentation due to hearing loss develops with aging, which progressively causes tonotopic regions coding for the lost high-frequency coding to synchronize, leading to a phantom high-frequency sound sensation. Approaches to tinnitus remediation that demonstrated promise include inhibitory drugs, the use of tinnitus-specific frequency notching to increase lateral inhibition to the deafferented neurons, and multisensory approaches (auditory-motor and audiovisual) that work by coupling multisensory stimulation to the deafferented neural populations. The goal of this review is to put forward a theoretical framework of a multisensory approach to remedy tinnitus. Our theoretical framework posits that due to vision's modulatory (inhibitory, excitatory) influence on the auditory pathway, a prolonged engagement in audiovisual activity, especially during daily discourse, as opposed to auditory-only activity/discourse, can progressively reorganize deafferented neural populations, resulting in the reduced synchrony of the deafferented neurons and a reduction in tinnitus severity over time.
Collapse
Affiliation(s)
- Antoine J. Shahin
- Department of Cognitive and Information Sciences, University of California, Merced, CA 95343, USA;
- Health Science Research Institute, University of California, Merced, CA 95343, USA
| | - Mariel G. Gonzales
- Department of Cognitive and Information Sciences, University of California, Merced, CA 95343, USA;
| | - Andrew Dimitrijevic
- Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5, Canada;
| |
Collapse
|
3
|
Reisinger L, Demarchi G, Weisz N. Eavesdropping on Tinnitus Using MEG: Lessons Learned and Future Perspectives. J Assoc Res Otolaryngol 2023; 24:531-547. [PMID: 38015287 PMCID: PMC10752863 DOI: 10.1007/s10162-023-00916-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Tinnitus has been widely investigated in order to draw conclusions about the underlying causes and altered neural activity in various brain regions. Existing studies have based their work on different tinnitus frameworks, ranging from a more local perspective on the auditory cortex to the inclusion of broader networks and various approaches towards tinnitus perception and distress. Magnetoencephalography (MEG) provides a powerful tool for efficiently investigating tinnitus and aberrant neural activity both spatially and temporally. However, results are inconclusive, and studies are rarely mapped to theoretical frameworks. The purpose of this review was to firstly introduce MEG to interested researchers and secondly provide a synopsis of the current state. We divided recent tinnitus research in MEG into study designs using resting state measurements and studies implementing tone stimulation paradigms. The studies were categorized based on their theoretical foundation, and we outlined shortcomings as well as inconsistencies within the different approaches. Finally, we provided future perspectives on how to benefit more efficiently from the enormous potential of MEG. We suggested novel approaches from a theoretical, conceptual, and methodological point of view to allow future research to obtain a more comprehensive understanding of tinnitus and its underlying processes.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
4
|
Auditory Mapping With MEG: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines. J Clin Neurophysiol 2020; 37:574-584. [DOI: 10.1097/wnp.0000000000000518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
5
|
Abstract
This article reviews the use of human neuroimaging for chronic subjective tinnitus. Evidence-based guidance on the clinical use of imaging to identify relevant auditory lesions when evaluating tinnitus patients is given. After introducing the anatomy and imaging modalities most pertinent to the neuroscience of tinnitus, the article reviews tinnitus-associated alterations in key auditory and nonauditory networks in the central nervous system. Emphasis is placed on how these findings support proposed models of tinnitus and how this line of investigation is relevant to practicing clinicians.
Collapse
Affiliation(s)
- Meredith E Adams
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, 420 Delaware Street Southeast, MMC 395, Minneapolis, MN 55455, USA.
| | - Tina C Huang
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, 420 Delaware Street Southeast, MMC 395, Minneapolis, MN 55455, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 Parnassus Avenue S362, San Francisco, CA 94143-0628, USA; Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 2233 Post Street Suite 341, San Francisco, CA 94115-1225, USA
| | - Steven W Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 2233 Post Street Suite 341, San Francisco, CA 94115-1225, USA
| |
Collapse
|
6
|
Sedley W. Tinnitus: Does Gain Explain? Neuroscience 2019; 407:213-228. [DOI: 10.1016/j.neuroscience.2019.01.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/01/2023]
|
7
|
Mohebbi M, Daneshi A, Asadpour A, Mohsen S, Farhadi M, Mahmoudian S. The potential role of auditory prediction error in decompensated tinnitus: An auditory mismatch negativity study. Brain Behav 2019; 9:e01242. [PMID: 30895749 PMCID: PMC6456780 DOI: 10.1002/brb3.1242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Some tinnitus subjects habituate to their tinnitus but some others do not and complain of its annoyance tremendously. Normal sensory memory and change detection processes are needed for detecting the tinnitus signal as a prediction error and habituation to tinnitus. The purpose of this study was to compare auditory mismatch negativity as the index of sensory memory and change detection among the studied groups to search for the factors involving in the perception of tinnitus and preventing habituation in decompensated tinnitus subjects. METHODS Electroencephalography was recorded from scalp electrodes in compensated tinnitus, decompensated tinnitus, and no tinnitus control subjects. Mismatch negativity was obtained using the oddball paradigm with frequency, duration, and silent gap deviants. Amplitude, latency, and area under the curve of mismatch negativities were compared among the three studied groups. RESULTS The results showed lower mismatch negativity amplitude and area under the curve for the higher frequency deviant and for the silent gap deviant in decompensated tinnitus group compared to normal control and compensated tinnitus group. CONCLUSIONS This study revealed a deficit in sensory memory and change detection processing in decompensated tinnitus subjects. This causes persistent prediction errors; tinnitus signal is consistently detected as a new signal and activates the brain salience network and consequently prevents habituation to tinnitus. Mismatch negativity is proposed as an index for monitoring tinnitus rehabilitation.
Collapse
Affiliation(s)
- Mehrnaz Mohebbi
- ENT and Head & Neck Research Center and Department, The Five Senses InstituteHazrat Rasoul Akram Hospital, Iran University of Medical SciencesTehranIran
| | - Ahmad Daneshi
- ENT and Head & Neck Research Center and Department, The Five Senses InstituteHazrat Rasoul Akram Hospital, Iran University of Medical SciencesTehranIran
| | - Abdoreza Asadpour
- Department of Electrical EngineeringSharif University of TechnologyTehranIran
| | - Samer Mohsen
- Department of Otolaryngology, Faculty of MedicineDamascus UniversityDamascusSyria
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, The Five Senses InstituteHazrat Rasoul Akram Hospital, Iran University of Medical SciencesTehranIran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center and Department, The Five Senses InstituteHazrat Rasoul Akram Hospital, Iran University of Medical SciencesTehranIran
- Department of OtorhinolaryngologyHannover Medical University (MHH)HannoverGermany
| |
Collapse
|
8
|
Popov T, Oostenveld R, Schoffelen JM. FieldTrip Made Easy: An Analysis Protocol for Group Analysis of the Auditory Steady State Brain Response in Time, Frequency, and Space. Front Neurosci 2018; 12:711. [PMID: 30356712 PMCID: PMC6189392 DOI: 10.3389/fnins.2018.00711] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
The auditory steady state evoked response (ASSR) is a robust and frequently utilized phenomenon in psychophysiological research. It reflects the auditory cortical response to an amplitude-modulated constant carrier frequency signal. The present report provides a concrete example of a group analysis of the EEG data from 29 healthy human participants, recorded during an ASSR paradigm, using the FieldTrip toolbox. First, we demonstrate sensor-level analysis in the time domain, allowing for a description of the event-related potentials (ERPs), as well as their statistical evaluation. Second, frequency analysis is applied to describe the spectral characteristics of the ASSR, followed by group level statistical analysis in the frequency domain. Third, we show how time- and frequency-domain analysis approaches can be combined in order to describe the temporal and spectral development of the ASSR. Finally, we demonstrate source reconstruction techniques to characterize the primary neural generators of the ASSR. Throughout, we pay special attention to explaining the design of the analysis pipeline for single subjects and for the group level analysis. The pipeline presented here can be adjusted to accommodate other experimental paradigms and may serve as a template for similar analyses.
Collapse
Affiliation(s)
- Tzvetan Popov
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan M Schoffelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
9
|
Jagoda L, Giroud N, Neff P, Kegel A, Kleinjung T, Meyer M. Speech perception in tinnitus is related to individual distress level - A neurophysiological study. Hear Res 2018; 367:48-58. [DOI: 10.1016/j.heares.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
10
|
Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization. Neural Plast 2018; 2018:2546250. [PMID: 29887880 PMCID: PMC5985139 DOI: 10.1155/2018/2546250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/08/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.
Collapse
|
11
|
Sekiya K, Takahashi M, Murakami S, Kakigi R, Okamoto H. Broadened population-level frequency tuning in the auditory cortex of tinnitus patients. J Neurophysiol 2017; 117:1379-1384. [PMID: 28053240 PMCID: PMC5350267 DOI: 10.1152/jn.00385.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 11/22/2022] Open
Abstract
Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus. Tinnitus is a phantom auditory perception without an external sound source and is one of the most common public health concerns that impair the quality of life of many individuals. However, its neural mechanisms remain unclear. We herein examined population-level frequency tuning in the auditory cortex of unilateral tinnitus patients with similar hearing levels in both ears using magnetoencephalography. We compared auditory-evoked neural activities elicited by a stimulation to the tinnitus and nontinnitus ears. Objective magnetoencephalographic data suggested that population-level frequency tuning corresponding to the tinnitus ear was significantly broader than that corresponding to the nontinnitus ear in the human auditory cortex. The results obtained support the hypothesis that pathological alterations in inhibitory neural networks play an important role in the perception of subjective tinnitus. NEW & NOTEWORTHY Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus.
Collapse
Affiliation(s)
- Kenichi Sekiya
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Mariko Takahashi
- Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Shingo Murakami
- Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Hidehiko Okamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan; .,The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
12
|
Manca AD, Grimaldi M. Vowels and Consonants in the Brain: Evidence from Magnetoencephalographic Studies on the N1m in Normal-Hearing Listeners. Front Psychol 2016; 7:1413. [PMID: 27713712 PMCID: PMC5031792 DOI: 10.3389/fpsyg.2016.01413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023] Open
Abstract
Speech sound perception is one of the most fascinating tasks performed by the human brain. It involves a mapping from continuous acoustic waveforms onto the discrete phonological units computed to store words in the mental lexicon. In this article, we review the magnetoencephalographic studies that have explored the timing and morphology of the N1m component to investigate how vowels and consonants are computed and represented within the auditory cortex. The neurons that are involved in the N1m act to construct a sensory memory of the stimulus due to spatially and temporally distributed activation patterns within the auditory cortex. Indeed, localization of auditory fields maps in animals and humans suggested two levels of sound coding, a tonotopy dimension for spectral properties and a tonochrony dimension for temporal properties of sounds. When the stimulus is a complex speech sound, tonotopy and tonochrony data may give important information to assess whether the speech sound parsing and decoding are generated by pure bottom-up reflection of acoustic differences or whether they are additionally affected by top-down processes related to phonological categories. Hints supporting pure bottom-up processing coexist with hints supporting top-down abstract phoneme representation. Actually, N1m data (amplitude, latency, source generators, and hemispheric distribution) are limited and do not help to disentangle the issue. The nature of these limitations is discussed. Moreover, neurophysiological studies on animals and neuroimaging studies on humans have been taken into consideration. We compare also the N1m findings with the investigation of the magnetic mismatch negativity (MMNm) component and with the analogous electrical components, the N1 and the MMN. We conclude that N1 seems more sensitive to capture lateralization and hierarchical processes than N1m, although the data are very preliminary. Finally, we suggest that MEG data should be integrated with EEG data in the light of the neural oscillations framework and we propose some concerns that should be addressed by future investigations if we want to closely line up language research with issues at the core of the functional brain mechanisms.
Collapse
Affiliation(s)
- Anna Dora Manca
- Dipartimento di Studi Umanistici, Centro di Ricerca Interdisciplinare sul Linguaggio, University of SalentoLecce, Italy; Laboratorio Diffuso di Ricerca Interdisciplinare Applicata alla MedicinaLecce, Italy
| | - Mirko Grimaldi
- Dipartimento di Studi Umanistici, Centro di Ricerca Interdisciplinare sul Linguaggio, University of SalentoLecce, Italy; Laboratorio Diffuso di Ricerca Interdisciplinare Applicata alla MedicinaLecce, Italy
| |
Collapse
|
13
|
Allan TW, Besle J, Langers DRM, Davies J, Hall DA, Palmer AR, Adjamian P. Neuroanatomical Alterations in Tinnitus Assessed with Magnetic Resonance Imaging. Front Aging Neurosci 2016; 8:221. [PMID: 27708577 PMCID: PMC5030287 DOI: 10.3389/fnagi.2016.00221] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023] Open
Abstract
Previous studies of anatomical changes associated with tinnitus have provided inconsistent results, with some showing significant cortical and subcortical changes, while others have found effects due to hearing loss, but not tinnitus. In this study, we examined changes in brain anatomy associated with tinnitus using anatomical scans from 128 participants with tinnitus and hearing loss, tinnitus with clinically normal hearing, and non-tinnitus controls with clinically normal hearing. The groups were matched for hearing loss, age and gender. We employed voxel- and surface-based morphometry (SBM) to investigate gray and white matter volume and thickness within regions-of-interest (ROI) that were based on the results of previous studies. The largest overall effects were found for age, gender, and hearing loss. With regard to tinnitus, analysis of ROI revealed numerous small increases and decreases in gray matter and thickness between tinnitus and non-tinnitus controls, in both cortical and subcortical structures. For whole brain analysis, the main tinnitus-related significant clusters were found outside sensory auditory structures. These include a decrease in cortical thickness for the tinnitus group compared to controls in the left superior frontal gyrus (SFG), and a decrease in cortical volume with hearing loss in left Heschl’s gyrus (HG). For masked analysis, we found a decrease in gray matter volume in the right Heschle’s gyrus for the tinnitus group compared to the controls. We found no changes in the subcallosal region as reported in some previous studies. Overall, while some of the morphological differences observed in this study are similar to previously published findings, others are entirely different or even contradict previous results. We highlight other discrepancies among previous results and the increasing need for a more precise subtyping of the condition.
Collapse
Affiliation(s)
- Thomas W Allan
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Julien Besle
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Dave R M Langers
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Jeff Davies
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Deborah A Hall
- Nottingham Hearing Biomedical Research Unit, National Institute for Health Research (NIHR)Nottingham, UK; Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, The University of NottinghamNottingham, UK
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| | - Peyman Adjamian
- Medical Research Council Institute of Hearing Research, The University of Nottingham Nottingham, UK
| |
Collapse
|
14
|
Hoare DJ, Adjamian P, Sereda M. Electrical Stimulation of the Ear, Head, Cranial Nerve, or Cortex for the Treatment of Tinnitus: A Scoping Review. Neural Plast 2016; 2016:5130503. [PMID: 27403346 PMCID: PMC4925995 DOI: 10.1155/2016/5130503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/22/2016] [Accepted: 05/18/2016] [Indexed: 11/18/2022] Open
Abstract
Tinnitus is defined as the perception of sound in the absence of an external source. It is often associated with hearing loss and is thought to result from abnormal neural activity at some point or points in the auditory pathway, which is incorrectly interpreted by the brain as an actual sound. Neurostimulation therapies therefore, which interfere on some level with that abnormal activity, are a logical approach to treatment. For tinnitus, where the pathological neuronal activity might be associated with auditory and other areas of the brain, interventions using electromagnetic, electrical, or acoustic stimuli separately, or paired electrical and acoustic stimuli, have been proposed as treatments. Neurostimulation therapies should modulate neural activity to deliver a permanent reduction in tinnitus percept by driving the neuroplastic changes necessary to interrupt abnormal levels of oscillatory cortical activity and restore typical levels of activity. This change in activity should alter or interrupt the tinnitus percept (reduction or extinction) making it less bothersome. Here we review developments in therapies involving electrical stimulation of the ear, head, cranial nerve, or cortex in the treatment of tinnitus which demonstrably, or are hypothesised to, interrupt pathological neuronal activity in the cortex associated with tinnitus.
Collapse
Affiliation(s)
- Derek J. Hoare
- NIHR Nottingham Hearing Biomedical Research Unit, Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK
| | - Peyman Adjamian
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK
| | - Magdalena Sereda
- NIHR Nottingham Hearing Biomedical Research Unit, Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG1 5DU, UK
| |
Collapse
|
15
|
Vanneste S, Faber M, Langguth B, De Ridder D. The neural correlates of cognitive dysfunction in phantom sounds. Brain Res 2016; 1642:170-179. [PMID: 27016059 DOI: 10.1016/j.brainres.2016.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Tinnitus is an auditory phantom percept with a tone, hissing or buzzing sound in the absence of an objective physical sound source. It has been shown that tinnitus can lead to emotional and cognitive impairment and people with tinnitus perform worse than a control group on different cognitive tasks. The hippocampus is known to play an important role in cognitive performance, and also in the pathophysiology of tinnitus. Hippocampal deficits have been described in animal models of tinnitus and in tinnitus patients a decrease in grey matter in the hippocampus has been demonstrated. Nineteen patients with tinnitus and fifteen healthy controls performed different cognitive processing tasks and underwent an EEG with source analysis to investigate the relationship between tinnitus loudness, tinnitus distress and tinnitus duration, cognitive impairment and neurophysiological changes in the hippocampus. Results show that both tinnitus loudness, tinnitus distress and tinnitus duration correlated positively with different cognitive measures (trail making test, Montreal cognitive assessment, mini mental state examination). It was also shown that these cognitive measures correlate with beta activity in the hippocampus, the pregenual and subgenual anterior cingulate cortex extending into the right insula. A region of interest analysis further confirms that beta activity in the left and right hippocampal area correlated with the trail making performance. In conclusion, these results support for the first time the notion that cognitive changes in tinnitus patients are associated with changes in hippocampal activity as well as the anterior cingulate and insula.
Collapse
Affiliation(s)
- Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA.
| | - Margriet Faber
- Department of Translational Neuroscience, Faculty of Medicine, University of Antwerp, Belgium
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University Regensburg, Germany
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
16
|
Prospective Associations Between Traumatic Brain Injury and Postdeployment Tinnitus in Active-Duty Marines. J Head Trauma Rehabil 2016; 31:30-9. [DOI: 10.1097/htr.0000000000000117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
The development and test–retest reliability of a method for matching perceived location of tinnitus. J Neurosci Methods 2015; 256:1-8. [DOI: 10.1016/j.jneumeth.2015.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022]
|
18
|
Hyperacusis Questionnaire as a Tool for Measuring Hypersensitivity to Sound in a Tinnitus Research Population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:290425. [PMID: 26557658 PMCID: PMC4628763 DOI: 10.1155/2015/290425] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/17/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
Abstract
Hypersensitivity to external sounds is often comorbid with tinnitus and may be significant for adherence to certain types of tinnitus management. Therefore, a clear measure of sensitivity to sound is important. The aim of this study was to evaluate the validity and reliability of the Hyperacusis Questionnaire (HQ) for use as a measurement tool using data from a sample of 264 adults who took part in tinnitus research. We evaluated the HQ factor structure, internal consistency, convergent and discriminant validity, and floor and ceiling effects. Internal consistency was high (Cronbach's alpha = 0.88) and moderate correlations were observed between the HQ, uncomfortable loudness levels, and other health questionnaires. Confirmatory factor analysis revealed that the original HQ three-factor solution and a one-factor solution were both a poor fit to the data. Four problematic items were removed and exploratory factor analysis identified a two-factor (attentional and social) solution. The original three-factor structure of the HQ was not confirmed. All fourteen items do not accurately assess hypersensitivity to sound in a tinnitus population. We propose a 10-item (2-factor) version of the HQ, which will need to be confirmed using a new tinnitus and perhaps nontinnitus population.
Collapse
|
19
|
Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus. Hear Res 2015; 327:9-27. [PMID: 25937134 DOI: 10.1016/j.heares.2015.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 11/21/2022]
Abstract
It has been proposed that tinnitus is generated by aberrant neural activity that develops among neurons in tonotopic of regions of primary auditory cortex (A1) affected by hearing loss, which is also the frequency region where tinnitus percepts localize (Eggermont and Roberts 2004; Roberts et al., 2010, 2013). These models suggest (1) that differences between tinnitus and control groups of similar age and audiometric function should depend on whether A1 is probed in tinnitus frequency region (TFR) or below it, and (2) that brain responses evoked from A1 should track changes in the tinnitus percept when residual inhibition (RI) is induced by forward masking. We tested these predictions by measuring (128-channel EEG) the sound-evoked 40-Hz auditory steady-state response (ASSR) known to localize tonotopically to neural sources in A1. For comparison the N1 transient response localizing to distributed neural sources in nonprimary cortex (A2) was also studied. When tested under baseline conditions where tinnitus subjects would have heard their tinnitus, ASSR responses were larger in a tinnitus group than in controls when evoked by 500 Hz probes while the reverse was true for tinnitus and control groups tested with 5 kHz probes, confirming frequency-dependent group differences in this measure. On subsequent trials where RI was induced by masking (narrow band noise centered at 5 kHz), ASSR amplitude increased in the tinnitus group probed at 5 kHz but not in the tinnitus group probed at 500 Hz. When collapsed into a single sample tinnitus subjects reporting comparatively greater RI depth and duration showed comparatively larger ASSR increases after masking regardless of probe frequency. Effects of masking on ASSR amplitude in the control groups were completely reversed from those in the tinnitus groups, with no change seen to 5 kHz probes but ASSR increases to 500 Hz probes even though the masking sound contained no energy at 500 Hz (an "off-frequency" masking effect). In contrast to these findings for the ASSR, N1 amplitude was larger in tinnitus than control groups at both probe frequencies under baseline conditions, decreased after masking in all conditions, and did not relate to RI. These results suggest that aberrant neural activity occurring in the TFR of A1 underlies tinnitus and its modulation during RI. They indicate further that while neural changes occur in A2 in tinnitus, these changes do not reflect the tinnitus percept. Models for tinnitus and forward masking are described that integrate these findings within a common framework.
Collapse
|
20
|
Eggermont JJ. The auditory cortex and tinnitus - a review of animal and human studies. Eur J Neurosci 2015; 41:665-76. [DOI: 10.1111/ejn.12759] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Jos J. Eggermont
- Department of Physiology and Pharmacology; University of Calgary; Calgary AB Canada
- Department of Psychology; University of Calgary; 2500 University Drive N.W. Calgary AB T2N 1N4 Canada
| |
Collapse
|
21
|
Adjamian P. The application of electro- and magneto-encephalography in tinnitus research - methods and interpretations. Front Neurol 2014; 5:228. [PMID: 25431567 PMCID: PMC4230045 DOI: 10.3389/fneur.2014.00228] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a significant increase in the use of electroencephalography (EEG) and magnetoencephalography (MEG) to investigate changes in oscillatory brain activity associated with tinnitus with many conflicting results. Current view of the underlying mechanism of tinnitus is that it results from changes in brain activity in various structures of the brain as a consequence of sensory deprivation. This in turn gives rise to increased spontaneous activity and/or synchrony in the auditory centers but also involves modulation from non-auditory processes from structures of the limbic and paralimbic system. Some of the neural changes associated with tinnitus may be assessed non-invasively in human beings with MEG and EEG (M/EEG) in ways, which are superior to animal studies and other non-invasive imaging techniques. However, both MEG and EEG have their limitations and research results can be misinterpreted without appropriate consideration of these limitations. In this article, I intend to provide a brief review of these techniques, describe what the recorded signals reflect in terms of the underlying neural activity, and their strengths and limitations. I also discuss some pertinent methodological issues involved in tinnitus-related studies and conclude with suggestions to minimize possible discrepancies between results. The overall message is that while MEG and EEG are extremely useful techniques, the interpretation of results from tinnitus studies requires much caution given the individual variability in oscillatory activity and the limits of these techniques.
Collapse
|
22
|
Joos K, Gilles A, Van de Heyning P, De Ridder D, Vanneste S. From sensation to percept: The neural signature of auditory event-related potentials. Neurosci Biobehav Rev 2014; 42:148-56. [DOI: 10.1016/j.neubiorev.2014.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
23
|
Abstract
Background Many people with tinnitus also suffer from hyperacusis. Both clinical and basic scientific data indicate an overlap in pathophysiologic mechanisms. In order to further elucidate the interplay between tinnitus and hyperacusis we compared clinical and demographic characteristics of tinnitus patients with and without hyperacusis by analyzing a large sample from an international tinnitus patient database. Materials The default dataset import [November 1st, 2012] from the Tinnitus Research Initiative [TRI] Database was used for analyses. Hyperacusis was defined by the question “Do sounds cause you pain or physical discomfort?” of the Tinnitus Sample Case History Questionnaire. Patients who answered this question with “yes” were contrasted with “no”-responders with respect to 41 variables. Results 935 [55%] out of 1713 patients were characterized as hyperacusis patients. Hyperacusis in tinnitus was associated with younger age, higher tinnitus-related, mental and general distress; and higher rates of pain disorders and vertigo. In relation to objective audiological assessment patients with hyperacusis rated their subjective hearing function worse than those without hyperacusis. Similarly the tinnitus pitch was rated higher by hyperacusis patients in relation to the audiometrically determined tinnitus pitch. Among patients with tinnitus and hyperacusis the tinnitus was more frequently modulated by external noise and somatic maneuvers, i.e., exposure to environmental sounds and head and neck movements change the tinnitus percept. Conclusions Our findings suggest that the comorbidity of hyperacusis is a useful criterion for defining a sub-type of tinnitus which is characterized by greater need of treatment. The higher sensitivity to auditory, somatosensory and vestibular input confirms the notion of an overactivation of an unspecific hypervigilance network in tinnitus patients with hyperacusis.
Collapse
|
24
|
Tinnitus in men, mice (as well as other rodents), and machines. Hear Res 2013; 311:63-71. [PMID: 24374091 DOI: 10.1016/j.heares.2013.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022]
Abstract
The phantom auditory sensation of tinnitus is now studied in humans, animals, and computer models, and our understanding of how tinnitus is triggered and which neural mechanisms give rise to the phantom sensation in the brain has increased considerably. In most cases, tinnitus is associated with hearing loss, and even tinnitus patients with normal hearing thresholds might have cochlear damage that is not detected through conventional audiometry, as has been recently shown through auditory brainstem response measurements. Animals show behavioural signs of tinnitus after induction of hearing loss, indicating a causal relation. Moreover, surgical reduction of hearing loss in otosclerosis can reduce or even abolish tinnitus. However, hearing loss does not always lead to tinnitus. Psychophysical measurements have indicated that certain types of cochlear damage might be more closely linked to tinnitus than others. Recent animal studies have used behavioural testing to distinguish between animals with and without tinnitus after noise exposure. Comparisons between these groups of animals have helped identify neural correlates of tinnitus as well as factors that could represent a predisposition for tinnitus. Human neuroimaging studies have also begun to separate the neural signature of tinnitus from other consequences of hearing loss. The functional mechanisms that could underlie tinnitus development tinnitus have been analysed in computational modelling studies, which indicate that tinnitus could be a side-effect of the brain's attempt to compensate for hearing loss. Even though causal treatments for tinnitus are currently not available, hearing aids can provide considerable benefit when used in conjunction with counselling, tinnitus retraining therapy or cognitive behavioural therapy. Finally, animal studies demonstrate that the development of chronic noise-induced tinnitus might be prevented through timely interventions after noise exposure. This article is part of a Special Issue entitled <Annual Reviews 2014>.
Collapse
|
25
|
Suh MW, Kim KW, Park IY, Oh SH. Parameter optimization for applying the prepulse gap paradigm to humans. KOREAN JOURNAL OF AUDIOLOGY 2013; 17:118-23. [PMID: 24653919 PMCID: PMC3936552 DOI: 10.7874/kja.2013.17.3.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 11/26/2022]
Abstract
Background and Objectives Turner and colleagues introduced a new method that can detect tinnitus in animals. The stimulus is composed of a small background noise that is identical to the pitch of the tinnitus and a large pulse noise that can evoke a startle response. In normal rats, the gap decreases the startle reflex. However, in tinnitus rats, the gap does not decrease the startle reflex. The goal of this study was to optimize the stimulation paradigm so that the prepulse inhibition of N1-P2 amplitude would be maximized in the normal human subjects. Subjects and Methods Seven normal control subjects without tinnitus were recruited. The stimulus was composed of two different sounds: the softer background noise and the louder pulse noise. A 50 msec silent gap was inserted before the pulse noise as the gap condition (G condition) but not in the no-gap condition (N condition). The averaged amplitude of the N1-P2 cortical response was recorded for the G and N conditions. Results The G/N ratio was the smallest when the gap was 20 msec prior to the pulse noise. The G/N ratio was 84.8±16.8% with the Hanning window and 78.5±5.9% without the window. The G/N ratio was 91.1±24.9%, 78.0±5.4%, and 79.0±18.1% when the intensity of the background noise was 10, 20, and 32 dB SL, respectively. When the intensity of the background noise was 20 and 32 dB SL, the N1-P2 amplitude of the G condition was significantly smaller than that of the N condition. Conclusions The optimal stimulus should be composed of the 1 kHz pulse noise without Hanning window. The intensity of the background noise should be 20 dB HL and the location of the gap should be 20 msec prior to the pulse noise. It seems that with these optimized parameters we could expect a 78.0% inhibition of N1-P2 amplitude in normal subjects without tinnitus.
Collapse
Affiliation(s)
- Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| | - Kun Woo Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
| | - Il-Yong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
26
|
Role of attention in the generation and modulation of tinnitus. Neurosci Biobehav Rev 2013; 37:1754-73. [DOI: 10.1016/j.neubiorev.2013.07.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 01/23/2023]
|