1
|
Hunter LL, Blankenship CM, Shinn-Cunningham B, Hood L, Zadeh LM, Moore DR. Brainstem auditory physiology in children with listening difficulties . Hear Res 2023; 429:108705. [PMID: 36709582 PMCID: PMC10152893 DOI: 10.1016/j.heares.2023.108705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Children who have listening difficulties (LiD) despite having normal audiometry are often diagnosed as having an auditory processing disorder. A lack of evidence regarding involvement of specific auditory mechanisms has limited development of effective treatments for these children. Here, we examined electrophysiologic evidence for brainstem pathway mechanisms in children with and without defined LiD. We undertook a prospective controlled study of 132 children aged 6-14 years with normal pure tone audiometry, grouped into LiD (n = 63) or Typically Developing (TD; n = 69) based on scores on the Evaluation of Children's Listening and Processing Skills (ECLiPS), a validated caregiver report. The groups were matched on age at test, sex, race, and ethnicity. Neither group had diagnoses of major neurologic disorder, intellectual disability, or brain injuries. Both groups received a test battery including a measure of receptive speech perception against distractor speech, Listening in Spatialized Noise - Sentences (LiSN-S), along with multiple neurophysiologic measures that tap afferent and efferent auditory subcortical pathways. Group analysis showed that participants with LiD performed significantly poorer on all subtests of the LiSN-S. The LiD group had significantly greater wideband middle ear muscle reflex (MEMR) growth functions in the left ear, and shorter Wave III and Wave V latencies in auditory brainstem responses (ABR). Across individual participants, shorter latency ABR Wave V correlated significantly with poorer parent report of LiD (ECLiPS composite). Greater MEMR growth functions also correlated with poorer ECLiPS scores and reduced LiSN-S talker advantage. The LiD and TD groups had equivalent summating potentials, compound action potentials, envelope-following responses, and binaurally activated medial olivocochlear reflexes. In conclusion, there was no evidence for auditory synaptopathy for LiD. Evidence for brainstem differences in the LiD group was interpreted as increased central gain, with shorter ABR Wave III and V latencies and steeper MEMR growth curves. These differences were related to poorer parent report and speech perception in competing speech ability.
Collapse
Affiliation(s)
- Lisa L Hunter
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; College of Medicine, Otolaryngology and College of Allied Health Sciences, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio, USA; College of Allied Health Sciences, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Chelsea M Blankenship
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Linda Hood
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lina Motlagh Zadeh
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David R Moore
- Communication Sciences Research Center, Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; College of Medicine, Otolaryngology and College of Allied Health Sciences, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio, USA; Manchester Centre for Audiology and Deafness, University of Manchester, U.K
| |
Collapse
|
2
|
Hutchison P, Maeda H, Formby C, Small BJ, Eddins DA, Eddins AC. Acoustic deprivation modulates central gain in human auditory brainstem and cortex. Hear Res 2023; 428:108683. [PMID: 36599259 PMCID: PMC9872081 DOI: 10.1016/j.heares.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Beyond reduced audibility, there is convincing evidence that the auditory system adapts according to the principles of homeostatic plasticity in response to a hearing loss. Such compensatory changes include modulation of central auditory gain mechanisms. Earplugging is a common experimental method that has been used to introduce a temporary, reversible hearing loss that induces changes consistent with central gain modulation. In the present study, young, normal-hearing adult participants wore a unilateral earplug for two weeks, during which we measured changes in the acoustic reflex threshold (ART), loudness perception, and cortically-evoked (40 Hz) auditory steady-state response (ASSR) to assess potential modulation in central gain with reduced peripheral input. The ART decreased on average by 8 to 10 dB during the treatment period, with modest increases in loudness perception after one week but not after two weeks of earplug use. Significant changes in both the magnitude and hemispheric laterality of source-localized cortical ASSR measures revealed asymmetrical changes in stimulus-driven cortical activity over time. The ART results following unilateral earplugging are consistent with the literature and suggest that homeostatic plasticity is evident in the brainstem. The novel findings from the cortical ASSR in the present study indicates that reduced peripheral input induces adaptive homeostatic plasticity reflected as both an increase in central gain in the auditory brainstem and reduced cortical activity ipsilateral to the deprived ear. Both the ART and the novel use of the 40-Hz ASSR provide sensitive measures of central gain modulation in the brainstem and cortex of young, normal hearing listeners, and thus may be useful in future studies with other clinical populations.
Collapse
Affiliation(s)
- Peter Hutchison
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Hannah Maeda
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Craig Formby
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Brent J Small
- School of Aging Studies, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA; Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA
| | - Ann Clock Eddins
- Department of Communication Sciences and Disorders, University of South Florida, 4202 E. Fowler Ave., PCD 1017, Tampa, FL 33620, USA; School of Communication Sciences and Disorders, University of Central Florida, 4364 Scorpius Street, Orlando, FL 32816, USA.
| |
Collapse
|
3
|
Zavdy O, Fostick L, Fink N, Danin S, Levin A, Lipschitz N, Hilly O. The Effect of Hearing Aids on Sound Localization in Mild Unilateral Conductive Hearing Loss. J Am Acad Audiol 2022; 33:357-363. [PMID: 35777670 DOI: 10.1055/a-1889-6578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Binaural hearing is of utmost importance for communicating in noisy surroundings and localizing the direction of sound. Unilateral hearing loss (UHL) affects the quality of life in both childhood and adulthood, speech development, and academic achievements. Sound amplification using air-conducting hearing aids (HAs) is a common option for hearing rehabilitation of UHL. The processing time of digital HAs can significantly delay the acoustic stimulation in 3 to 10 milliseconds, which is far longer than the maximal natural interaural time difference (ITD) of 750 microseconds. This can further impair spatial localization in these patients. PURPOSE We sought to assess whether HA effects on ITD and interaural level difference (ILD) impair localization among subjects with unilateral conductive hearing loss (UCHL). RESEARCH DESIGN "Normal"-hearing participants underwent localization testing in different free field settings. STUDY SAMPLE Ten volunteers with "normal"-hearing thresholds participated. INTERVENTION Repeated assessments were compared between "normal" (binaural) hearing, UCHL induced by insertion of an inactivated HA to the ear canal (conductive HL), and amplification with a HA. RESULTS In UCHL mode, with HA switched-off, localization was significantly impaired compared to "normal" hearing (NH; η2 = 0.151). Localization error was more pronounced when sound was presented from the front and from the side of the occluded ear. When switched-on, amplification with HAs significantly improved localization for all participants compared to UCHL. Better localization with HAs was seen in high frequencies compared to low frequencies (η2 = 0.08, 0.03). Even with HAs, localization did not reach that of NH (η2 = 0.034). CONCLUSION Mild UCHL caused localization to deteriorate. HAs significantly improved sound localization, albeit the delay caused by the device processing time. Most of the improvements were seen in high-frequency sounds, representing a beneficial effect of amplification on ILD. Our results have potential clinical value in situations of mild CHL, for instance, otitis media with effusion.
Collapse
Affiliation(s)
- Ofir Zavdy
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center and Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leah Fostick
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Nir Fink
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Shir Danin
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Aviya Levin
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Noga Lipschitz
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center and Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Hilly
- Department of Otolaryngology, Head and Neck Surgery, Rabin Medical Center and Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Communication Disorders, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Han JH, Lee J, Lee HJ. Ear-Specific Hemispheric Asymmetry in Unilateral Deafness Revealed by Auditory Cortical Activity. Front Neurosci 2021; 15:698718. [PMID: 34393711 PMCID: PMC8363420 DOI: 10.3389/fnins.2021.698718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Profound unilateral deafness reduces the ability to localize sounds achieved via binaural hearing. Furthermore, unilateral deafness promotes a substantial change in cortical processing to binaural stimulation, thereby leading to reorganization over the whole brain. Although distinct patterns in the hemispheric laterality depending on the side and duration of deafness have been suggested, the neurological mechanisms underlying the difference in relation to behavioral performance when detecting spatially varied cues remain unknown. To elucidate the mechanism, we compared N1/P2 auditory cortical activities and the pattern of hemispheric asymmetry of normal hearing, unilaterally deaf (UD), and simulated acute unilateral hearing loss groups while passively listening to speech sounds delivered from different locations under open free field condition. The behavioral performances of the participants concerning sound localization were measured by detecting sound sources in the azimuth plane. The results reveal a delayed reaction time in the right-sided UD (RUD) group for the sound localization task and prolonged P2 latency compared to the left-sided UD (LUD) group. Moreover, the RUD group showed adaptive cortical reorganization evidenced by increased responses in the hemisphere ipsilateral to the intact ear for individuals with better sound localization whereas left-sided unilateral deafness caused contralateral dominance in activity from the hearing ear. The brain dynamics of right-sided unilateral deafness indicate greater capability of adaptive change to compensate for impairment in spatial hearing. In addition, cortical N1 responses to spatially varied speech sounds in unilateral deaf people were inversely related to the duration of deafness in the area encompassing the right auditory cortex, indicating that early intervention would be needed to protect from maladaptation of the central auditory system following unilateral deafness.
Collapse
Affiliation(s)
- Ji-Hye Han
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang-si, South Korea
| | - Jihyun Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang-si, South Korea
| | - Hyo-Jeong Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang-si, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon-si, South Korea
| |
Collapse
|
5
|
Herrmann B, Butler BE. Hearing loss and brain plasticity: the hyperactivity phenomenon. Brain Struct Funct 2021; 226:2019-2039. [PMID: 34100151 DOI: 10.1007/s00429-021-02313-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Many aging adults experience some form of hearing problems that may arise from auditory peripheral damage. However, it has been increasingly acknowledged that hearing loss is not only a dysfunction of the auditory periphery but also results from changes within the entire auditory system, from periphery to cortex. Damage to the auditory periphery is associated with an increase in neural activity at various stages throughout the auditory pathway. Here, we review neurophysiological evidence of hyperactivity, auditory perceptual difficulties that may result from hyperactivity, and outline open conceptual and methodological questions related to the study of hyperactivity. We suggest that hyperactivity alters all aspects of hearing-including spectral, temporal, spatial hearing-and, in turn, impairs speech comprehension when background sound is present. By focusing on the perceptual consequences of hyperactivity and the potential challenges of investigating hyperactivity in humans, we hope to bring animal and human electrophysiologists closer together to better understand hearing problems in older adulthood.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, Toronto, ON, M6A 2E1, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Blake E Butler
- Department of Psychology & The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,National Centre for Audiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Brotherton H, Turtle C, Plack CJ, Munro KJ, Schaette R. Earplug-induced changes in acoustic reflex thresholds suggest that increased subcortical neural gain may be necessary but not sufficient for the occurrence of tinnitus. Neuroscience 2019; 407:192-199. [DOI: 10.1016/j.neuroscience.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
7
|
Sinke MRT, Buitenhuis JW, van der Maas F, Nwiboko J, Dijkhuizen RM, van Diessen E, Otte WM. The power of language: Functional brain network topology of deaf and hearing in relation to sign language experience. Hear Res 2018; 373:32-47. [PMID: 30583198 DOI: 10.1016/j.heares.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023]
Abstract
Prolonged auditory sensory deprivation leads to brain reorganization. This is indicated by functional enhancement in remaining sensory systems and known as cross-modal plasticity. In this study we investigated differences in functional brain network topology between deaf and hearing individuals. We also studied altered functional network responses between deaf and hearing individuals with a recording paradigm containing an eyes-closed and eyes-open condition. Electroencephalography activity was recorded in a group of sign language-trained deaf (N = 71) and hearing people (N = 122) living in rural Africa. Functional brain networks were constructed from the functional connectivity between fourteen electrodes distributed over the scalp. Functional connectivity was quantified with the phase lag index based on bandpass filtered epochs of brain signal. We studied the functional connectivity between the auditory, somatosensory and visual cortex and performed whole-brain minimum spanning tree analysis to capture network backbone characteristics. Functional connectivity between different regions involved in sensory information processing tended to be stronger in deaf people during the eyes-closed condition in both the alpha and beta frequency band. Furthermore, we found differences in functional backbone topology between deaf and hearing individuals. The backbone topology altered during transition from the eyes-closed to eyes-open condition irrespective of deafness, but was more pronounced in deaf individuals. The transition of backbone strength was different between individuals with congenital, pre-lingual or post-lingual deafness. Functional backbone characteristics correlated with the experience of sign language. Overall, our study revealed more insights in functional network reorganization caused by auditory deprivation and cross-modal plasticity. It further supports the idea of a brain plasticity potential in deaf and hearing people. The association between network organization and acquired sign language experience reflects the ability of ongoing brain adaptation in people with hearing disabilities.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - Jan W Buitenhuis
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Frank van der Maas
- Reabilitação Baseadana Comunidade (RBC) Effata, Bissorã, Oio, Guinea-Bissau; CBR Effata, Omorodu Iseke Ebonyi LGA, Ebonyi State, Nigeria
| | - Job Nwiboko
- CBR Effata, Omorodu Iseke Ebonyi LGA, Ebonyi State, Nigeria
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric van Diessen
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
8
|
Dillon H, Mee C, Moreno JC, Seymour J. Hearing tests are just child's play: the sound scouts game for children entering school. Int J Audiol 2018; 57:529-537. [PMID: 29703099 DOI: 10.1080/14992027.2018.1463464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To create a hearing test useable without the involvement of a clinician or calibrated equipment, suitable for children aged 5 or older. DESIGN The tablet-based app (Sound Scouts) includes tests of speech in quiet, speech in noise and tones in noise, all embedded in game designed to maintain attention. Data were collected to intelligibility-equalize the stimuli, establish normative performance, and evaluate the sensitivity with which Sound Scouts detected known hearing problems and identified their type. STUDY SAMPLE Participants were children from age 5 to 14 (394 with normal hearing, 97 with previously identified hearing loss) and 50 adults with normal hearing. RESULTS With pass-fail criteria set such that 98% of children with normal hearing passed Sound Scouts, 85% of children with hearing loss failed Sound Scouts (after exclusion of children in either group who received an inconclusive result or had incomplete results). No child with four-frequency average hearing thresholds of 30 dB HL or greater in their poorer ear passed Sound Scouts. Hearing loss type was correctly identified in only two-thirds of those cases where the algorithm attempted to identify a single type of loss. CONCLUSIONS Sound Scouts has specificity and sensitivity sufficiently high to provide hearing screening around the time children typically enter school.
Collapse
Affiliation(s)
- Harvey Dillon
- a National Acoustic Laboratories , Sydney , Australia.,b Manchester Center for Audiology and Deafness , University of Manchester , Manchester , UK
| | | | | | - John Seymour
- a National Acoustic Laboratories , Sydney , Australia
| |
Collapse
|
9
|
Parisa A, Reza NA, Jalal SS, Mohammad K, Homa ZK. Horizontal Localization in Simulated Unilateral Hearing Loss. J Audiol Otol 2018; 22:39-44. [PMID: 29325392 PMCID: PMC5784370 DOI: 10.7874/jao.2017.00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
Background and Objectives The ability to localize a sound source is one of the binaural hearing benefits in a horizontal plane based on interaural time difference and interaural intensity difference. Unilateral or bilateral asymmetric hearing loss will affect binaural hearing and lead to sound locating errors. In this cross sectional analytical descriptive study, the localization error was investigated when participants turned their heads to the sound source with closed eyes and after simulating unilateral hearing loss by placing earplugs inside the right ear canal. Subjects and Methods This cross sectional analytical descriptive study was carried out on 30 right-handed adults, 22 female and 8 male (average: 25 years, standard deviation: 3.16). They were selected with the available random access method. Horizontal localization was evaluated with five speakers located at 0, ±30, and ±60 degree azimuths at a 1-meter distance from the examinee. Narrow-band noise signals were delivered at 35 dB SL in two “without earplug” and “with earplug” situations and the results were compared. The study was performed between September and December 2016 in Tehran, Iran. Results Significant differences were observed in localization errors between the “with earplug” and “without earplug” situations. The localization differences were greater for left-side speakers (-30 and -60 degrees) compared with right-side speakers (+30 and +60 degrees). The differences were more apparent at 4,000 and 6,000 Hz, which confirmed the effect of unilateral simulated hearing loss on interaural latency differences. Conclusions Simulating hearing loss by using an earplug in one ear (right) increased localization errors at all frequencies. The errors increased at higher frequencies.
Collapse
Affiliation(s)
- Anvarsamarein Parisa
- Department of Audiology, School of Rehabilitation Sciences, Shahid Beheshti Medical University, Tehran, Iran
| | - Nazeri Ahmad Reza
- Department of Audiology, School of Rehabilitation Sciences, Shahid Beheshti Medical University, Tehran, Iran
| | - Sameni Seyyed Jalal
- Department of Audiology,School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Kamali Mohammad
- Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Koob Homa
- Department of Audiology, School of Rehabilitation Sciences, Shahid Beheshti Medical University, Tehran, Iran
| |
Collapse
|
10
|
Brotherton H, Plack CJ, Schaette R, Munro KJ. Using acoustic reflex threshold, auditory brainstem response and loudness judgments to investigate changes in neural gain following acute unilateral deprivation in normal hearing adults. Hear Res 2017; 345:88-95. [DOI: 10.1016/j.heares.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
|
11
|
Brotherton H, Plack CJ, Schaette R, Munro KJ. No change in the acoustic reflex threshold and auditory brainstem response following short-term acoustic stimulation in normal hearing adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2725. [PMID: 27794325 DOI: 10.1121/1.4964733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unilateral auditory deprivation or stimulation can induce changes in loudness and modify the sound level required to elicit the acoustic reflex. This has been explained in terms of a change in neural response, or gain, for a given sound level. However, it is unclear if these changes are driven by the asymmetry in auditory input or if they will also occur following bilateral changes in auditory input. The present study used a cross-over trial of unilateral and bilateral amplification to investigate changes in the acoustic reflex thresholds (ARTs) and the auditory brainstem response (ABR) in normal hearing listeners. Each treatment lasted 7 days and there was a 7-day washout period between the treatments. There was no significant change in the ART or ABR with either treatment. This null finding may have occurred because the amplification was insufficient to induce experience-related changes to the ABR and ART. Based on the null findings from the present study, and evidence of a change in ART in previous unilateral hearing aid use in normal hearing listeners, the threshold to trigger adaptive changes appears to be around 5 days of amplification with real ear insertion gain greater than 13-17 dB.
Collapse
Affiliation(s)
- Hannah Brotherton
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Roland Schaette
- Ear Institute, University College London, London WC1X 8EE, United Kingdom
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| |
Collapse
|