1
|
Li C, Chen L, Li Y, Li M, Zhang X, Cui L, Sun Y, Song X. Cortisol Sensitizes Cochlear Hair Cells to Gentamicin Ototoxicity Via Endogenous Apoptotic Pathway. Otol Neurotol 2024; 45:e49-e56. [PMID: 38085767 PMCID: PMC11809724 DOI: 10.1097/mao.0000000000004074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND The widespread use of aminoglycosides is a prevalent cause of sensorineural hearing loss. Patients receiving aminoglycosides usually have elevated levels of circulating stress hormones due to disease or physiological stress; however, whether the stress hormone cortisol impacts aminoglycoside-mediated injury of cochlear hair cells has not been fully investigated. METHODS House Ear Institute-Organ of Corti 1 (HEI-OC1) cells with or without cortisol pretreatment were exposed to gentamicin, we investigated the effect of cortisol pretreatment on gentamicin ototoxicity by assessing cell viability. Molecular pathogenesis was explored by detecting apoptosis and oxidative stress. Meanwhile, by inhibiting glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), the potential roles of receptor types in cortisol-mediated sensitization were evaluated. RESULTS Cortisol concentrations below 75 μmol/l did not affect cell viability. However, pretreatment with 50 μmol/l cortisol for 24 hours sensitized hair cells to gentamicin-induced apoptosis. Further mechanistic studies revealed that cortisol significantly increased hair cell apoptosis and oxidative stress, and altered apoptosis-related protein expressions induced by gentamicin. In addition, blockade of either GR or MR attenuated cortisol-induced hair cell sensitization to gentamicin toxicity. CONCLUSION Cortisol pretreatment increased mammalian hair cell susceptibility to gentamicin toxicity. Sensitization was related to the activation of the intrinsic apoptotic pathway and excessive generation of reactive oxygen species. Cortisol may exacerbate aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Cong Li
- The Second Medical College of Binzhou Medical University, Shandong, PR China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| | - Liang Chen
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| | - Yingying Li
- The Second Medical College of Binzhou Medical University, Shandong, PR China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| | - Mengxin Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| | - Xiaoling Zhang
- The Second Medical College of Binzhou Medical University, Shandong, PR China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| | - Limei Cui
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| | - Yan Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Shandong, PR China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Shandong, PR China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, PR China
| |
Collapse
|
2
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
3
|
Saettele AL, Wong HTC, Kindt KS, Warchol ME, Sheets L. Prolonged Dexamethasone Exposure Enhances Zebrafish Lateral-Line Regeneration But Disrupts Mitochondrial Homeostasis and Hair Cell Function. J Assoc Res Otolaryngol 2022; 23:683-700. [PMID: 36261670 PMCID: PMC9789251 DOI: 10.1007/s10162-022-00875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
The synthetic glucocorticoid dexamethasone is commonly used to treat inner ear disorders. Previous work in larval zebrafish has shown that dexamethasone treatment enhances hair cell regeneration, yet dexamethasone has also been shown to inhibit regeneration of peripheral nerves after lesion. We therefore used the zebrafish model to determine the impact of dexamethasone treatment on lateral-line hair cells and primary afferents. To explore dexamethasone in the context of regeneration, we used copper sulfate (CuSO4) to induce hair cell loss and retraction of nerve terminals, and then allowed animals to recover in dexamethasone for 48 h. Consistent with previous work, we observed significantly more regenerated hair cells in dexamethasone-treated larvae. Importantly, we found that the afferent processes beneath neuromasts also regenerated in the presence of dexamethasone and formed an appropriate number of synapses, indicating that innervation of hair cells was not inhibited by dexamethasone. In addition to regeneration, we also explored the effects of prolonged dexamethasone exposure on lateral-line homeostasis and function. Following dexamethasone treatment, we observed hyperpolarized mitochondrial membrane potentials (ΔΨm) in neuromast hair cells and supporting cells. Hair cells exposed to dexamethasone were also more vulnerable to neomycin-induced cell death. In response to a fluid-jet delivered saturating stimulus, calcium influx through hair cell mechanotransduction channels was significantly reduced, yet presynaptic calcium influx was unchanged. Cumulatively, these observations indicate that dexamethasone enhances hair cell regeneration in lateral-line neuromasts, yet also disrupts mitochondrial homeostasis, making hair cells more vulnerable to ototoxic insults and possibly impacting hair cell function.
Collapse
Affiliation(s)
- Allison L Saettele
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hiu-Tung C Wong
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Coffin AB, Dale E, Doppenberg E, Fearington F, Hayward T, Hill J, Molano O. Putative COVID-19 therapies imatinib, lopinavir, ritonavir, and ivermectin cause hair cell damage: A targeted screen in the zebrafish lateral line. Front Cell Neurosci 2022; 16:941031. [PMID: 36090793 PMCID: PMC9448854 DOI: 10.3389/fncel.2022.941031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The biomedical community is rapidly developing COVID-19 drugs to bring much-need therapies to market, with over 900 drugs and drug combinations currently in clinical trials. While this pace of drug development is necessary, the risk of producing therapies with significant side-effects is also increased. One likely side-effect of some COVID-19 drugs is hearing loss, yet hearing is not assessed during preclinical development or clinical trials. We used the zebrafish lateral line, an established model for drug-induced sensory hair cell damage, to assess the ototoxic potential of seven drugs in clinical trials for treatment of COVID-19. We found that ivermectin, lopinavir, imatinib, and ritonavir were significantly toxic to lateral line hair cells. By contrast, the approved COVID-19 therapies dexamethasone and remdesivir did not cause damage. We also did not observe damage from the antibiotic azithromycin. Neither lopinavir nor ritonavir altered the number of pre-synaptic ribbons per surviving hair cell, while there was an increase in ribbons following imatinib or ivermectin exposure. Damage from lopinavir, imatinib, and ivermectin was specific to hair cells, with no overall cytotoxicity noted following TUNEL labeling. Ritonavir may be generally cytotoxic, as determined by an increase in the number of TUNEL-positive non-hair cells following ritonavir exposure. Pharmacological inhibition of the mechanotransduction (MET) channel attenuated damage caused by lopinavir and ritonavir but did not alter imatinib or ivermectin toxicity. These results suggest that lopinavir and ritonavir may enter hair cells through the MET channel, similar to known ototoxins such as aminoglycoside antibiotics. Finally, we asked if ivermectin was ototoxic to rats in vivo. While ivermectin is not recommended by the FDA for treating COVID-19, many people have chosen to take ivermectin without a doctor's guidance, often with serious side-effects. Rats received daily subcutaneous injections for 10 days with a clinically relevant ivermectin dose (0.2 mg/kg). In contrast to our zebrafish assays, ivermectin did not cause ototoxicity in rats. Our research suggests that some drugs in clinical trials for COVID-19 may be ototoxic. This work can help identify drugs with the fewest side-effects and determine which therapies warrant audiometric monitoring.
Collapse
Affiliation(s)
- Allison B. Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emily Dale
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emilee Doppenberg
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Forrest Fearington
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Jordan Hill
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Olivia Molano
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
5
|
Dinarello A, Tesoriere A, Martini P, Fontana CM, Volpato D, Badenetti L, Terrin F, Facchinello N, Romualdi C, Carnevali O, Dalla Valle L, Argenton F. Zebrafish Mutant Lines Reveal the Interplay between nr3c1 and nr3c2 in the GC-Dependent Regulation of Gene Transcription. Int J Mol Sci 2022; 23:2678. [PMID: 35269817 PMCID: PMC8910431 DOI: 10.3390/ijms23052678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Glucocorticoids mainly exert their biological functions through their cognate receptor, encoded by the nr3c1 gene. Here, we analysed the glucocorticoids mechanism of action taking advantage of the availability of different zebrafish mutant lines for their receptor. The differences in gene expression patterns between the zebrafish gr knock-out and the grs357 mutant line, in which a point mutation prevents binding of the receptor to the hormone-responsive elements, reveal an intricate network of GC-dependent transcription. Particularly, we show that Stat3 transcriptional activity mainly relies on glucocorticoid receptor GR tethering activity: several Stat3 target genes are induced upon glucocorticoid GC exposure both in wild type and in grs357/s357 larvae, but not in gr knock-out zebrafish. To understand the interplay between GC, their receptor, and the mineralocorticoid receptor, which is evolutionarily and structurally related to the GR, we generated an mr knock-out line and observed that several GC-target genes also need a functional mineralocorticoid receptor MR to be correctly transcribed. All in all, zebrafish mutants and transgenic models allow in vivo analysis of GR transcriptional activities and interactions with other transcription factors such as MR and Stat3 in an in-depth and rapid way.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Annachiara Tesoriere
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Camilla Maria Fontana
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Davide Volpato
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Lorenzo Badenetti
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Francesca Terrin
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Francesco Argenton
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| |
Collapse
|
6
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Holmgren M, Sheets L. Using the Zebrafish Lateral Line to Understand the Roles of Mitochondria in Sensorineural Hearing Loss. Front Cell Dev Biol 2021; 8:628712. [PMID: 33614633 PMCID: PMC7892962 DOI: 10.3389/fcell.2020.628712] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Hair cells are the mechanosensory receptors of the inner ear and can be damaged by noise, aging, and ototoxic drugs. This damage often results in permanent sensorineural hearing loss. Hair cells have high energy demands and rely on mitochondria to produce ATP as well as contribute to intracellular calcium homeostasis. In addition to generating ATP, mitochondria produce reactive oxygen species, which can lead to oxidative stress, and regulate cell death pathways. Zebrafish lateral-line hair cells are structurally and functionally analogous to cochlear hair cells but are optically and pharmacologically accessible within an intact specimen, making the zebrafish a good model in which to study hair-cell mitochondrial activity. Moreover, the ease of genetic manipulation of zebrafish embryos allows for the study of mutations implicated in human deafness, as well as the generation of transgenic models to visualize mitochondrial calcium transients and mitochondrial activity in live organisms. Studies of the zebrafish lateral line have shown that variations in mitochondrial activity can predict hair-cell susceptibility to damage by aminoglycosides or noise exposure. In addition, antioxidants have been shown to protect against noise trauma and ototoxic drug–induced hair-cell death. In this review, we discuss the tools and findings of recent investigations into zebrafish hair-cell mitochondria and their involvement in cellular processes, both under homeostatic conditions and in response to noise or ototoxic drugs. The zebrafish lateral line is a valuable model in which to study the roles of mitochondria in hair-cell pathologies and to develop therapeutic strategies to prevent sensorineural hearing loss in humans.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Ingersoll MA, Malloy EA, Caster LE, Holland EM, Xu Z, Zallocchi M, Currier D, Liu H, He DZZ, Min J, Chen T, Zuo J, Teitz T. BRAF inhibition protects against hearing loss in mice. SCIENCE ADVANCES 2020; 6:6/49/eabd0561. [PMID: 33268358 PMCID: PMC7821884 DOI: 10.1126/sciadv.abd0561] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/20/2020] [Indexed: 05/13/2023]
Abstract
Hearing loss caused by noise, aging, antibiotics, and chemotherapy affects 10% of the world population, yet there are no Food and Drug Administration (FDA)-approved drugs to prevent it. Here, we screened 162 small-molecule kinase-specific inhibitors for reduction of cisplatin toxicity in an inner ear cell line and identified dabrafenib (TAFINLAR), a BRAF kinase inhibitor FDA-approved for cancer treatment. Dabrafenib and six additional kinase inhibitors in the BRAF/MEK/ERK cellular pathway mitigated cisplatin-induced hair cell death in the cell line and mouse cochlear explants. In adult mice, oral delivery of dabrafenib repressed ERK phosphorylation in cochlear cells, and protected from cisplatin- and noise-induced hearing loss. Full protection was achieved in mice with co-treatment with oral AZD5438, a CDK2 kinase inhibitor. Our study explores a previously unidentified cellular pathway and molecular target BRAF kinase for otoprotection and may advance dabrafenib into clinics to benefit patients with cisplatin- and noise-induced ototoxicity.
Collapse
Affiliation(s)
- Matthew A Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Emma A Malloy
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Lauryn E Caster
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Eva M Holland
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Zhenhang Xu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - David Z Z He
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|