1
|
Du X, Xu H, Song P, Zhai Y, Ye H, Bao X, Huang Q, Tanigawa H, Tu Z, Chen P, Zhao X, Rauschecker JP, Yu X. The multifaceted role of the inferior colliculus in sensory prediction, reward processing, and decision-making. eLife 2025; 13:RP101142. [PMID: 39879260 PMCID: PMC11778927 DOI: 10.7554/elife.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation. Moreover, our findings demonstrate reward prediction errors within the IC, highlighting its complex integration in auditory and reward processing. Further analysis revealed a direct correlation between IC neuronal activity and behavioral choices, suggesting its involvement in decision-making processes. This research highlights a more complex role for the IC than traditionally understood, showcasing its integral role in cognitive and sensory processing and emphasizing its importance in integrated brain functions.
Collapse
Affiliation(s)
- Xinyu Du
- Department of Anesthesia, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Haoxuan Xu
- College of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationHangzhouChina
| | - Peirun Song
- Department of Anesthesia, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Hangting Ye
- Department of Anesthesia, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xuehui Bao
- College of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationHangzhouChina
| | - Qianyue Huang
- College of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationHangzhouChina
| | - Hisashi Tanigawa
- College of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationHangzhouChina
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown UniversityWashington, DCUnited States
| | - Xiongjie Yu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of MedicineHangzhouChina
- College of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhouChina
- Key Laboratory for Biomedical Engineering of Ministry of EducationHangzhouChina
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Wang J, Rao X, Huang S, Wang Z, Niu X, Zhu M, Wang S, Shi L. Detection of a temporal salient object benefits from visual stimulus-specific adaptation in avian midbrain inhibitory nucleus. Integr Zool 2024; 19:288-306. [PMID: 36893724 DOI: 10.1111/1749-4877.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Food and predators are the most noteworthy objects for the basic survival of wild animals, and both are often deviant in both spatial and temporal domains and quickly attract an animal's attention. Although stimulus-specific adaptation (SSA) is considered a potential neural basis of salient sound detection in the temporal domain, related research on visual SSA is limited and its relationship with temporal saliency is uncertain. The avian nucleus isthmi pars magnocellularis (Imc), which is central to midbrain selective attention network, is an ideal site to investigate the neural correlate of visual SSA and detection of a salient object in the time domain. Here, the constant order paradigm was applied to explore the visual SSA in the Imc of pigeons. The results showed that the firing rates of Imc neurons gradually decrease with repetitions of motion in the same direction, but recover when a motion in a deviant direction is presented, implying visual SSA to the direction of a moving object. Furthermore, enhanced response for an object moving in other directions that were not presented ever in the paradigm is also observed. To verify the neural mechanism underlying these phenomena, we introduced a neural computation model involving a recoverable synaptic change with a "center-surround" pattern to reproduce the visual SSA and temporal saliency for the moving object. These results suggest that the Imc produces visual SSA to motion direction, allowing temporal salient object detection, which may facilitate the detection of the sudden appearance of a predator.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shuman Huang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Zhizhong Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoke Niu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Minjie Zhu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Songwei Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Li Shi
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
- Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Silveira MA, Drotos AC, Pirrone TM, Versalle TS, Bock A, Roberts MT. Neuropeptide Y Signaling Regulates Recurrent Excitation in the Auditory Midbrain. J Neurosci 2023; 43:7626-7641. [PMID: 37704372 PMCID: PMC10634549 DOI: 10.1523/jneurosci.0900-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Neuropeptides play key roles in shaping the organization and function of neuronal circuits. In the inferior colliculus (IC), which is in the auditory midbrain, Neuropeptide Y (NPY) is expressed by a class of GABAergic neurons that project locally and outside the IC. Most neurons in the IC have local axon collaterals; however, the organization and function of local circuits in the IC remain unknown. We previously found that excitatory neurons in the IC can express the NPY Y1 receptor (Y1R+) and application of the Y1R agonist, [Leu31, Pro34]-NPY (LP-NPY), decreases the excitability of Y1R+ neurons. As NPY signaling regulates recurrent excitation in other brain regions, we hypothesized that Y1R+ neurons form interconnected local circuits in the IC and that NPY decreases the strength of recurrent excitation in these circuits. To test this hypothesis, we used optogenetics to activate Y1R+ neurons in mice of both sexes while recording from other neurons in the ipsilateral IC. We found that nearly 80% of glutamatergic IC neurons express the Y1 receptor, providing extensive opportunities for NPY signaling to regulate local circuits. Additionally, Y1R+ neuron synapses exhibited modest short-term synaptic plasticity, suggesting that local excitatory circuits maintain their influence over computations during sustained stimuli. We further found that application of LP-NPY decreased recurrent excitation in the IC, suggesting that NPY signaling strongly regulates local circuit function in the auditory midbrain. Our findings show that Y1R+ excitatory neurons form interconnected local circuits in the IC, and their influence over local circuits is regulated by NPY signaling.SIGNIFICANCE STATEMENT Local networks play fundamental roles in shaping neuronal computations in the brain. The IC, localized in the auditory midbrain, plays an essential role in sound processing, but the organization of local circuits in the IC is largely unknown. Here, we show that IC neurons that express the Neuropeptide Y1 receptor (Y1R+ neurons) make up most of the excitatory neurons in the IC and form interconnected local circuits. Additionally, we found that NPY, which is a powerful neuromodulator known to shape neuronal activity in other brain regions, decreases the extensive recurrent excitation mediated by Y1R+ neurons in local IC circuits. Thus, our results suggest that local NPY signaling is a key regulator of auditory computations in the IC.
Collapse
Affiliation(s)
- Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Audrey C Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Trinity M Pirrone
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Macalester College, St. Paul, Minnesota 55105
| | - Trevor S Versalle
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda Bock
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Schröger E, Roeber U, Coy N. Markov chains as a proxy for the predictive memory representations underlying mismatch negativity. Front Hum Neurosci 2023; 17:1249413. [PMID: 37771348 PMCID: PMC10525344 DOI: 10.3389/fnhum.2023.1249413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Events not conforming to a regularity inherent to a sequence of events elicit prediction error signals of the brain such as the Mismatch Negativity (MMN) and impair behavioral task performance. Events conforming to a regularity lead to attenuation of brain activity such as stimulus-specific adaptation (SSA) and behavioral benefits. Such findings are usually explained by theories stating that the information processing system predicts the forthcoming event of the sequence via detected sequential regularities. A mathematical model that is widely used to describe, to analyze and to generate event sequences are Markov chains: They contain a set of possible events and a set of probabilities for transitions between these events (transition matrix) that allow to predict the next event on the basis of the current event and the transition probabilities. The accuracy of such a prediction depends on the distribution of the transition probabilities. We argue that Markov chains also have useful applications when studying cognitive brain functions. The transition matrix can be regarded as a proxy for generative memory representations that the brain uses to predict the next event. We assume that detected regularities in a sequence of events correspond to (a subset of) the entries in the transition matrix. We apply this idea to the Mismatch Negativity (MMN) research and examine three types of MMN paradigms: classical oddball paradigms emphasizing sound probabilities, between-sound regularity paradigms manipulating transition probabilities between adjacent sounds, and action-sound coupling paradigms in which sounds are associated with actions and their intended effects. We show that the Markovian view on MMN yields theoretically relevant insights into the brain processes underlying MMN and stimulates experimental designs to study the brain's processing of event sequences.
Collapse
Affiliation(s)
- Erich Schröger
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Urte Roeber
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Nina Coy
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| |
Collapse
|
5
|
Silveira MA, Drotos AC, Pirrone TM, Versalle TS, Bock A, Roberts MT. Neuropeptide Y signaling regulates recurrent excitation in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540954. [PMID: 37292904 PMCID: PMC10245754 DOI: 10.1101/2023.05.16.540954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neuropeptides play key roles in shaping the organization and function of neuronal circuits. In the inferior colliculus (IC), which is located in the auditory midbrain, Neuropeptide Y (NPY) is expressed by a large class of GABAergic neurons that project locally as well as outside the IC. The IC integrates information from numerous auditory nuclei making the IC an important hub for sound processing. Most neurons in the IC have local axon collaterals, however the organization and function of local circuits in the IC remains largely unknown. We previously found that neurons in the IC can express the NPY Y1 receptor (Y 1 R + ) and application of the Y 1 R agonist, [Leu 31 , Pro 34 ]-NPY (LP-NPY), decreases the excitability of Y 1 R + neurons. To investigate how Y 1 R + neurons and NPY signaling contribute to local IC networks, we used optogenetics to activate Y 1 R + neurons while recording from other neurons in the ipsilateral IC. Here, we show that 78.4% of glutamatergic neurons in the IC express the Y1 receptor, providing extensive opportunities for NPY signaling to regulate excitation in local IC circuits. Additionally, Y 1 R + neuron synapses exhibit modest short-term synaptic plasticity, suggesting that local excitatory circuits maintain their influence over computations during sustained stimuli. We further found that application of LP-NPY decreases recurrent excitation in the IC, suggesting that NPY signaling strongly regulates local circuit function in the auditory midbrain. Together, our data show that excitatory neurons are highly interconnected in the local IC and their influence over local circuits is tightly regulated by NPY signaling.
Collapse
Affiliation(s)
- Marina A. Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Audrey C. Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Trinity M. Pirrone
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Macalester College, St. Paul, Minnesota 55105
| | - Trevor S. Versalle
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda Bock
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael T. Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology – Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
6
|
Song P, Zhai Y, Yu X. Stimulus-Specific Adaptation (SSA) in the Auditory System: Functional Relevance and Underlying Mechanisms. Neurosci Biobehav Rev 2023; 149:105190. [PMID: 37085022 DOI: 10.1016/j.neubiorev.2023.105190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Rapid detection of novel stimuli that appear suddenly in the surrounding environment is crucial for an animal's survival. Stimulus-specific adaptation (SSA) may be an important mechanism underlying novelty detection. In this review, we discuss the latest advances in SSA research by addressing four main aspects: 1) the frequency dependence of SSA and the origin of SSA in the auditory cortex: 2) spatial SSA and its comparison with frequency SSA: 3) feature integration in SSA and its implications in novelty detection: 4) functional significance and the physiological mechanism of SSA. Although SSA has been extensively investigated, the cognitive insights from SSA studies are extremely limited. Future work should aim to bridge these gaps.
Collapse
Affiliation(s)
- Peirun Song
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiongjie Yu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Oberle HM, Ford AN, Dileepkumar D, Czarny J, Apostolides PF. Synaptic mechanisms of top-down control in the non-lemniscal inferior colliculus. eLife 2022; 10:e72730. [PMID: 34989674 PMCID: PMC8735864 DOI: 10.7554/elife.72730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Corticofugal projections to evolutionarily ancient, subcortical structures are ubiquitous across mammalian sensory systems. These 'descending' pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here, we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from mouse auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity, and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor-dependent, supralinear excitatory postsynaptic potential summation, indicating that descending signals can nonlinearly amplify IC neurons' moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control and imply that heterosynaptic cooperativity contributes to the auditory cortico-collicular pathway's role in plasticity and perceptual learning.
Collapse
Affiliation(s)
- Hannah M Oberle
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Alexander N Ford
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Jordyn Czarny
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Pierre F Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
8
|
Valdés-Baizabal C, Carbajal GV, Pérez-González D, Malmierca MS. Dopamine modulates subcortical responses to surprising sounds. PLoS Biol 2020; 18:e3000744. [PMID: 32559190 PMCID: PMC7329133 DOI: 10.1371/journal.pbio.3000744] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/01/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
Dopamine guides behavior and learning through pleasure, according to classic understanding. Dopaminergic neurons are traditionally thought to signal positive or negative prediction errors (PEs) when reward expectations are, respectively, exceeded or not matched. These signed PEs are quite different from the unsigned PEs, which report surprise during sensory processing. But mounting theoretical accounts from the predictive processing framework postulate that dopamine, as a neuromodulator, could potentially regulate the postsynaptic gain of sensory neurons, thereby scaling unsigned PEs according to their expected precision or confidence. Despite ample modeling work, the physiological effects of dopamine on the processing of surprising sensory information are yet to be addressed experimentally. In this study, we tested how dopamine modulates midbrain processing of unexpected tones. We recorded extracellular responses from the rat inferior colliculus to oddball and cascade sequences, before, during, and after the microiontophoretic application of dopamine or eticlopride (a D2-like receptor antagonist). Results demonstrate that dopamine reduces the net neuronal responsiveness exclusively to unexpected sensory input without significantly altering the processing of expected input. We conclude that dopaminergic projections from the thalamic subparafascicular nucleus to the inferior colliculus could encode the expected precision of unsigned PEs, attenuating via D2-like receptors the postsynaptic gain of sensory inputs forwarded by the auditory midbrain neurons. This direct dopaminergic modulation of sensory PE signaling has profound implications for both the predictive coding framework and the understanding of dopamine function. Information about unexpected stimuli is encoded in the form of prediction error signals. The earliest prediction error signals identified in the auditory brain emerge subcortically in the inferior colliculus. This study reveals the essential role of dopamine in encoding the precision of prediction errors at the auditory midbrain.
Collapse
Affiliation(s)
- Catalina Valdés-Baizabal
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Guillermo V. Carbajal
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- * E-mail: (DPG); (MSM)
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
- * E-mail: (DPG); (MSM)
| |
Collapse
|