1
|
Whittom A, Chauvette L, Bégin A, Blanchette I, Tremblay P, Sharp A. Music Perception in Older Adults With Hearing Loss: Protective Effect of Musical Experience. Ear Hear 2025; 46:707-718. [PMID: 39648322 DOI: 10.1097/aud.0000000000001615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
OBJECTIVES The goal of this project was to investigate the impact of musical experience, hearing loss, and age on music perception in older adults. The authors hypothesized that older adults with a varying degree of musical experience would perform better at music perception tasks than their counterparts without musical experience while controlling for age and hearing loss. DESIGN This study used a descriptive correlational cross-sectional design. Seventy-seven older adults aged 60 to 90 years were recruited and divided into two groups based on their lifetime musical experience: the group without musical experience (n = 39) and the M group (with musical experience; n = 38). Participants in the M group had either played an instrument for 5 years or more and/or taken at least 1 year of music lessons. Following a hearing screening and a musical experience questionnaire, participants completed two music perception tasks: (1) a short version of the Montreal Battery Evaluation of Amusia (MBEA) measuring melodic (scale and contour) and rhythm perception, and (2) an instrument discrimination task measuring timbre perception. RESULTS Results revealed that participants of the M group had a significantly higher accuracy in both tasks compared with the group without musical experience while controlling for age and hearing loss. Moreover, a significant interaction was found between group effect and hearing loss for the MBEA, suggesting that musical experience moderates the impact of hearing loss on melodic and rhythm perception abilities. Finally, the amount of musical experience was the most important positive predictor for MBEA accuracy in the M group. CONCLUSIONS These results suggest that despite age-related hearing loss, older adults with musical experience still benefit from their experience-driven enhancement in melodic, rhythm, and timbre perception. Findings from this study support the notion that music training is beneficial for music perception abilities, providing protection against the impact of presbycusis.
Collapse
Affiliation(s)
- Alexis Whittom
- École des Sciences de la Réadaptation, Faculté de Médecine, Université Laval, Québec, Québec, Canada
- CERVO Brain Research Center, Québec, Québec, Canada
- Center for Research on Brain, Language & Music, Montreal, Quebec, Canada
| | - Loonan Chauvette
- École des Sciences de la Réadaptation, Faculté de Médecine, Université Laval, Québec, Québec, Canada
- CERVO Brain Research Center, Québec, Québec, Canada
- Center for Research on Brain, Language & Music, Montreal, Quebec, Canada
| | - Alex Bégin
- CERVO Brain Research Center, Québec, Québec, Canada
- École de Psychologie, Faculté des Sciences Sociales, Université Laval, Québec, Québec, Canada
| | - Isabelle Blanchette
- CERVO Brain Research Center, Québec, Québec, Canada
- École de Psychologie, Faculté des Sciences Sociales, Université Laval, Québec, Québec, Canada
| | - Pascale Tremblay
- École des Sciences de la Réadaptation, Faculté de Médecine, Université Laval, Québec, Québec, Canada
- CERVO Brain Research Center, Québec, Québec, Canada
- Center for Research on Brain, Language & Music, Montreal, Quebec, Canada
| | - Andréanne Sharp
- École des Sciences de la Réadaptation, Faculté de Médecine, Université Laval, Québec, Québec, Canada
- CERVO Brain Research Center, Québec, Québec, Canada
- Center for Research on Brain, Language & Music, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Tao DD, Fan Y, Galvin JJ, Liu JS, Fu QJ. Effects of Masker Intelligibility and Talker Sex on Speech-in-Speech Recognition by Mandarin Speakers Across the Lifespan. Ear Hear 2025:00003446-990000000-00412. [PMID: 40097377 DOI: 10.1097/aud.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
OBJECTIVES Speech perception develops during childhood, matures in early adulthood, and declines in old age. Everyday listening environments often contain competing sounds that may interfere with the perception of the signal of interest. With competing speech, listeners often experience informational masking, where the intelligibility and acoustic characteristics (e.g., talker sex differences) of the maskers interfere with understanding of target speech. Across the lifespan, utilization of segregation cues in competing speech is not well understood. Furthermore, there is a dearth of research regarding speech-in-speech recognition across the lifespan in speakers of tonal languages such as Mandarin Chinese. DESIGN Speech recognition thresholds (SRTs) were measured in listeners with age-adjusted normal hearing; the age range of participants was 5 to 74 years old. All participants were native speakers of Mandarin Chinese. SRTs were measured in the presence of two-talker Forward or Reverse speech maskers where the masker sex was the same as or different from the target. RESULTS In general, SRTs were highest (poorest) with the Forward same-sex maskers and lowest (best) with the Reverse different-sex maskers. SRT data were analyzed for 5 age groups: child (5 to 9 years), youth (10 to 17 years), adult (18 to 39 years), middle-aged (40 to 59 years), and elderly (60 to 74 years). Overall, SRTs were significantly higher for the child group than for the youth, adult, middle-aged, and elderly groups (p < 0.05), and significantly higher for the elderly than for the adult group (p < 0.05). There was a significant interaction among age group, speech direction, and talker sex cues, where SRTs were significantly higher for Forward than for Reverse speech, and significantly higher for same-sex than for different-sex maskers for all age groups (p < 0.05), except for the child group. CONCLUSIONS Consistent with previous studies with non-tonal language speakers, the present SRTs with tonal language speakers were best in the adult group and poorest in the child and elderly groups. The child and youth groups demonstrated greater masking release with Reverse speech than with different-sex maskers, while the elderly group exhibited greater release with the different-sex maskers than with Reverse speech. This pattern of results may reflect developmental effects on utilization of talker sex cues in children; in older adults, enhanced top-down processes may compensate for the age-related declines in processing of temporal envelope and temporal fine structure information.
Collapse
Affiliation(s)
- Duo-Duo Tao
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhui Fan
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - John J Galvin
- Center for Hearing Devices, House Institute Foundation, Los Angeles, California, USA
- Faculty of Medicine, Université de Tours, Tours, France
| | - Ji-Sheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian-Jie Fu
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Colla MDF, Lunardelo PP, Dias FAM. Cochlear synaptopathy and hidden hearing loss: a scoping review. Codas 2023; 36:e20230032. [PMID: 37991055 PMCID: PMC10715634 DOI: 10.1590/2317-1782/20232023032pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE To identify the pathophysiological definitions adopted by studies investigating "cochlear synaptopathy" (CS) and "hidden hearing loss" (HHL). RESEARCH STRATEGIES The combination of keywords "Auditory Synaptopathy" or "Neuronal Synaptopathy" or "Hidden Hearing Loss" with "etiology" or "causality" or "diagnosis" was used in the databases EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO), and Web of Science. SELECTION CRITERIA Studies that investigated CS or HHL in humans using behavioral and/or electrophysiological procedures were included. DATA ANALYSIS Data analysis and extraction were performed with regard to terminology, definitions, and population. RESULTS 49 articles were included. Of these, 61.2% used the CS terminology, 34.7% used both terms, and 4.1% used HHL. The most-studied conditions were exposure to noise and tinnitus. CONCLUSION CS terminology was used in most studies, referring to the pathophysiological process of deafferentiation between the cochlear nerve fibers and inner hair cells.
Collapse
Affiliation(s)
- Marina de Figueiredo Colla
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais – PUC MG - Belo Horizonte (MG), Brasil.
| | - Pamela Papile Lunardelo
- Programa de Pós-graduação em Psicobiologia, Universidade de São Paulo de Ribeirão Preto – USP RP - Ribeirão Preto (SP), Brasil.
| | - Fernanda Abalen Martins Dias
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais – PUC MG - Belo Horizonte (MG), Brasil.
| |
Collapse
|
4
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. Noise Exposure in Palestinian Workers Without a Diagnosis of Hearing Impairment: Relations to Speech-Perception-in-Noise Difficulties, Tinnitus, and Hyperacusis. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1085-1109. [PMID: 36802819 DOI: 10.1044/2022_jslhr-22-00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE Many workers in developing countries are exposed to unsafe occupational noise due to inadequate health and safety practices. We tested the hypotheses that occupational noise exposure and aging affect speech-perception-in-noise (SPiN) thresholds, self-reported hearing ability, tinnitus presence, and hyperacusis severity among Palestinian workers. METHOD Palestinian workers (N = 251, aged 18-70 years) without diagnosed hearing or memory impairments completed online instruments including a noise exposure questionnaire; forward and backward digit span tests; hyperacusis questionnaire; the short-form Speech, Spatial and Qualities of Hearing Scale (SSQ12); the Tinnitus Handicap Inventory; and a digits-in-noise (DIN) test. Hypotheses were tested via multiple linear and logistic regression models, including age and occupational noise exposure as predictors, and with sex, recreational noise exposure, cognitive ability, and academic attainment as covariates. Familywise error rate was controlled across all 16 comparisons using the Bonferroni-Holm method. Exploratory analyses evaluated effects on tinnitus handicap. A comprehensive study protocol was preregistered. RESULTS Nonsignificant trends of poorer SPiN performance, poorer self-reported hearing ability, greater prevalence of tinnitus, greater tinnitus handicap, and greater severity of hyperacusis as a function of higher occupational noise exposure were observed. Greater hyperacusis severity was significantly predicted by higher occupational noise exposure. Aging was significantly associated with higher DIN thresholds and lower SSQ12 scores, but not with tinnitus presence, tinnitus handicap, or hyperacusis severity. CONCLUSIONS Workers in Palestine may suffer from auditory effects of occupational noise and aging despite no formal diagnosis. These findings highlight the importance of occupational noise monitoring and hearing-related health and safety practices in developing countries. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22056701.
Collapse
Affiliation(s)
- Adnan M Shehabi
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
- Department of Psychology, Lancaster University, United Kingdom
| |
Collapse
|
5
|
Schmid C, Wimmer W, Kompis M. BPACE: A Bayesian, Patient-Centered Procedure for Matrix Speech Tests in Noise. Trends Hear 2023; 27:23312165231191382. [PMID: 37501653 PMCID: PMC10388612 DOI: 10.1177/23312165231191382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Matrix sentence tests in noise can be challenging to the listener and time-consuming. A trade-off should be found between testing time, listener's comfort and the precision of the results. Here, a novel test procedure based on an updated maximum likelihood method was developed and implemented in a German matrix sentence test. It determines the parameters of the psychometric function (threshold, slope, and lapse-rate) without constantly challenging the listener at the intelligibility threshold. A so-called "credible interval" was used as a mid-run estimate of reliability and can be used as a termination criterion for the test. The procedure was evaluated and compared to a STAIRCASE procedure in a study with 20 cochlear implant patients and 20 normal hearing participants. The proposed procedure offers comparable accuracy and reliability to the reference method, but with a lower listening effort, as rated by the listeners (- 1.8 points on a 10-point scale). Test duration can be reduced by 1.3 min on average when a credible interval of 2 dB is used as the termination criterion instead of testing 30 sentences. Particularly, normal hearing listeners and well performing, cochlear implant users can benefit from shorter test duration. Although the novel procedure was developed for a German test, it can easily be applied to tests in any other language.
Collapse
Affiliation(s)
- Christoph Schmid
- Department of Otorhinolaryngology, Head and Neck Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Wilhelm Wimmer
- Department of Otorhinolaryngology, Head and Neck Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Kompis
- Department of Otorhinolaryngology, Head and Neck Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
6
|
Modeling temporal information encoding by the population of fibers in the healthy and synaptopathic auditory nerve. Hear Res 2022; 426:108621. [PMID: 36182814 DOI: 10.1016/j.heares.2022.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
Abstract
We report a theoretical study aimed at investigating the impact of cochlear synapse loss (synaptopathy) on the encoding of the envelope (ENV) and temporal fine structure (TFS) of sounds by the population of auditory nerve fibers. A computational model was used to simulate auditory-nerve spike trains evoked by sinusoidally amplitude-modulated (AM) tones at 10 Hz with various carrier frequencies and levels. The model included 16 cochlear channels with characteristic frequencies (CFs) from 250 Hz to 8 kHz. Each channel was innervated by 3, 4 and 10 fibers with low (LSR), medium (MSR), and high spontaneous rates (HSR), respectively. For each channel, spike trains were collapsed into three separate 'population' post-stimulus time histograms (PSTHs), one per fiber type. Information theory was applied to reconstruct the stimulus waveform, ENV, and TFS from one or more PSTHs in a mathematically optimal way. The quality of the reconstruction was regarded as an estimate of the information present in the used PSTHs. Various synaptopathy scenarios were simulated by removing fibers of specific types and/or cochlear regions before stimulus reconstruction. We found that the TFS was predominantly encoded by HSR fibers at all stimulus carrier frequencies and levels. The encoding of the ENV was more complex. At lower levels, the ENV was predominantly encoded by HSR fibers with CFs near the stimulus carrier frequency. At higher levels, the ENV was equally well or better encoded by HSR fibers with CFs different from the AM carrier frequency as by LSR fibers with CFs at the carrier frequency. Altogether, findings suggest that a healthy population of HSR fibers (i.e., including fibers with CFs around and remote from the AM carrier frequency) might be sufficient to encode the ENV and TFS over a wide range of stimulus levels. Findings are discussed regarding their relevance for diagnosing synaptopathy using non-invasive ENV- and TFS-based measures.
Collapse
|
7
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
8
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
9
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. The Effect of Lifetime Noise Exposure and Aging on Speech-Perception-in-Noise Ability and Self-Reported Hearing Symptoms: An Online Study. Front Aging Neurosci 2022; 14:890010. [PMID: 35711902 PMCID: PMC9195834 DOI: 10.3389/fnagi.2022.890010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Animal research shows that aging and excessive noise exposure damage cochlear outer hair cells, inner hair cells, and the synapses connecting inner hair cells with the auditory nerve. This may translate into auditory symptoms such as difficulty understanding speech in noise, tinnitus, and hyperacusis. The current study, using a novel online approach, assessed and quantified the effects of lifetime noise exposure and aging on (i) speech-perception-in-noise (SPiN) thresholds, (ii) self-reported hearing ability, and (iii) the presence of tinnitus. Secondary aims involved documenting the effects of lifetime noise exposure and aging on tinnitus handicap and the severity of hyperacusis. Two hundred and ninety-four adults with no past diagnosis of hearing or memory impairments were recruited online. Participants were assigned into two groups: 217 "young" (age range: 18-35 years, females: 151) and 77 "older" (age range: 50-70 years, females: 50). Participants completed a set of online instruments including an otologic health and demographic questionnaire, a dementia screening tool, forward and backward digit span tests, a noise exposure questionnaire, the Khalfa hyperacusis questionnaire, the short-form of the Speech, Spatial, and Qualities of Hearing scale, the Tinnitus Handicap Inventory, a digits-in-noise test, and a Coordinate Response Measure speech-perception test. Analyses controlled for sex and cognitive function as reflected by the digit span. A detailed protocol was pre-registered, to guard against "p-hacking" of this extensive dataset. Lifetime noise exposure did not predict SPiN thresholds, self-reported hearing ability, or the presence of tinnitus in either age group. Exploratory analyses showed that worse hyperacusis scores, and a greater prevalence of tinnitus, were associated significantly with high lifetime noise exposure in the young, but not in the older group. Age was a significant predictor of SPiN thresholds and the presence of tinnitus, but not of self-reported hearing ability, tinnitus handicap, or severity of hyperacusis. Consistent with several lab studies, our online-derived data suggest that older adults with no diagnosis of hearing impairment have a poorer SPiN ability and a higher risk of tinnitus than their younger counterparts. Moreover, lifetime noise exposure may increase the risk of tinnitus and the severity of hyperacusis in young adults with no diagnosis of hearing impairment.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
10
|
Land R, Kral A. Temporal acuity is preserved in the auditory midbrain of aged mice. Neurobiol Aging 2022; 110:47-60. [PMID: 34852306 DOI: 10.1016/j.neurobiolaging.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
Impaired temporal resolution of the central auditory system has long been suggested to contribute to speech understanding deficits in the elderly. However, it has been difficult to differentiate between direct age-related central deficits and indirect effects of confounding peripheral age-related hearing loss on temporal resolution. To differentiate this, we measured temporal acuity in the inferior colliculus (IC) of aged CBA/J and C57BL/6 mice, as a model of aging with and without concomitant hearing loss. We used two common measures of auditory temporal processing: gap detection as a measure of temporal fine structure and amplitude-modulated noise as a measure of envelope sensitivity. Importantly, auditory temporal acuity remained precise in the IC of old CBA/J mice when no or only minimal age-related hearing loss was present. In contrast, temporal acuity was only indirectly reduced by the presence of age-related hearing loss in aged C57BL/6 mice, not by affecting the brainstem precision, but by affecting the signal-to-noise ratio of the neuronal activity in the IC. This demonstrates that indirect effects of age-related peripheral hearing loss likely remain an important factor for temporal processing in aging in comparison to 'pure' central auditory decline itself. It also draws attention to the issue that the threshold difference between 'nearly normal' or 'clinically normal' hearing aging subjects in comparison to normal hearing young subjects still can have indirect effects on central auditory neural representations of temporal processing.
Collapse
Affiliation(s)
- Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany.
| | - Andrej Kral
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany; Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
11
|
Cutting Through the Noise: Noise-Induced Cochlear Synaptopathy and Individual Differences in Speech Understanding Among Listeners With Normal Audiograms. Ear Hear 2022; 43:9-22. [PMID: 34751676 PMCID: PMC8712363 DOI: 10.1097/aud.0000000000001147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following a conversation in a crowded restaurant or at a lively party poses immense perceptual challenges for some individuals with normal hearing thresholds. A number of studies have investigated whether noise-induced cochlear synaptopathy (CS; damage to the synapses between cochlear hair cells and the auditory nerve following noise exposure that does not permanently elevate hearing thresholds) contributes to this difficulty. A few studies have observed correlations between proxies of noise-induced CS and speech perception in difficult listening conditions, but many have found no evidence of a relationship. To understand these mixed results, we reviewed previous studies that have examined noise-induced CS and performance on speech perception tasks in adverse listening conditions in adults with normal or near-normal hearing thresholds. Our review suggests that superficially similar speech perception paradigms used in previous investigations actually placed very different demands on sensory, perceptual, and cognitive processing. Speech perception tests that use low signal-to-noise ratios and maximize the importance of fine sensory details- specifically by using test stimuli for which lexical, syntactic, and semantic cues do not contribute to performance-are more likely to show a relationship to estimated CS levels. Thus, the current controversy as to whether or not noise-induced CS contributes to individual differences in speech perception under challenging listening conditions may be due in part to the fact that many of the speech perception tasks used in past studies are relatively insensitive to CS-induced deficits.
Collapse
|
12
|
Buran BN, McMillan GP, Keshishzadeh S, Verhulst S, Bramhall NF. Predicting synapse counts in living humans by combining computational models with auditory physiology. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:561. [PMID: 35105019 PMCID: PMC8800592 DOI: 10.1121/10.0009238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Aging, noise exposure, and ototoxic medications lead to cochlear synapse loss in animal models. As cochlear function is highly conserved across mammalian species, synaptopathy likely occurs in humans as well. Synaptopathy is predicted to result in perceptual deficits including tinnitus, hyperacusis, and difficulty understanding speech-in-noise. The lack of a method for diagnosing synaptopathy in living humans hinders studies designed to determine if noise-induced synaptopathy occurs in humans, identify the perceptual consequences of synaptopathy, or test potential drug treatments. Several physiological measures are sensitive to synaptopathy in animal models including auditory brainstem response (ABR) wave I amplitude. However, it is unclear how to translate these measures to synaptopathy diagnosis in humans. This work demonstrates how a human computational model of the auditory periphery, which can predict ABR waveforms and distortion product otoacoustic emissions (DPOAEs), can be used to predict synaptic loss in individual human participants based on their measured DPOAE levels and ABR wave I amplitudes. Lower predicted synapse numbers were associated with advancing age, higher noise exposure history, increased likelihood of tinnitus, and poorer speech-in-noise perception. These findings demonstrate the utility of this modeling approach in predicting synapse counts from physiological data in individual human subjects.
Collapse
Affiliation(s)
- Brad N Buran
- Oregon Hearing Research Center (OHRC), Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Garnett P McMillan
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| | - Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
13
|
Carcagno S, Plack CJ. Relations between speech-reception, psychophysical temporal processing, and subcortical electrophysiological measures of auditory function in humans. Hear Res 2022; 417:108456. [PMID: 35149333 PMCID: PMC8935383 DOI: 10.1016/j.heares.2022.108456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
|