1
|
Bidelman GM, Horn CM. Objective Detection of Auditory Steady-State Responses (ASSRs) Based on Mutual Information: Receiver Operating Characteristics and Performance Across Modulation Rates and Levels. Audiol Res 2025; 15:60. [PMID: 40407674 PMCID: PMC12101356 DOI: 10.3390/audiolres15030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 05/13/2025] [Indexed: 05/26/2025] Open
Abstract
Background: Auditory steady-state responses (ASSRs) are sustained potentials used to assess the physiological integrity of the auditory pathway and objectively estimate hearing thresholds. ASSRs are typically analyzed using statistical procedures to remove the subjective bias of human operators. Knowing when to terminate signal averaging in ASSR testing is critical for making efficient clinical decisions and obtaining high-quality data in empirical research. Here, we report on stimulus-specific (frequency, level) properties and operating ranges of a novel ASSR detection metric based on mutual information (MI). Methods: ASSRs were measured in n = 10 normal-hearing listeners exposed to various stimuli varying in modulation rate (40, 80 Hz) and level (80-20 dB SPL). Results: MI-based classifiers applied to ASSR recordings showed that the accuracy of ASSR detection ranged from ~75 to 99% and was better for 40 compared to 80 Hz responses and for higher compared to lower stimulus levels. Receiver operating characteristics (ROCs) were used to establish normative ranges for MI for reliable ASSR detection across levels and rates (MI = 0.9-1.6). Relative to current statistics for ASSR identification (F-test), MI was a more efficient metric for determining the stopping criterion for signal averaging. Conclusions: Our results confirm that MI can be applied across a broad range of ASSR stimuli and might offer improvements to conventional objective techniques for ASSR detection.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN 47408, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Claire McElwain Horn
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
2
|
Singer N, Zaltz Y. Auditory Learning and Generalization in Older Adults: Evidence from Voice Discrimination Training. Trends Hear 2025; 29:23312165251342436. [PMID: 40420656 PMCID: PMC12117233 DOI: 10.1177/23312165251342436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/07/2025] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Auditory learning is essential for adapting to continuously changing acoustic environments. This adaptive capability, however, may be impacted by age-related declines in sensory and cognitive functions, potentially limiting learning efficiency and generalization in older adults. This study investigated auditory learning and generalization in 24 older (65-82 years) and 24 younger (18-34 years) adults through voice discrimination (VD) training. Participants were divided into training (12 older, 12 younger adults) and control groups (12 older, 12 younger adults). Trained participants completed five sessions: Two testing sessions assessing VD performance using a 2-down 1-up adaptive procedure with F0-only, formant-only, and combined F0 + formant cues, and three training sessions focusing exclusively on VD with F0 cues. Control groups participated only in the two testing sessions, with no intermediate training. Results revealed significant training-induced improvements in VD with F0 cues for both younger and older adults, with comparable learning efficiency and gains across groups. However, generalization to the formant-only cue was observed only in younger adults, suggesting limited learning transfer in older adults. Additionally, VD training did not improve performance in the combined F0 + formant condition beyond control group improvements, underscoring the specificity of perceptual learning. These findings provide novel insights into auditory learning in older adults, showing that while they retain the ability for significant auditory skill acquisition, age-related declines in perceptual flexibility may limit broader generalization. This study highlights the importance of designing targeted auditory interventions for older adults, considering their specific limitations in generalizing learning gains across different acoustic cues.
Collapse
Affiliation(s)
- Nuphar Singer
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zaltz
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Dapper K, Wolpert SM, Schirmer J, Fink S, Gaudrain E, Başkent D, Singer W, Verhulst S, Braun C, Dalhoff E, Rüttiger L, Munk MHJ, Knipper M. Age dependent deficits in speech recognition in quiet and noise are reflected in MGB activity and cochlear onset coding. Neuroimage 2025; 305:120958. [PMID: 39622462 DOI: 10.1016/j.neuroimage.2024.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
The slowing and reduction of auditory responses in the brain are recognized side effects of increased pure tone thresholds, impaired speech recognition, and aging. However, it remains controversial whether central slowing is primarily linked to brain processes as atrophy, or is also associated with the slowing of temporal neural processing from the periphery. Here we analyzed electroencephalogram (EEG) responses that most likely reflect medial geniculate body (MGB) responses to passive listening of phonemes in 80 subjects ranging in age from 18 to 76 years, in whom the peripheral auditory responses had been analyzed in detail (Schirmer et al., 2024). We observed that passive listening to vowels and phonemes, specifically designed to rely on either temporal fine structure (TFS) for frequencies below the phase locking limit (<1500 Hz), or on the temporal envelope (TENV) for frequencies above phase locking limit, entrained lower or higher neural EEG responses. While previous views predict speech content, particular in noise to be encoded through TENV, here a decreasing phoneme-induced EEG amplitude over age in response to phonemes relying on TENV coding could also be linked to poorer speech-recognition thresholds in quiet. In addition, increased phoneme-evoked EEG delay could be correlated with elevated extended high-frequency threshold (EHF) for phoneme changes that relied on TFS and TENV coding. This may suggest a role of pure-tone threshold averages (PTA) of EHF for TENV and TFS beyond sound localization that is reflected in likely MGB delays. When speech recognition thresholds were normalized for pure-tone thresholds, however, the EEG amplitudes remained insignificant, and thereby became independent of age. Under these conditions, poor speech recognition in quiet was found together with a delay in EEG response for phonemes that relied on TFS coding, while poor speech recognition in ipsilateral noise was observed as a trend of shortened EEG delays for phonemes that relied on TENV coding. Based on previous analyses performed in these same subjects, elevated thresholds in extended high-frequency regions were linked to cochlear synaptopathy and auditory brainstem delays. Also, independent of hearing loss, poor speech-performing groups in quiet or with ipsilateral noise during TFS or TENV coding could be linked to lower or better outer hair cell performance and delayed or steeper auditory nerve responses at stimulus onset. The amplitude and latency of MGB responses to phonemes requiring TFS or TENV coding, dependent or independent of hearing loss, may thus be a new predictor of poor speech recognition in quiet and ipsilateral noise that links deficits in synchronicity at stimulus onset to neocortical activity. Amplitudes and delays of speech EEG responses to syllables should be reconsidered for future hearing-aid studies.
Collapse
Affiliation(s)
- Konrad Dapper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Stephan M Wolpert
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Jakob Schirmer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Center Hospitalier Le Vinatier -Bâtiment 462-Neurocampus, 95 boulevard Pinel, Lyon, France
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, Groningen 9700RB, the Netherlands
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - Christoph Braun
- MEG-Center, University of Tübingen, Tübingen 72076, Germany; HIH, Hertie Institute for Clinical Brain Research, Tübingen 72076, Germany; CIMeC, Center for Mind and Brain Research, University of Trento, Rovereto 38068, Italy
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Matthias H J Munk
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
4
|
Poe AA, Karawani H, Anderson S. Aging effects on the neural representation and perception of consonant transition cues. Hear Res 2024; 448:109034. [PMID: 38781768 PMCID: PMC11156531 DOI: 10.1016/j.heares.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Older listeners have difficulty processing temporal cues that are important for word discrimination, and deficient processing may limit their ability to benefit from these cues. Here, we investigated aging effects on perception and neural representation of the consonant transition and the factors that contribute to successful perception. To further understand the neural mechanisms underlying the changes in processing from brainstem to cortex, we also examined the factors that contribute to exaggerated amplitudes in cortex. We enrolled 30 younger normal-hearing and 30 older normal-hearing participants who met the criteria of clinically normal hearing. Perceptual identification functions were obtained for the words BEAT and WHEAT on a 7-step continuum of consonant-transition duration. Auditory brainstem responses (ABRs) were recorded to click stimuli and frequency-following responses (FFRs) and cortical auditory-evoked potentials were recorded to the endpoints of the BEAT-WHEAT continuum. Perceptual performance for identification of BEAT vs. WHEAT did not differ between younger and older listeners. However, both subcortical and cortical measures of neural representation showed age group differences, such that FFR phase locking was lower but cortical amplitudes (P1 and N1) were higher in older compared to younger listeners. ABR Wave I amplitude and FFR phase locking, but not audiometric thresholds, predicted early cortical amplitudes. Phase locking to the transition region and early cortical peak amplitudes (P1) predicted performance on the perceptual identification function. Overall, results suggest that the neural representation of transition durations and cortical overcompensation may contribute to the ability to perceive transition duration contrasts. Cortical overcompensation appears to be a maladaptive response to decreased neural firing/synchrony.
Collapse
Affiliation(s)
- Abigail Anne Poe
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
5
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of age and noise exposure history on auditory nerve response amplitudes: A systematic review, study, and meta-analysis. Hear Res 2024; 447:109010. [PMID: 38744019 PMCID: PMC11135078 DOI: 10.1016/j.heares.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States.
| | - Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - April P Alvey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Abigail Lawson
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Lois J Matthews
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Judy R Dubno
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Kelly C Harris
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| |
Collapse
|
6
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of Age and Noise Exposure History on Auditory Nerve Response Amplitudes: A Systematic Review, Study, and Meta-Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585882. [PMID: 38585917 PMCID: PMC10996537 DOI: 10.1101/2024.03.20.585882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r=-0.407), but noise-exposure effects are weak (r=-0.152). We conclude that noise-exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Carolyn M McClaskey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - April P Alvey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Abigail Lawson
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Lois J Matthews
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Judy R Dubno
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Kelly C Harris
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| |
Collapse
|
7
|
McClaskey CM. Neural hyperactivity and altered envelope encoding in the central auditory system: Changes with advanced age and hearing loss. Hear Res 2024; 442:108945. [PMID: 38154191 PMCID: PMC10942735 DOI: 10.1016/j.heares.2023.108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Temporal modulations are ubiquitous features of sound signals that are important for auditory perception. The perception of temporal modulations, or temporal processing, is known to decline with aging and hearing loss and negatively impact auditory perception in general and speech recognition specifically. However, neurophysiological literature also provides evidence of exaggerated or enhanced encoding of specifically temporal envelopes in aging and hearing loss, which may arise from changes in inhibitory neurotransmission and neuronal hyperactivity. This review paper describes the physiological changes to the neural encoding of temporal envelopes that have been shown to occur with age and hearing loss and discusses the role of disinhibition and neural hyperactivity in contributing to these changes. Studies in both humans and animal models suggest that aging and hearing loss are associated with stronger neural representations of both periodic amplitude modulation envelopes and of naturalistic speech envelopes, but primarily for low-frequency modulations (<80 Hz). Although the frequency dependence of these results is generally taken as evidence of amplified envelope encoding at the cortex and impoverished encoding at the midbrain and brainstem, there is additional evidence to suggest that exaggerated envelope encoding may also occur subcortically, though only for envelopes with low modulation rates. A better understanding of how temporal envelope encoding is altered in aging and hearing loss, and the contexts in which neural responses are exaggerated/diminished, may aid in the development of interventions, assistive devices, and treatment strategies that work to ameliorate age- and hearing-loss-related auditory perceptual deficits.
Collapse
Affiliation(s)
- Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, MSC 550, Charleston, SC 29425, United States.
| |
Collapse
|
8
|
Çolak H, Aydemir BE, Sakarya MD, Çakmak E, Alniaçik A, Türkyilmaz MD. Subcortical Auditory Processing and Speech Perception in Noise Among Individuals With and Without Extended High-Frequency Hearing Loss. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:221-231. [PMID: 37956878 DOI: 10.1044/2023_jslhr-23-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE The significance of extended high-frequency (EHF) hearing (> 8 kHz) is not well understood so far. In this study, we aimed to understand the relationship between EHF hearing loss (EHFHL) and speech perception in noise (SPIN) and the associated physiological signatures using the speech-evoked frequency-following response (sFFR). METHOD Sixteen young adults with EHFHL and 16 age- and sex-matched individuals with normal hearing participated in the study. SPIN performance in right speech-right noise, left speech-left noise, and binaural listening conditions was evaluated using the Turkish Matrix Test. Additionally, subcortical auditory processing was assessed by recording sFFRs elicited by 40-ms /da/ stimuli. RESULTS Individuals with EHFHL demonstrated poorer SPIN performances in all listening conditions (p < .01). Longer latencies were observed in the V (onset) and O (offset) peaks in these individuals (p ≤ .01). However, only the V/A peak amplitude was found to be significantly reduced in individuals with EHFHL (p < .01). CONCLUSIONS Our findings highlight the importance of EHF hearing and suggest that EHF hearing should be considered among the key elements in SPIN. Individuals with EHFHL show a tendency toward weaker subcortical auditory processing, which likely contributes to their poorer SPIN performance. Thus, routine assessment of EHF hearing should be implemented in clinical settings, alongside the evaluation of standard audiometric frequencies (0.25-8 kHz).
Collapse
Affiliation(s)
- Hasan Çolak
- Department of Audiology, Baskent University, Ankara, Turkey
- Department of Audiology, Hacettepe University, Ankara, Turkey
| | | | | | - Eda Çakmak
- Department of Audiology, Baskent University, Ankara, Turkey
| | | | | |
Collapse
|
9
|
Karunathilake IMD, Dunlap JL, Perera J, Presacco A, Decruy L, Anderson S, Kuchinsky SE, Simon JZ. Effects of aging on cortical representations of continuous speech. J Neurophysiol 2023; 129:1359-1377. [PMID: 37096924 PMCID: PMC10202479 DOI: 10.1152/jn.00356.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.
Collapse
Affiliation(s)
- I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
| | - Jason L Dunlap
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Janani Perera
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
- Department of Biology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
10
|
van Wieringen A, Van Wilderode M, Van Humbeeck N, Krampe R. Coupling of sensorimotor and cognitive functions in middle- and late adulthood. Front Neurosci 2022; 16:1049639. [PMID: 36532286 PMCID: PMC9752872 DOI: 10.3389/fnins.2022.1049639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/03/2023] Open
Abstract
Introduction The present study explored age effects and the coupling of sensorimotor and cognitive functions in a stratified sample of 96 middle-aged and older adults (age 45-86 years) with no indication of mild cognitive decline. In our sensorimotor tasks, we had an emphasis on listening in noise and postural control, but we also assessed functional mobility and tactile sensitivity. Methods Our cognitive measures comprised processing speed and assessments of core cognitive control processes (executive functions), notably inhibition, task switching, and working memory updating. We explored whether our measures of sensorimotor functioning mediated age differences in cognitive variables and compared their effect to processing speed. Subsequently, we examined whether individuals who had poorer (or better) than median cognitive performance for their age group also performed relatively poorer (or better) on sensorimotor tasks. Moreover, we examined whether the link between cognitive and sensorimotor functions becomes more pronounced in older age groups. Results Except for tactile sensitivity, we observed substantial age-related differences in all sensorimotor and cognitive variables from middle age onward. Processing speed and functional mobility were reliable mediators of age in task switching and inhibitory control. Regarding coupling between sensorimotor and cognition, we observed that individuals with poor cognitive control do not necessarily have poor listening in noise skills or poor postural control. Discussion As most conditions do not show an interdependency between sensorimotor and cognitive performance, other domain-specific factors that were not accounted for must also play a role. These need to be researched in order to gain a better understanding of how rehabilitation may impact cognitive functioning in aging persons.
Collapse
Affiliation(s)
- Astrid van Wieringen
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mira Van Wilderode
- Research Group Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nathan Van Humbeeck
- Research Group Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Ralf Krampe
- Research Group Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Harris KC, Dias JW, McClaskey CM, Rumschlag J, Prisciandaro J, Dubno JR. Afferent Loss, GABA, and Central Gain in Older Adults: Associations with Speech Recognition in Noise. J Neurosci 2022; 42:7201-7212. [PMID: 35995564 PMCID: PMC9512571 DOI: 10.1523/jneurosci.0242-22.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/20/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Deficits in auditory nerve (AN) function for older adults reduce afferent input to the cortex. The extent to which the cortex in older adults adapts to this loss of afferent input and the mechanisms underlying this adaptation are not well understood. We took a neural systems approach measuring AN and cortical evoked responses within 50 older and 27 younger human adults (59 female) to estimate central gain or increased cortical activity despite reduced AN activity. Relative to younger adults, older adults' AN response amplitudes were smaller, but cortical responses were not. We used the relationship between AN and cortical response amplitudes in younger adults to predict cortical response amplitudes for older adults from their AN responses. Central gain in older adults was thus defined as the difference between their observed cortical responses and those predicted from the parameter estimates of younger adults. In older adults, decreased afferent input contributed to lower cortical GABA levels, greater central gain, and poorer speech recognition in noise (SIN). These effects on SIN occur in addition to, and independent from, effects attributed to elevated hearing thresholds. Our results are consistent with animal models of central gain and suggest that reduced AN afferent input in some older adults may result in changes in cortical encoding and inhibitory neurotransmission, which contribute to reduced SIN. An advancement in our understanding of the changes that occur throughout the auditory system in response to the gradual loss of input with increasing age may provide potential therapeutic targets for intervention.SIGNIFICANCE STATEMENT Age-related hearing loss is one of the most common chronic conditions of aging, yet little is known about how the cortex adapts to this loss of sensory input. We measured AN and cortical responses to the same stimulus in younger and older adults. In older adults we found hyperexcitability in cortical activity relative to concomitant declines in afferent input that are consistent with central gain. Lower levels of cortical GABA, an inhibitory neurotransmitter, were associated with greater central gain, which predicted poorer SIN. The results suggest that the cortex in older adults may adapt to attenuated sensory input by reducing inhibition to amplify the cortical response, but this amplification may lead to poorer SIN.
Collapse
Affiliation(s)
| | - James W Dias
- Department of Otolaryngology-Head and Neck Surgery
| | | | | | - James Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425-5500
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery
| |
Collapse
|
12
|
Goupell MJ. Age-Related Changes in Interaural-Level-Difference-Based Across-Frequency Binaural Interference. Front Aging Neurosci 2022; 14:887401. [PMID: 35966775 PMCID: PMC9363899 DOI: 10.3389/fnagi.2022.887401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Low-frequency interaural time differences and high-frequency interaural level differences (ILDs) are used to localize sounds in the horizontal plane. Older listeners appear to be worse at horizontal-plane sound localization to compared younger listeners, but little is understood about age-related changes to across-frequency binaural processing. This study investigated if the frequency dependence of across-frequency ILD processing is altered for older compared to younger listeners, which was done by using an across-frequency binaural interference task (when the interaural difference sensitivity for a target sound is decreased by a spectrally remote interfering sound with zero interaural differences). It was hypothesized that as listeners experience advancing age and age-related high-frequency hearing loss (i.e., presbycusis), they will demonstrate worse binaural performance and experience more across-channel binaural interference (because of age-related temporal processing deficits), and will increasingly be affected by interferers at lower frequencies (because of age-related hearing loss) when compared to younger listeners. There were 11 older (>65 yrs) and 20 younger (<30 yrs) listeners with normal to near-normal audiometric thresholds up to 2 kHz. They were tested using a left-right ILD lateralization discrimination task. Single-tone ILD discrimination thresholds and across-frequency binaural interference were measured at 0.5, 1, 2, 4, and 8 kHz. ILD thresholds and interference were about twice as large for older compared to younger listeners. Interferers ≤1 kHz produced 2-3 times as much across-frequency binaural interference for older compared to younger listeners. Hearing thresholds were significant predictors of single-tone ILD thresholds; in addition, both target and interferer hearing thresholds were significant predictors of binaural interference. The results suggest a reweighting of binaural information that occurs with advancing age and age-related high-frequency hearing loss. This evidence of plasticity may help explain some of the age-related changes in spatial-hearing abilities.
Collapse
Affiliation(s)
- Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, United States,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States,*Correspondence: Matthew J. Goupell
| |
Collapse
|
13
|
Zaltz Y, Kishon-Rabin L. Difficulties Experienced by Older Listeners in Utilizing Voice Cues for Speaker Discrimination. Front Psychol 2022; 13:797422. [PMID: 35310278 PMCID: PMC8928022 DOI: 10.3389/fpsyg.2022.797422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
Human listeners are assumed to apply different strategies to improve speech recognition in background noise. Young listeners with normal hearing (NH), e.g., have been shown to follow the voice of a particular speaker based on the fundamental (F0) and formant frequencies, which are both influenced by the gender, age, and size of the speaker. However, the auditory and cognitive processes that underlie the extraction and discrimination of these voice cues across speakers may be subject to age-related decline. The present study aimed to examine the utilization of F0 and formant cues for voice discrimination (VD) in older adults with hearing expected for their age. Difference limens (DLs) for VD were estimated in 15 healthy older adults (65–78 years old) and 35 young adults (18–35 years old) using only F0 cues, only formant frequency cues, and a combination of F0 + formant frequencies. A three-alternative forced-choice paradigm with an adaptive-tracking threshold-seeking procedure was used. Wechsler backward digit span test was used as a measure of auditory working memory. Trail Making Test (TMT) was used to provide cognitive information reflecting a combined effect of processing speed, mental flexibility, and executive control abilities. The results showed that (a) the mean VD thresholds of the older adults were poorer than those of the young adults for all voice cues, although larger variability was observed among the older listeners; (b) both age groups found the formant cues more beneficial for VD, compared to the F0 cues, and the combined (F0 + formant) cues resulted in better thresholds, compared to each cue separately; (c) significant associations were found for the older adults in the combined F0 + formant condition between VD and TMT scores, and between VD and hearing sensitivity, supporting the notion that a decline with age in both top-down and bottom-up mechanisms may hamper the ability of older adults to discriminate between voices. The present findings suggest that older listeners may have difficulty following the voice of a specific speaker and thus implementing doing so as a strategy for listening amid noise. This may contribute to understanding their reported difficulty listening in adverse conditions.
Collapse
Affiliation(s)
- Yael Zaltz
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Kishon-Rabin
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Chauvette L, Fournier P, Sharp A. The frequency-following response to assess the neural representation of spectral speech cues in older adults. Hear Res 2022; 418:108486. [DOI: 10.1016/j.heares.2022.108486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
|
15
|
Shukla B, Bidelman GM. Enhanced brainstem phase-locking in low-level noise reveals stochastic resonance in the frequency-following response (FFR). Brain Res 2021; 1771:147643. [PMID: 34473999 PMCID: PMC8490316 DOI: 10.1016/j.brainres.2021.147643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
In nonlinear systems, the inclusion of low-level noise can paradoxically improve signal detection, a phenomenon known as stochastic resonance (SR). SR has been observed in human hearing whereby sensory thresholds (e.g., signal detection and discrimination) are enhanced in the presence of noise. Here, we asked whether subcortical auditory processing (neural phase locking) shows evidence of SR. We recorded brainstem frequency-following-responses (FFRs) in young, normal-hearing listeners to near-electrophysiological-threshold (40 dB SPL) complex tones composed of 10 iso-amplitude harmonics of 150 Hz fundamental frequency (F0) presented concurrent with low-level noise (+20 to -20 dB SNRs). Though variable and weak across ears, some listeners showed improvement in auditory detection thresholds with subthreshold noise confirming SR psychophysically. At the neural level, low-level FFRs were initially eradicated by noise (expected masking effect) but were surprisingly reinvigorated at select masker levels (local maximum near ∼ 35 dB SPL). These data suggest brainstem phase-locking to near threshold periodic stimuli is enhanced in optimal levels of noise, the hallmark of SR. Our findings provide novel evidence for stochastic resonance in the human auditory brainstem and suggest that under some circumstances, noise can actually benefit both the behavioral and neural encoding of complex sounds.
Collapse
Affiliation(s)
- Bhanu Shukla
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
16
|
Xie Z, Stakhovskaya O, Goupell MJ, Anderson S. Aging Effects on Cortical Responses to Tones and Speech in Adult Cochlear-Implant Users. J Assoc Res Otolaryngol 2021; 22:719-740. [PMID: 34231111 DOI: 10.1007/s10162-021-00804-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Age-related declines in auditory temporal processing contribute to speech understanding difficulties of older adults. These temporal processing deficits have been established primarily among acoustic-hearing listeners, but the peripheral and central contributions are difficult to separate. This study recorded cortical auditory evoked potentials from younger to middle-aged (< 65 years) and older (≥ 65 years) cochlear-implant (CI) listeners to assess age-related changes in temporal processing, where cochlear processing is bypassed in this population. Aging effects were compared to age-matched normal-hearing (NH) listeners. Advancing age was associated with prolonged P2 latencies in both CI and NH listeners in response to a 1000-Hz tone or a syllable /da/, and with prolonged N1 latencies in CI listeners in response to the syllable. Advancing age was associated with larger N1 amplitudes in NH listeners. These age-related changes in latency and amplitude were independent of stimulus presentation rate. Further, CI listeners exhibited prolonged N1 and P2 latencies and smaller P2 amplitudes than NH listeners. Thus, aging appears to degrade some aspects of auditory temporal processing when peripheral-cochlear contributions are largely removed, suggesting that changes beyond the cochlea may contribute to age-related temporal processing deficits.
Collapse
Affiliation(s)
- Zilong Xie
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Olga Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|