1
|
Moore DR, Lin L, Bhalerao R, Caldwell-Kurtzman J, Hunter LL. Multidisciplinary clinical assessment and interventions for childhood listening difficulty and auditory processing disorder: Relation between research findings and clinical practice. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.12.24308837. [PMID: 38946985 PMCID: PMC11213078 DOI: 10.1101/2024.06.12.24308837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Purpose Listening difficulty (LiD), often classified as auditory processing disorder (APD), has been studied in both research and clinic settings. The aim of this study was to examine the predictive relation between these two settings. In our "SICLiD" research study, children with normal audiometry, but caregiver-reported LiD, performed poorly on both listening and cognitive tests. Here we examined results of clinical assessments and interventions for these children in relation to research performance. Methods Study setting was a tertiary pediatric hospital. Electronic medical records were reviewed for 64 children aged 6-13 years recruited into a SICLiD LiD group based on a caregiver report (ECLiPS). The review focused on clinical assessments and interventions provided by Audiology, Occupational Therapy, Psychology (Developmental and Behavioral Pediatrics), and Speech-Language Pathology services, prior to study participation. Descriptive statistics on clinical encounters, identified conditions, and interventions were compared with quantitative, standardized performance on research tests. Z-scores were compared for participants with and without each clinical condition using univariate and logistic prediction analyses. Results Overall, 24 clinical categories related to LiD, including APD, were identified. Common conditions were attention (32%), language (28%), hearing (18%), anxiety (16%), and autism spectrum (6%) disorders. Performance on research tests varied significantly between providers, conditions, and interventions. Quantitative research data combined with caregiver reports provided reliable predictions of all clinical conditions except APD. Individual test significant correlations were scarce, but included the SCAN composite score, which predicted clinical language and attention difficulties, but not APD diagnoses. Conclusions The variety of disciplines, assessments, conditions and interventions revealed here supports previous studies showing that LiD is a multifaceted problem of neurodevelopment. Comparisons between clinical- and research-based assessments suggest a path that prioritizes caregiver reports and selected psychometric tests for screening and diagnostic purposes.
Collapse
Affiliation(s)
- David R. Moore
- Division of Patient Services Research, Cincinnati Children’s Hospital Medical Center, OH
- Departments of Pediatrics and Otolaryngology-Head & Neck Surgery, University of Cincinnati, OH
- Manchester Centre for Audiology and Deafness, University of Manchester, United Kingdom
| | - Li Lin
- Division of Patient Services Research, Cincinnati Children’s Hospital Medical Center, OH
| | - Ritu Bhalerao
- Division of Patient Services Research, Cincinnati Children’s Hospital Medical Center, OH
| | - Jody Caldwell-Kurtzman
- Division of Patient Services Research, Cincinnati Children’s Hospital Medical Center, OH
| | - Lisa L. Hunter
- Division of Patient Services Research, Cincinnati Children’s Hospital Medical Center, OH
- Departments of Pediatrics and Otolaryngology-Head & Neck Surgery, University of Cincinnati, OH
| |
Collapse
|
2
|
Okamoto K, Hoyano K, Saiki Y, Nomura T, Irie K, Obama N, Kodama N, Kobayashi Y. Predictive brain activity related to auditory information is associated with performance in speech comprehension tasks in noisy environments. Front Hum Neurosci 2024; 18:1479810. [PMID: 39539352 PMCID: PMC11557536 DOI: 10.3389/fnhum.2024.1479810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Understanding speech in noisy environments is challenging even for individuals with normal hearing, and it poses a significant challenge for those with hearing impairments or listening difficulties. There are limitations associated with the current methods of evaluating speech comprehension in such environments, especially in individuals with peripheral hearing impairments. According to the predictive coding model, speech comprehension is an active inference process that integrates sensory information through the interaction of bottom-up and top-down processing. Therefore, in this study, we aimed to examine the role of prediction in speech comprehension using an electrophysiological marker of anticipation: stimulus-preceding negativity (SPN). Methods We measured SPN amplitude in young adults with normal hearing during a time-estimation task with auditory feedback under both quiet and noisy conditions. Results The results showed that SPN amplitude significantly increased in noisy environments. Moreover, individual differences in SPN amplitude correlated with performance in a speech-in-noise test. Discussion The increase in SPN amplitude was interpreted as reflecting the increased requirement for attentional resources for accurate prediction of speech information. These findings suggest that SPN could serve as a noninvasive neural marker for assessing individual differences in top-down processing involved in speech comprehension in noisy environments.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Kengo Hoyano
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Yoshitomo Saiki
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Tomomi Nomura
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Keisuke Irie
- Cognitive Motor Neuroscience, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Obama
- Department of Speech and Language Therapy, Faculty of Health Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Narihiro Kodama
- Department of Speech and Language Therapy, Faculty of Health Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Yasutaka Kobayashi
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| |
Collapse
|
3
|
Kojima K, Lin L, Petley L, Clevenger N, Perdew A, Bodik M, Blankenship CM, Motlagh Zadeh L, Hunter LL, Moore DR. Childhood Listening and Associated Cognitive Difficulties Persist Into Adolescence. Ear Hear 2024; 45:1252-1263. [PMID: 38764146 PMCID: PMC11333188 DOI: 10.1097/aud.0000000000001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
OBJECTIVE Listening difficulty (LiD) refers to the challenges individuals face when trying to hear and comprehend speech and other sounds. LiD can arise from various sources, such as hearing sensitivity, language comprehension, cognitive function, or auditory processing. Although some children with LiD have hearing loss, many have clinically normal audiometric thresholds. To determine the impact of hearing and cognitive factors on LiD in children with a clinically normal audiogram, we conducted a longitudinal study. The Evaluation of Children's Listening & Processing Skills (ECLiPS), a validated and standardized caregiver evaluation tool, was used to group participants as either LiD or typically developing (TD). Our previous study aimed to characterize LiD in 6- to 13-year-old children during the project's baseline, cross-sectional phase. We found that children with LiD needed a higher signal-to-noise ratio during speech-in-speech tests and scored lower on all assessed components of the NIH Cognition Toolbox than TD children. The primary goal of this study was to examine if the differences between LiD and TD groups are temporary or enduring throughout childhood. DESIGN This longitudinal study had three data collection waves for children with LiD and TD aged 6 to 13 years at Wave 1, followed by assessments at 2-year (Wave 2) and 4-year (Wave 3) intervals. Primary analysis focused on data from Waves 1 and 2. Secondary analysis encompassed all three waves despite high attrition at Wave 3. Caregivers completed the ECLiPS, while participants completed the Listening in Spatialized Noise-Sentences (LiSN-S) test and the NIH-Toolbox Cognition Battery during each wave. The analysis consisted of (1) examining longitudinal differences between TD and LiD groups in demographics, listening, auditory, and cognitive function; (2) identifying functional domains contributing to LiD; and (3) test-retest reliability of measures across waves. Mixed-effect models were employed to analyze longitudinal data. RESULTS The study enrolled 169 participants, with 147, 100, and 31 children completing the required testing during Waves 1, 2, and 3, respectively. The mean ages at these waves were 9.5, 12.0, and 14.0 years. On average, children with LiD consistently underperformed TD children in auditory and cognitive tasks across all waves. Maternal education, auditory, and cognitive abilities independently predicted caregiver-reported listening skills. Significant correlations between Waves 1 and 2 confirmed high, long-term reliability. Secondary analysis of Wave 3 was consistent with the primary analyses of Waves 1 and 2, reinforcing the enduring nature of listening difficulties. CONCLUSION Children with LiD and clinically normal audiograms experience persistent auditory, listening, and cognitive challenges through at least adolescence. The degree of LiD can be independently predicted by maternal education, cognitive processing, and spatial listening skills. This study underscores the importance of early detection and intervention for childhood LiD and highlights the role of socioeconomic factors as contributors to these challenges.
Collapse
Affiliation(s)
- Katsuaki Kojima
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Li Lin
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Petley
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Psychology, Clarkson University, Potsdam, New York
| | - Nathan Clevenger
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Audrey Perdew
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Bodik
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Cornell University, Ithaca, New York
| | - Chelsea M Blankenship
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lina Motlagh Zadeh
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa L Hunter
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- College of Allied Health, Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio
- Departments of Otolaryngology and Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Departments of Otolaryngology and Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Key AP, Powell SL, Cavalcante J, Frizzo A, Mandra P, Tavares A, Menezes P, Hood LJ. Auditory Neural Responses and Communicative Functioning in Children With Microcephaly Related to Congenital Zika Syndrome. Ear Hear 2024; 45:850-859. [PMID: 38363825 PMCID: PMC11178474 DOI: 10.1097/aud.0000000000001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OBJECTIVES Children with microcephaly exhibit neurodevelopmental delays and compromised communicative functioning, yielding challenges for clinical assessment and informed intervention. This study characterized auditory neural function and communication abilities in children with microcephaly due to congenital Zika syndrome (CZS). DESIGN Click-evoked auditory brainstem responses (ABR) at fast and slow stimulation rates and natural speech-evoked cortical auditory evoked potentials (CAEP) were recorded in 25 Brazilian children with microcephaly related to CZS ( M age: 5.93 ± 0.62 years) and a comparison group of 25 healthy children ( M age: 5.59 ± 0.80 years) matched on age, sex, ethnicity, and socioeconomic status. Communication abilities in daily life were evaluated using caregiver reports on Vineland Adaptive Behavior Scales-3. RESULTS Caregivers of children with microcephaly reported significantly lower than typical adaptive functioning in the communication and socialization domains. ABR wave I latency did not differ significantly between the groups, suggesting comparable peripheral auditory function. ABR wave V absolute latency and waves I-V interwave latency were significantly shorter in the microcephaly group for both ears and rates. CAEP analyses identified reduced N2 amplitudes in children with microcephaly as well as limited evidence of speech sound differentiation, evidenced mainly by the N2 response latency. Conversely, in the comparison group, speech sound differences were observed for both the P1 and N2 latencies. Exploratory analyses in the microcephaly group indicated that more adaptive communication was associated with greater speech sound differences in the P1 and N2 amplitudes. The trimester of virus exposure did not have an effect on the ABRs or CAEPs. CONCLUSIONS Microcephaly related to CZS is associated with alterations in subcortical and cortical auditory neural function. Reduced ABR latencies differ from previous reports, possibly due to the older age of this cohort and careful assessment of peripheral auditory function. Cortical speech sound detection and differentiation are present but reduced in children with microcephaly. Associations between communication performance in daily life and CAEPs highlight the value of auditory evoked potentials in assessing clinical populations with significant neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Alexandra P. Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Sarah L. Powell
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Juliana Cavalcante
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Frizzo
- São Paulo State University, Marília, São Paulo, Brazil
| | - Patricia Mandra
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana Tavares
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pedro Menezes
- State University of Health Sciences of Alagoas, Maceio, Brazil
| | - Linda J. Hood
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Petley L, Blankenship C, Hunter LL, Stewart HJ, Lin L, Moore DR. Amplitude Modulation Perception and Cortical Evoked Potentials in Children With Listening Difficulties and Their Typically Developing Peers. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:633-656. [PMID: 38241680 PMCID: PMC11000788 DOI: 10.1044/2023_jslhr-23-00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Amplitude modulations (AMs) are important for speech intelligibility, and deficits in speech intelligibility are a leading source of impairment in childhood listening difficulties (LiD). The present study aimed to explore the relationships between AM perception and speech-in-noise (SiN) comprehension in children and to determine whether deficits in AM processing contribute to childhood LiD. Evoked responses were used to parse the neural origins of AM processing. METHOD Forty-one children with LiD and 44 typically developing children, ages 8-16 years, participated in the study. Behavioral AM depth thresholds were measured at 4 and 40 Hz. SiN tasks included the Listening in Spatialized Noise-Sentences Test (LiSN-S) and a coordinate response measure (CRM)-based task. Evoked responses were obtained during an AM change detection task using alternations between 4 and 40 Hz, including the N1 of the acoustic change complex, auditory steady-state response (ASSR), P300, and a late positive response (late potential [LP]). Maturational effects were explored via age correlations. RESULTS Age correlated with 4-Hz AM thresholds, CRM separated talker scores, and N1 amplitude. Age-normed LiSN-S scores obtained without spatial or talker cues correlated with age-corrected 4-Hz AM thresholds and area under the LP curve. CRM separated talker scores correlated with AM thresholds and area under the LP curve. Most behavioral measures of AM perception correlated with the signal-to-noise ratio and phase coherence of the 40-Hz ASSR. AM change response time also correlated with area under the LP curve. Children with LiD exhibited deficits with respect to 4-Hz thresholds, AM change accuracy, and area under the LP curve. CONCLUSIONS The observed relationships between AM perception and SiN performance extend the evidence that modulation perception is important for understanding SiN in childhood. In line with this finding, children with LiD demonstrated poorer performance on some measures of AM perception, but their evoked responses implicated a primarily cognitive deficit. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25009103.
Collapse
Affiliation(s)
- Lauren Petley
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, OH
- Patient Services Research, Cincinnati Children's Hospital Medical Center, OH
- Department of Psychology, Clarkson University, Potsdam, NY
| | - Chelsea Blankenship
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, OH
- Patient Services Research, Cincinnati Children's Hospital Medical Center, OH
| | - Lisa L Hunter
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, OH
- Patient Services Research, Cincinnati Children's Hospital Medical Center, OH
- Department of Otolaryngology, College of Medicine, University of Cincinnati, OH
- Department of Communication Sciences and Disorders, College of Allied Health Sciences, University of Cincinnati, OH
| | | | - Li Lin
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, OH
- Patient Services Research, Cincinnati Children's Hospital Medical Center, OH
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, OH
- Patient Services Research, Cincinnati Children's Hospital Medical Center, OH
- Department of Otolaryngology, College of Medicine, University of Cincinnati, OH
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
| |
Collapse
|
6
|
Petley L, Blankenship C, Hunter LL, Stewart HJ, Lin L, Moore DR. Amplitude modulation perception and cortical evoked potentials in children with listening difficulties and their typically-developing peers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.26.23297523. [PMID: 37961469 PMCID: PMC10635202 DOI: 10.1101/2023.10.26.23297523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose Amplitude modulations (AM) are important for speech intelligibility, and deficits in speech intelligibility are a leading source of impairment in childhood listening difficulties (LiD). The present study aimed to explore the relationships between AM perception and speech-in-noise (SiN) comprehension in children and to determine whether deficits in AM processing contribute to childhood LiD. Evoked responses were used to parse the neural origin of AM processing. Method Forty-one children with LiD and forty-four typically-developing children, ages 8-16 y.o., participated in the study. Behavioral AM depth thresholds were measured at 4 and 40 Hz. SiN tasks included the LiSN-S and a Coordinate Response Measure (CRM)-based task. Evoked responses were obtained during an AM Change detection task using alternations between 4 and 40 Hz, including the N1 of the acoustic change complex, auditory steady-state response (ASSR), P300, and a late positive response (LP). Maturational effects were explored via age correlations. Results Age correlated with 4 Hz AM thresholds, CRM Separated Talker scores, and N1 amplitude. Age-normed LiSN-S scores obtained without spatial or talker cues correlated with age-corrected 4 Hz AM thresholds and area under the LP curve. CRM Separated Talker scores correlated with AM thresholds and area under the LP curve. Most behavioral measures of AM perception correlated with the SNR and phase coherence of the 40 Hz ASSR. AM Change RT also correlated with area under the LP curve. Children with LiD exhibited deficits with respect to 4 Hz thresholds, AM Change accuracy, and area under the LP curve. Conclusions The observed relationships between AM perception and SiN performance extend the evidence that modulation perception is important for understanding SiN in childhood. In line with this finding, children with LiD demonstrated poorer performance on some measures of AM perception, but their evoked responses implicated a primarily cognitive deficit.
Collapse
|
7
|
Mishra SK, Moore DR. Auditory Deprivation during Development Alters Efferent Neural Feedback and Perception. J Neurosci 2023; 43:4642-4649. [PMID: 37221095 PMCID: PMC10286938 DOI: 10.1523/jneurosci.2182-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Auditory experience plays a critical role in hearing development. Developmental auditory deprivation because of otitis media, a common childhood disease, produces long-standing changes in the central auditory system, even after the middle ear pathology is resolved. The effects of sound deprivation because of otitis media have been mostly studied in the ascending auditory system but remain to be examined in the descending pathway that runs from the auditory cortex to the cochlea via the brainstem. Alterations in the efferent neural system could be important because the descending olivocochlear pathway influences the neural representation of transient sounds in noise in the afferent auditory system and is thought to be involved in auditory learning. Here, we show that the inhibitory strength of the medial olivocochlear efferents is weaker in children with a documented history of otitis media relative to controls; both boys and girls were included in the study. In addition, children with otitis media history required a higher signal-to-noise ratio on a sentence-in-noise recognition task than controls to achieve the same criterion performance level. Poorer speech-in-noise recognition, a hallmark of impaired central auditory processing, was related to efferent inhibition, and could not be attributed to the middle ear or cochlear mechanics.SIGNIFICANCE STATEMENT Otitis media is the second most common reason children go to the doctor. Previously, degraded auditory experience because of otitis media has been associated with reorganized ascending neural pathways, even after middle ear pathology resolved. Here, we show that altered afferent auditory input because of otitis media during childhood is also associated with long-lasting reduced descending neural pathway function and poorer speech-in-noise recognition. These novel, efferent findings may be important for the detection and treatment of childhood otitis media.
Collapse
Affiliation(s)
- Srikanta K Mishra
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, Austin, Texas 78712
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital, Cincinnati, Ohio 45229
- Department of Otolaryngology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|