1
|
Kumar V, Kumar P. Pathophysiological role of high mobility group box-1 signaling in neurodegenerative diseases. Inflammopharmacology 2025; 33:703-727. [PMID: 39546221 DOI: 10.1007/s10787-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Nucleocytoplasmic translocation of HMGB1 (high mobility group box-1) plays a significant role in disease progression. Several methods contribute to the translocation of HMGB1 from the nucleus to the cytoplasm, including inflammasome activation, TNF-α signaling, CRM1-mediated transport, reactive oxygen species (ROS), JAK/STAT pathway, RIP3-mediated p53 involvement, XPO-1-mediated transport, and calcium-dependent mechanisms. Due to its diverse functions at various subcellular locations, HMGB1 has been identified as a crucial factor in several Central Nervous System (CNS) disorders, including Huntington's disease (HD), Parkinson's disease (PD), and Alzheimer's disease (AD). HMGB1 displays a wide array of roles in the extracellular environment as it interacts with several receptors, including CXCR4, TLR2, TLR4, TLR8, and RAGE, by engaging in these connections, HMGB1 can effectively regulate subsequent signaling pathways, hence exerting an impact on the progression of brain disorders through neuroinflammation. Therefore, focusing on treating neuroinflammation could offer a common therapeutic strategy for several disorders. The objective of the current literature is to demonstrate the pathological role of HMGB1 in various neurological disorders. This review also offers insights into numerous therapeutic targets that promise to advance multiple treatments intended to alleviate brain illnesses.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
2
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Sharma V, Sharma P, Singh TG. Mechanistic insights on TLR-4 mediated inflammatory pathway in neurodegenerative diseases. Pharmacol Rep 2024; 76:679-692. [PMID: 38918327 DOI: 10.1007/s43440-024-00613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Neurodegenerative diseases (NDDs) pose a significant issue in healthcare, needing a thorough knowledge of their complex molecular mechanisms. A diverse set of cell signaling mediators and their interactions play critical roles in neuroinflammation. The release of pro-inflammatory mediators in response to neural dysfunction is detrimental to normal cell survival. Moreover, the important role of nuclear factor-κB (NF-κB) in the central nervous system through Toll-like receptor (TLR) activation has been well established. Therefore, through a comprehensive review of current research and experimentation, this investigation elucidates the interactions between novel pharmacological agents (TLR-4/NF-κB inhibitors) and neurodegeneration encompassing Alzheimer's, Parkinson's, Huntington's disease, amyotrophic lateral sclerosis and stroke. Insights garnered from this exploration underscore the potential of TLR-4 as a therapeutic target. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. This review thus serves as a roadmap, guiding future research endeavors toward innovative strategies for combatting the complex interplay between TLR-4 signaling and NDDs.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
4
|
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci 2024; 16:1347987. [PMID: 38681666 PMCID: PMC11045904 DOI: 10.3389/fnagi.2024.1347987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation refers to a highly complicated reaction of the central nervous system (CNS) to certain stimuli such as trauma, infection, and neurodegenerative diseases. This is a cellular immune response whereby glial cells are activated, inflammatory mediators are liberated and reactive oxygen and nitrogen species are synthesized. Neuroinflammation is a key process that helps protect the brain from pathogens, but inappropriate, or protracted inflammation yields pathological states such as Parkinson's disease, Alzheimer's, Multiple Sclerosis, and other neurodegenerative disorders that showcase various pathways of neurodegeneration distributed in various parts of the CNS. This review reveals the major neuroinflammatory signaling pathways associated with neurodegeneration. Additionally, it explores promising therapeutic avenues, such as stem cell therapy, genetic intervention, and nanoparticles, aiming to regulate neuroinflammation and potentially impede or decelerate the advancement of these conditions. A comprehensive understanding of the intricate connection between neuroinflammation and these diseases is pivotal for the development of future treatment strategies that can alleviate the burden imposed by these devastating disorders.
Collapse
Affiliation(s)
| | | | | | - Guofang Xue
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Steinberg N, Galleguillos D, Zaidi A, Horkey M, Sipione S. Naïve Huntington's disease microglia mount a normal response to inflammatory stimuli but display a partially impaired development of innate immune tolerance that can be counteracted by ganglioside GM1. J Neuroinflammation 2023; 20:276. [PMID: 37996924 PMCID: PMC10668379 DOI: 10.1186/s12974-023-02963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Chronic activation and dysfunction of microglia have been implicated in the pathogenesis and progression of many neurodegenerative disorders, including Huntington's disease (HD). HD is a genetic condition caused by a mutation that affects the folding and function of huntingtin (HTT). Signs of microglia activation have been observed in HD patients even before the onset of symptoms. It is unclear, however, whether pro-inflammatory microglia activation in HD results from cell-autonomous expression of mutant HTT, is the response of microglia to a diseased brain environment, or both. In this study, we used primary microglia isolated from HD knock-in (Q140) and wild-type (Q7) mice to investigate their response to inflammatory conditions in vitro in the absence of confounding effects arising from brain pathology. We show that naïve Q140 microglia do not undergo spontaneous pro-inflammatory activation and respond to inflammatory triggers, including stimulation of TLR4 and TLR2 and exposure to necrotic cells, with similar kinetics of pro-inflammatory gene expression as wild-type microglia. Upon termination of the inflammatory insult, the transcription of pro-inflammatory cytokines is tapered off in Q140 and wild-type microglia with similar kinetics. However, the ability of Q140 microglia to develop tolerance in response to repeated inflammatory stimulations is partially impaired in vitro and in vivo, potentially contributing to the establishment of chronic neuroinflammation in HD. We further show that ganglioside GM1, a glycosphingolipid with anti-inflammatory effects on wild-type microglia, not only decreases the production of pro-inflammatory cytokines and nitric oxide in activated Q140 microglia, but also dramatically dampen microglia response to re-stimulation with LPS in an experimental model of tolerance. These effects are independent from the expression of interleukin 1 receptor associated kinase 3 (Irak-3), a strong modulator of LPS signaling involved in the development of innate immune tolerance and previously shown to be upregulated by immune cell treatment with gangliosides. Altogether, our data suggest that external triggers are required for HD microglia activation, but a cell-autonomous dysfunction that affects the ability of HD microglia to acquire tolerance might contribute to the establishment of neuroinflammation in HD. Administration of GM1 might be beneficial to attenuate chronic microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Noam Steinberg
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | - Danny Galleguillos
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asifa Zaidi
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada
| | | | - Simonetta Sipione
- Department of Pharmacology, Neuroscience and Mental Health Institute and Glycomics Institute of Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Angeles-López QD, Tristán-López L, González-Espinosa C, Pérez-Severiano F. Toll-Like Receptor 4 Plays a Significant Role in the Biochemical and Neurological Alterations Observed in Two Distinct Mice Models of Huntington's Disease. Mol Neurobiol 2023; 60:2678-2690. [PMID: 36701109 DOI: 10.1007/s12035-023-03234-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
Toll-like receptors (TLRs) are central players in innate immunity responses. They are expressed in glial cells and neurons, and their overactivation leads to the production of proinflammatory molecules, neuroinflammation, and neural damage associated with many neurodegenerative pathologies, such as Huntington's disease (HD). HD is an inherited disorder caused by a mutation in the gene coding for the protein Huntingtin (Htt). Expression of mutated Htt (mHtt) causes progressive neuronal degeneration characterized by striatal loss of GABAergic neurons, oxidative damage, neuroinflammatory processes, and impaired motor behavior. The main animal models to study HD are the intrastriatal injection of quinolinic acid (QA) and the transgenic B6CBA-Tg (HDexon1)61Gpb/1 J mice (R6/1). Those models mimic neuronal damage and systemic manifestations of HD. The objective of this work was to study the participation of TLR4 in the manifestations of neuronal damage and HD symptoms in the two mentioned models. For this purpose, C57BL6/J and TLR4-KO mice were administered with QA, and after that motor activity, and neuronal and oxidative damages were measured. R6/1 and TLR4-KO were mated to study the effect of low expression of TLR4 on the phenotype manifestation in R6/1 mice. We found that TLR4 is involved in motor activity, and neurological and oxidative damage induced by intrastriatal injection of QA, and the low expression of TLR4 causes a delay in the onset of phenotypic manifestations by the mHtt expression in R6/1 mice. Our results show that TLR4 is involved in both models of HD and focuses then as a therapeutic target for some deleterious reactions in HD.
Collapse
Affiliation(s)
- Pablo E Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Marian J Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Quetzalli D Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Colonia Granjas Coapa, Alcaldía Tlalpan, 14330, Mexico City, CP, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Avenida Insurgentes Sur No. 3877, Colonia La Fama, Alcaldía Tlalpan, 14269, Mexico City, CP, Mexico.
| |
Collapse
|
7
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
8
|
Dabi YT, Ajagbe AO, Degechisa ST. Toll-like receptors in pathogenesis of neurodegenerative diseases and their therapeutic potential. Immun Inflamm Dis 2023; 11:e839. [PMID: 37102648 PMCID: PMC10116887 DOI: 10.1002/iid3.839] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors triggered by pathogen-derived and tissue-damage-related ligands. TLRs were previously believed to only be expressed in immune cells. However, it is now confirmed that they are ubiquitously expressed in cells within the body including neurons, astrocytes, and microglia of the central nervous system (CNS). Activation of TLRs is capable of inducing immunologic and inflammatory responses to injury or infection of CNS. This response is self-limiting that usually resolves once the infection has been eradicated or the tissue damage has been repaired. However, the persistence of inflammation-inducing insults or a failure in normal resolution mechanisms may result in overwhelming inflammation which may induce neurodegeneration. This implies that TLRs may play a role in mediating the link between inflammation and neurodegenerative diseases namely Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. So, new therapeutic approaches that specifically target TLRs may be developed by better understanding TLR expression mechanisms in the CNS and their connections to particular neurodegenerative disorders. Therefore, this review paper discussed the role of TLRs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Laboratory Science, Institute of Health SciencesWollega UniversityNekemteEthiopia
| | - Abayomi O. Ajagbe
- Department of Anatomy, College of Health Sciences, Faculty of Basic Medical SciencesNile University of NigeriaAbujaNigeria
| | - Sisay T. Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health SciencesAddis Ababa UniversityAddis AbabaEthiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health SciencesArba Minch UniversityArba MinchEthiopia
| |
Collapse
|
9
|
Inhibitory Effect of Trihydroxy Isoflavone on Neuronal Apoptosis in Natural Aging Rats. DISEASE MARKERS 2022; 2022:4688203. [PMID: 36046381 PMCID: PMC9420620 DOI: 10.1155/2022/4688203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
Objective To explore the impact of genistein (Gen) on the apoptosis of neuronal cells in naturally aged rats and its mechanism. Methods Fifty SD male rats were allocated into five groups at random, including youth group (3M group), natural aging group (24M group), and Gen low-, medium-, and high-dose groups. Starting from 18 months of age, Gen 10, 30, and 60 mg-kg−1 were administered via gavage to the Gen low-, medium-, and high-dose groups, respectively, while the rats in the natural aging group was given saline by gavage until 24 months of age, and the drug was stopped for 1 d per week for 6 months. The protein expression of target genes was examined using western blotting. Results In contrast to the 3M group, the 24M group rats showed disturbed neuronal cell arrangement and massive cell degeneration. After 6 months of Gen intervention, in contrast to the 24M group, the neural cell pathology in the CA3 area of the hippocampus improved and cell apoptotic decreased observably. In contrast to the 3M group, the protein expression of c-Jun amino-terminal kinase (p-JNK), C/EBP homologous protein (CHOP), inflammatory vesicle 3-associated factor (NLRP3), cysteine protease-1 (Caspase-1), and apoptosis-related punctate protein (ASC) and downstream inflammatory factors in the hippocampus was obviously increased in the 24M group. In contrast to the 24M group, the protein expression of p-JNK, CHOP, NLRP3, Caspase-1, and ASC and downstream inflammatory factors in the hippocampus was observably declined in Gen groups. Conclusion Gen has a protective effect on hippocampal neurons in aging rat brain tissue via the inhibition of the ERS apoptotic signaling pathway and NLRP3 inflammatory vesicle activation.
Collapse
|
10
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
11
|
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C. Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Curr Neuropharmacol 2022; 20:1116-1143. [PMID: 34852742 PMCID: PMC9886821 DOI: 10.2174/1570159x19666211201094608] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Bruno
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,Address correspondence to this author at the Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 Piso 10, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, Tel: +54 11 5285 3380; E-mail:
| |
Collapse
|
12
|
Jiang S, Maphis NM, Binder J, Chisholm D, Weston L, Duran W, Peterson C, Zimmerman A, Mandell MA, Jett SD, Bigio E, Geula C, Mellios N, Weick JP, Rosenberg GA, Latz E, Heneka MT, Bhaskar K. Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Rep 2021; 36:109720. [PMID: 34551296 PMCID: PMC8491766 DOI: 10.1016/j.celrep.2021.109720] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pathological hyperphosphorylation and aggregation of tau (pTau) and neuroinflammation, driven by interleukin-1β (IL-1β), are the major hallmarks of tauopathies. Here, we show that pTau primes and activates IL-1β. First, RNA-sequence analysis suggests paired-helical filaments (PHFs) from human tauopathy brain primes nuclear factor κB (NF-κB), chemokine, and IL-1β signaling clusters in human primary microglia. Treating microglia with pTau-containing neuronal media, exosomes, or PHFs causes IL-1β activation, which is NLRP3, ASC, and caspase-1 dependent. Suppression of pTau or ASC reduces tau pathology and inflammasome activation in rTg4510 and hTau mice, respectively. Although the deletion of MyD88 prevents both IL-1β expression and activation in the hTau mouse model of tauopathy, ASC deficiency in myeloid cells reduces pTau-induced IL-1β activation and improves cognitive function in hTau mice. Finally, pTau burden co-exists with elevated IL-1β and ASC in autopsy brains of human tauopathies. Together, our results suggest pTau activates IL-1β via MyD88- and NLRP3-ASC-dependent pathways in myeloid cells, including microglia.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nicole M Maphis
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jessica Binder
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Devon Chisholm
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lea Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Walter Duran
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Crina Peterson
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Amber Zimmerman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Stephen D Jett
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Eileen Bigio
- Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Gary A Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Michael T Heneka
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA; Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn 53127, Germany
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
14
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
15
|
Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 2021; 1758:147291. [PMID: 33516810 DOI: 10.1016/j.brainres.2021.147291] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
16
|
Dhankhar J, Agrawal N, Shrivastava A. An interplay between immune response and neurodegenerative disease progression: An assessment using Drosophila as a model. J Neuroimmunol 2020; 346:577302. [PMID: 32683186 DOI: 10.1016/j.jneuroim.2020.577302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Neurodegeneration, the slow and progressive loss of neurons in the central nervous system has become a major challenge to public health worldwide particularly with elderly people. Until recently, the brain and immune system were studied exclusively, independent of each other representing two distinct systems. Recent studies ensue crosstalk between these two systems to maintain homeostasis. Though the progressive loss of specific neuronal subsets is a hallmark of neurodegenerative disease, emerging evidences indicate that immune response also plays a critical role in disease progression. Due to conservation of mechanisms that govern neural development and innate immune activation in flies and humans, and availability of powerful genetic tools, the fruit fly Drosophila melanogaster is one of the best model organisms to investigate the immune response in neurodegenerative disease. Owing to significant homology between human and Drosophila immune system and recent reports on interplay between immune system and neurodegenerative disease progression, the main focus of the review is to develop a comprehensive understanding of how neuro-immune interactions contribute to neurodegeneration using Drosophila as a model system.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Zoology, University of Delhi, Delhi, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
17
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
18
|
Payne TD, Moody AS, Wood AL, Pimiento PA, Elliott JC, Sharma B. Raman spectroscopy and neuroscience: from fundamental understanding to disease diagnostics and imaging. Analyst 2020; 145:3461-3480. [PMID: 32301450 DOI: 10.1039/d0an00083c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroscience would directly benefit from more effective detection techniques, leading to earlier diagnosis of disease. The specificity of Raman spectroscopy is unparalleled, given that a molecular fingerprint is attained for each species. It also allows for label-free detection with relatively inexpensive instrumentation, minimal sample preparation, and rapid sample analysis. This review summarizes Raman spectroscopy-based techniques that have been used to advance the field of neuroscience in recent years.
Collapse
Affiliation(s)
- Taylor D Payne
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- National Center of Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Avery L Wood
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Paula A Pimiento
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - James C Elliott
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
19
|
Vuono R, Kouli A, Legault EM, Chagnon L, Allinson KS, La Spada A, Biunno I, Barker RA, Drouin‐Ouellet J. Association Between Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Genetic Variants and Clinical Progression of Huntington's Disease. Mov Disord 2020; 35:401-408. [PMID: 31724242 PMCID: PMC7154663 DOI: 10.1002/mds.27911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although Huntington's disease (HD) is caused by a single dominant gene, it is clear that there are genetic modifiers that may influence the age of onset and disease progression. OBJECTIVES We sought to investigate whether new inflammation-related genetic variants may contribute to the onset and progression of HD. METHODS We first used postmortem brain material from patients at different stages of HD to look at the protein expression of toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2). We then genotyped the TREM2 R47H gene variant and 3 TLR4 single nucleotide polymorphisms in a large cohort of HD patients from the European Huntington's Disease Network REGISTRY. RESULTS We found an increase in the number of cells expressing TREM2 and TLR4 in postmortem brain samples from patients dying with HD. We also found that the TREM2 R47H gene variant was associated with changes in cognitive decline in the large cohort of HD patients, whereas 2 of 3 TLR4 single nucleotide polymorphisms assessed were associated with changes in motor progression in this same group. CONCLUSIONS These findings identify TREM2 and TLR4 as potential genetic modifiers for HD and suggest that inflammation influences disease progression in this condition. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Romina Vuono
- John van Geest Centre for Brain Repair & Department of Neurology, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
- Medway School of PharmacyUniversity of Kent at MedwayKentUnited Kingdom
| | - Antonina Kouli
- John van Geest Centre for Brain Repair & Department of Neurology, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
| | | | | | - Kieren S. Allinson
- Department of PathologyCambridge University Hospitals NHS (National Health Service) Foundation TrustCambridgeUnited Kingdom
| | | | | | - Ida Biunno
- Institute for Genetic and Biomedical Research ‐ CNRMilanoItaly
| | - Roger A. Barker
- John van Geest Centre for Brain Repair & Department of Neurology, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
20
|
Angelopoulou E, Paudel YN, Piperi C. Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington's disease. J Mol Med (Berl) 2020; 98:325-334. [PMID: 32036391 DOI: 10.1007/s00109-020-01885-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by an increased and unstable CAG DNA expansion in the Huntingtin (HTT) gene, resulting in an elongated polyglutamine tract in huntingtin protein. Despite its monogenic cause, HD pathogenesis remains elusive and without any approved disease-modifying therapy as yet. A growing body of evidence highlights the emerging role of high-mobility group box 1 (HMGB1) protein in HD pathology. HMGB1, being a nuclear protein, is primarily implicated in DNA repair, but it can also translocate to the cytoplasm and participate into numerous cellular functions. Cytoplasmic HMGB1 was shown to directly interact with huntingtin under oxidative stress conditions and induce its nuclear translocation, a key process in the HD pathogenic cascade. Nuclear HMGB1 acting as a co-factor of ataxia telangiectasia mutated and base excision repair (BER) complexes can exert dual roles in CAG repeat instability and affect the final DNA repair outcome. HMGB1 can inhibit mutant huntingtin aggregation, protecting against polyglutamine-induced neurotoxicity and acting as a chaperon-like molecule, possibly via autophagy regulation. In addition, HMGB1 being a RAGE and TLR-2, TLR-3, and TLR-4 ligand may further contribute to HD pathogenesis by triggering neuroinflammation and apoptosis. Furthermore, HMGB1 participates at the unfolded protein response (UPR) system and can induce protein degradation and apoptosis associated with HD. In this review, we discuss the multiple role of HMGB1 in HD pathology, providing mechanistic insights that could direct future studies towards the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia,, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
21
|
Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 2019; 23:865-882. [PMID: 31580163 DOI: 10.1080/14728222.2019.1676416] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Adverse immune activation contributes to many central nervous system (CNS) disorders. All main CNS cell types express toll-like receptor 4 (TLR 4). This receptor is critical for a myriad of immune functions such as cytokine secretion and phagocytic activity of microglia; however, imbalances in TLR 4 activation can contribute to the progression of neurodegenerative diseases. Areas covered: We considered available evidence implicating TLR 4 activation in the following CNS pathologies: Alzheimer's disease, Parkinson's disease, ischemic stroke, traumatic brain injury, multiple sclerosis, multiple systems atrophy, and Huntington's disease. We reviewed studies reporting effects of TLR 4-specific antagonists and agonists in models of peripheral and CNS diseases from the perspective of possible future use of TLR 4 ligands in CNS disorders. Expert opinion: TLR 4-specific antagonists could suppress neuroinflammation by reducing overproduction of inflammatory mediators; however, they may interfere with protein clearance mechanisms and myelination. Agonists that specifically activate myeloid differentiation primary-response protein 88 (MyD88)-independent pathway of TLR 4 signaling could facilitate beneficial glial phagocytic activity with limited activity as inducers of proinflammatory mediators. Deciphering the disease stage-specific involvement of TLR 4 in CNS pathologies is crucial for the future clinical development of TLR 4 agonists and antagonists.
Collapse
Affiliation(s)
- Gunnar R Leitner
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Nick Marshall
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Ellen J Gates
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| |
Collapse
|
22
|
Eyk CLV, Samaraweera SE, Scott A, Webber DL, Harvey DP, Mecinger O, O’Keefe LV, Cropley JE, Young P, Ho J, Suter C, Richards RI. Non-self mutation: double-stranded RNA elicits antiviral pathogenic response in a Drosophila model of expanded CAG repeat neurodegenerative diseases. Hum Mol Genet 2019; 28:3000-3012. [DOI: 10.1093/hmg/ddz096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/11/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Abstract
Inflammation is activated prior to symptoms in neurodegenerative diseases, providing a plausible pathogenic mechanism. Indeed, genetic and pharmacological ablation studies in animal models of several neurodegenerative diseases demonstrate that inflammation is required for pathology. However, while there is growing evidence that inflammation-mediated pathology may be the common mechanism underlying neurodegenerative diseases, including those due to dominantly inherited expanded repeats, the proximal causal agent is unknown. Expanded CAG.CUG repeat double-stranded RNA causes inflammation-mediated pathology when expressed in Drosophila. Repeat dsRNA is recognized by Dicer-2 as a foreign or ‘non-self’ molecule triggering both antiviral RNA and RNAi pathways. Neither of the RNAi pathway cofactors R2D2 nor loquacious are necessary, indicating antiviral RNA activation. RNA modification enables avoidance of recognition as ‘non-self’ by the innate inflammatory surveillance system. Human ADAR1 edits RNA conferring ‘self’ status and when co-expressed with expanded CAG.CUG dsRNA in Drosophila the pathology is lost. Cricket Paralysis Virus protein CrPV-1A is a known antagonist of Argonaute-2 in Drosophila antiviral defense. CrPV-1A co-expression also rescues pathogenesis, confirming anti-viral-RNA response. Repeat expansion mutation therefore confers ‘non-self’ recognition of endogenous RNA, thereby providing a proximal, autoinflammatory trigger for expanded repeat neurodegenerative diseases.
Collapse
Affiliation(s)
- Clare L van Eyk
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Saumya E Samaraweera
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Andrew Scott
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Dani L Webber
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - David P Harvey
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Olivia Mecinger
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Louise V O’Keefe
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Jennifer E Cropley
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Liverpool St, Darlinghurst, Sydney 2010, Australia
- Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2042, Australia
| | - Paul Young
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Liverpool St, Darlinghurst, Sydney 2010, Australia
- Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2042, Australia
| | - Joshua Ho
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Liverpool St, Darlinghurst, Sydney 2010, Australia
- Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2042, Australia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Catherine Suter
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Liverpool St, Darlinghurst, Sydney 2010, Australia
- Faculty of Medicine, University of New South Wales, Kensington, New South Wales 2042, Australia
| | - Robert I Richards
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
23
|
Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol 2018; 39:937-950. [PMID: 30293747 DOI: 10.1016/j.it.2018.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023]
Abstract
Innate immune receptors, well known mediators of response to non-self-molecules and inflammation, also act as mediators of immunity triggered by 'damage-associated molecular patterns' (DAMPs). Pathogen-associated molecular patterns (PAMPs) cause inflammation in mammals and a rapid immune response in plants, while DAMPs trigger more complex responses, including immunity, tissue maintenance and repair. DAMPs, their receptors and downstream transduction mechanisms are often conserved within a kingdom or, due to convergent evolution, are similar across the kingdoms of life. Herein, we describe the dynamics and functionality of specific extracellular DAMP classes and their receptors in immunity, inflammation and repair of tissue damage in plants and mammals.
Collapse
|
24
|
Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP. Role of Microglia TLRs in Neurodegeneration. Front Cell Neurosci 2018; 12:329. [PMID: 30333729 PMCID: PMC6176466 DOI: 10.3389/fncel.2018.00329] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of receptors widely distributed in the organism. In the central nervous system, they are expressed in neurons, astrocytes and microglia. Although their involvement in immunity is notorious, different articles have demonstrated their roles in physiological and pathological conditions, including neurodegeneration. There is increasing evidence of an involvement of TLRs, especially TLR2, 4 and 9 in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this sense, their expression in microglia might modulate the activity of these cells, which in turn, lead to protective or deleterious effects over neurons and other cells. Therefore, TLRs might mediate the link between inflammation and neurodegenerative diseases. However, further studies have to be performed to elucidate the role of the other TLRs in these diseases and to further prove and confirm the pathophysiological role of all TLRs in neurodegeneration. In this article, we revise and summarize the current knowledge regarding the role of TLRs in neurodegeneration with the focus on the possible functions of these receptors in microglia.
Collapse
Affiliation(s)
- Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nizar M Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
25
|
Richards RI, Robertson SA, Kastner DL. Neurodegenerative diseases have genetic hallmarks of autoinflammatory disease. Hum Mol Genet 2018; 27:R108-R118. [PMID: 29684205 PMCID: PMC6061832 DOI: 10.1093/hmg/ddy139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/12/2018] [Accepted: 04/16/2018] [Indexed: 12/25/2022] Open
Abstract
The notion that one common pathogenic pathway could account for the various clinically distinguishable, typically late-onset neurodegenerative diseases might appear unlikely given the plethora of diverse primary causes of neurodegeneration. On the contrary, an autoinflammatory pathogenic mechanism allows diverse genetic and environmental factors to converge into a common chain of causality. Inflammation has long been known to correlate with neurodegeneration. Until recently this relationship was seen as one of consequence rather than cause-with inflammatory cells and events acting to 'clean up the mess' after neurological injury. This explanation is demonstrably inadequate and it is now clear that inflammation is at the very least, rate-limiting for neurodegeneration (and more likely, a principal underlying cause in most if not all neurodegenerative diseases), protective in its initial acute phase, but pernicious in its latter chronic phase.
Collapse
Affiliation(s)
- Robert I Richards
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|