1
|
de Cassia Soares Brandão B, Oliveira CYB, Dos Santos EP, de Abreu JL, Oliveira DWS, da Silva SMBC, Gálvez AO. Microalgae-based domestic wastewater treatment: a review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1384. [PMID: 37889346 DOI: 10.1007/s10661-023-12031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.
Collapse
Affiliation(s)
| | - Carlos Yure B Oliveira
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Jéssika Lima de Abreu
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Khandelwal A, Chhabra M, Lens PNL. Integration of third generation biofuels with bio-electrochemical systems: Current status and future perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1081108. [PMID: 36844066 PMCID: PMC9950272 DOI: 10.3389/fpls.2023.1081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Biofuels hold particular promise as these can replace fossil fuels. Algae, in particular, are envisioned as a sustainable source of third-generation biofuels. Algae also produce several low volume high-value products, which enhance their prospects of use in a biorefinery. Bio-electrochemical systems such as microbial fuel cell (MFC) can be used for algae cultivation and bioelectricity production. MFCs find applications in wastewater treatment, CO2 sequestration, heavy metal removal and bio-remediation. Oxidation of electron donor by microbial catalysts in the anodic chamber gives electrons (reducing the anode), CO2, and electrical energy. The electron acceptor at the cathode can be oxygen/NO3 -/NO2 -/metal ions. However, the need for a continuous supply of terminal electron acceptor in the cathode can be eliminated by growing algae in the cathodic chamber, as they produce enough oxygen through photosynthesis. On the other hand, conventional algae cultivation systems require periodic oxygen quenching, which involves further energy consumption and adds cost to the process. Therefore, the integration of algae cultivation and MFC technology can eliminate the need of oxygen quenching and external aeration in the MFC system and thus make the overall process sustainable and a net energy producer. In addition to this, the CO2 gas produced in the anodic chamber can promote the algal growth in the cathodic chamber. Hence, the energy and cost invested for CO2 transportation in an open pond system can be saved. In this context, the present review outlines the bottlenecks of first- and second-generation biofuels along with the conventional algae cultivation systems such as open ponds and photobioreactors. Furthermore, it discusses about the process sustainability and efficiency of integrating algae cultivation with MFC technology in detail.
Collapse
Affiliation(s)
- Amitap Khandelwal
- Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Meenu Chhabra
- Environmental Biotechnology Lab, Department of Biosciences & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Piet N. L. Lens
- Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Saran C, Purchase D, Saratale GD, Saratale RG, Romanholo Ferreira LF, Bilal M, Iqbal HMN, Hussain CM, Mulla SI, Bharagava RN. Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation. CHEMOSPHERE 2023; 312:137072. [PMID: 36336023 DOI: 10.1016/j.chemosphere.2022.137072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
This review paper emphasised on the origin of hexavalent chromium toxicity in tannery wastewater and its remediation using novel Microbial Fuel Cell (MFC) technology, including electroactive bacteria, which are known as exoelectrogens, to simultaneously treat wastewater and its action in the production of bioenergy and the mechanism of Cr6+ reduction. Also, there are various parameters like electrode, pH, mode of operation, time of operation, and type of exchange membrane used for promising results shown in enhancing MFC production and remediation of Cr6+. Destructive anthropological activities, such as leather making and electroplating industries are key sources of hexavalent chromium contamination in aquatic repositories. When Cr6+ enters the food chain and enters the human body, it has the potential to cause cancer. MFC is a green innovation that generates energy economically through the reduction of toxic Cr6+ to less toxic Cr3+. The organic substrates utilized at the anode of MFC act as electrons (e-) donors. This review also highlighted the utilization of cheap substrates to make MFCs more economically suitable and the energy production at minimum cost.
Collapse
Affiliation(s)
- Christina Saran
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, (U.P.), India, 226 025
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, England, United Kingdom
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE, 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, India
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, (U.P.), India, 226 025.
| |
Collapse
|
4
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Akash S, Sivaprakash B, Rajamohan N. Microbial electro deionization for waste water treatment - A critical review on methods, applications and mechanism. ENVIRONMENTAL RESEARCH 2022; 214:113999. [PMID: 35932837 DOI: 10.1016/j.envres.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Electro deionization using microbial communities has been proven as a competent method for desalination and abatement of water pollution by removing ionic chemicals from the target waters. Microbial Desalination Cell (MDC) facilitates microbial deionization which can either support or be a substitute for the conventional desalination methods. Generation of electricity is accomplished by the bio electrochemical oxidation of organic compounds present as contaminants in wastewater which in turn attribute to the migration of ions in MDC system. The present review aims to elucidate the theory, principles and the application of microbial desalination cell and microbial fuel cell (MFC) in treatment of saline and wastewaters. Air cathode MDC and stacked MDC for purification of saline water are found to give promising results. Air pump assisted microbial desalination cell reported 150.39 ppm h-1 of salt removal with an operational time period of 80 h and showed consistent results. Hence the air cathode assisted MDC showed dominant capacity of salt removal compared to stacked MDC. Also, three major types of microbial fuel cell, namely photosynthetic biofilm MFC, constructive wetland MFC and ceramic membrane supported MFC are reviewed for their potentials in wastewater treatment by deionization method and electricity generation. Complete (100%) removal of chemical oxygen demand was reported by photosynthetic microbial fuel cell operated for 16 days having 435.8 Ω of external resistance. When constructive wetland microbial fuel cell was operated for 10 days with 1000 ohms of external resistance, it exhibited complete (100%) removal of chemical oxygen demand from the wastewater. About 92% of chemical oxygen demand removal was demonstrated by ceramic membrane supported microbial fuel. Compared to ceramic membrane microbial fuel cell, photosynthetic and constructive wetland microbial fuel cell displayed better performance in terms of pollutant removal capacity and economical factor. Ability of the electrogenic species, namely Geobacter, Shewanella, Clostridium and Bacillus and the photosynthetic species, namely Chorella Vulgaris Rhodopsuedomonas, and Scenedesmus abundans in microbial deionization methods and their performance levels reported by several researchers are presented.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| |
Collapse
|
6
|
Deka R, Shreya S, Mourya M, Sirotiya V, Rai A, Khan MJ, Ahirwar A, Schoefs B, Bilal M, Saratale GD, Marchand J, Saratale RG, Varjani S, Vinayak V. A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives. ENVIRONMENTAL RESEARCH 2022; 212:113454. [PMID: 35597291 DOI: 10.1016/j.envres.2022.113454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.
Collapse
Affiliation(s)
- Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Shristi Shreya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana,133203, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Justine Marchand
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP), 470003, India.
| |
Collapse
|
7
|
Thong CH, Priyanga N, Ng FL, Pappathi M, Periasamy V, Phang SM, Gnana kumar G. Metal organic frameworks (MOFs) as potential anode materials for improving power generation from algal biophotovoltaic (BPV) platforms. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Khan MJ, Gordon R, Varjani S, Vinayak V. Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153667. [PMID: 35131253 DOI: 10.1016/j.scitotenv.2022.153667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 μgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive Panacea, FL 32346, USA; C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India.
| | - Vandana Vinayak
- Diatom Nano Engineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
9
|
Thapa BS, Kim T, Pandit S, Song YE, Afsharian YP, Rahimnejad M, Kim JR, Oh SE. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. BIORESOURCE TECHNOLOGY 2022; 347:126579. [PMID: 34921921 DOI: 10.1016/j.biortech.2021.126579] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms acting as microbial electrocatalysts have intrinsic metabolisms that mediate a redox potential difference between solid electrodes and microbes, leading to spontaneous electron transfer to the electrode (exo-electron transfer) or electron uptake from the electrode (endo-electron transfer). These microbes biochemically convert various organic and/or inorganic compounds to electricity and/or biochemicals in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs) and microbial electrosynthesis cells (MECs). For the past two decades, intense studies have converged to clarify electron transfer mechanisms of electroactive microbes in BESs, which thereby have led to improved bioelectrochemical performance. Also, many novel exoelectrogenic eukaryotes as well as prokaryotes with electroactive properties are being continuously discovered. This review presents an overview of electroactive microorganisms (bacteria, microalgae and fungi) and their exo- and endo-electron transfer mechanisms in BESs for optimizing and advancing bioelectrochemical techniques.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Environment, Kangwon National University, Chuncheon, Gangwondo 24341, Republic of Korea
| | - Taeyoung Kim
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Young Eun Song
- Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Yasamin Pesaran Afsharian
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Chuncheon, Gangwondo 24341, Republic of Korea.
| |
Collapse
|
10
|
Khan MJ, Das S, Vinayak V, Pant D, Ghangrekar MM. Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. CHEMOSPHERE 2022; 291:132841. [PMID: 34767852 DOI: 10.1016/j.chemosphere.2021.132841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/18/2021] [Accepted: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Microbial fuel cell (MFC) with live diatoms (Nitzschia palea) displacing bacteria in the anodic chamber generated electrical potential. Unlike other microalgae, diatoms fix 25% of atmospheric CO2, thus releasing O2. They perform photolysis of water by photosynthesis in the plastid during light photoperiod and cellular respiration in the mitochondria during dark, producing electrons and protons, respectively. The electrogenic property of diatom was explored and evaluated by comparing the potential changes with reference fuel cell without diatoms and that operated with diatoms in the anodic chamber. Such photosynthetic diatom microbial fuel cell (PDMFC) employed f/2 media rich in nitrates, phosphates, metasilicates, trace metals and vitamins as the anolyte and potassium permanganate as catholyte enhanced the output voltage by 3rd day. The maximum power density for PDMFC was 12.62 mWm-2 and coulombic efficiency of 22.95%. Besides this, the fixed diatom cells at anode showed about 64.28% increase in lipid production on 15th day compared to that on 1st day along with the increment in formation of complex fatty acid methyl esters and carotenoids during its operation. Hence, diatoms can be envisaged to substitute bacteria in the anodic chamber of MFC to simultaneously produce bioelectricity and other valuable compounds. Further their silica nanoporous architecture serve as good absorbents for heavy metal removal found in many wastewaters.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh, 470003, India.
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, Belgium
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
11
|
Koltysheva D, Shchurska K, Kuzminskyi Y. Microalgae and cyanobacteria as biological agents of biocathodes in biofuel cells. BIOTECHNOLOGIA 2021; 102:437-444. [PMID: 36605606 PMCID: PMC9642934 DOI: 10.5114/bta.2021.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 01/07/2023] Open
Abstract
Biofuel cells (BFCs) are an environmental friendly technology that can simultaneously perform wastewater treatment and generate electricity. Peculiarities that hinder the widespread introduction of this technology are the need to use artificial aeration and chemical catalysts, which make the technology expensive and cause secondary pollution. A possible solution to this issue is the use of biocathodes with microalgae and cyanobacteria. Microalgae in the biocathodic chamber produce oxygen as the terminal electron acceptor. Various BFC technologies with algal biocathode (microbial fuel cells, microbial desalination cells, and plant microbial fuel cells) can address a variety of issues such as wastewater treatment, desalination, and CO2 capture. The main technological parameters that influence the performance of the biocathode are light, pH, and temperature. These technological parameters affect photosynthetic production of oxygen and organic compounds by microalgae or cyanobacteria, and hence affect the efficiency of electricity production, wastewater treatment and production of added-value compounds in microalgae biomass like lutein, violaxanthin, astaxanthin. The ability to remove carbon, nitrogen, and phosphorus compounds; antibiotics; and heavy metals by pure cultures of microalgae and cyanobacteria and by mixed cultures with bacteria in the cathode chamber can be used for wastewater treatment.
Collapse
Affiliation(s)
- Dina Koltysheva
- National Technical Universityof Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Kateryna Shchurska
- National Technical Universityof Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Yevhenii Kuzminskyi
- National Technical Universityof Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| |
Collapse
|
12
|
Mahmoud RH, Samhan FA, Ibrahim MK, Ali GH, Hassan RYA. Waste to energy conversion utilizing nanostructured Algal‐based microbial fuel cells. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Rehab H. Mahmoud
- Water Pollution Research Department National Research Centre (NRC) Dokki Giza Egypt
| | - Farag A. Samhan
- Water Pollution Research Department National Research Centre (NRC) Dokki Giza Egypt
| | | | - Gamila H. Ali
- Water Pollution Research Department National Research Centre (NRC) Dokki Giza Egypt
| | - Rabeay Y. A. Hassan
- Applied Organic Chemistry Department National Research Centre (NRC) Dokki Giza 12622 Egypt
- Nanoscience Program University of Science and Technology (UST), Zewail City of Science and Technology 6th October City Giza 12578 Egypt
| |
Collapse
|
13
|
Yahampath Arachchige Don CDY, Babel S. Circulation of anodic effluent to the cathode chamber for subsequent treatment of wastewater in photosynthetic microbial fuel cell with generation of bioelectricity and algal biomass. CHEMOSPHERE 2021; 278:130455. [PMID: 33839395 DOI: 10.1016/j.chemosphere.2021.130455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Synthetic wastewater containing 1500 mg L-1 of COD was treated in the anode chamber for 5, 10, and 20 d. An anode chamber was conducted under anaerobic conditions with mixed culture bacteria inoculum attached to the anode. Anodic effluent was transferred to the cathode chamber for further treatment for 5, 10, and 20 d as the growth medium of Chlorella vulgaris. The microalgal photosynthesis process provided oxygen for the cathodic reaction. In 5 d of anodic hydraulic retention time (HRT), the effluent contained high COD, resulting in low power generation in the P-MFC due to the heterotrophic metabolism carried out by microalgae diminishing photosynthesis. However, high biomass productivity up to 0.649 g L-1 d-1 was obtained in the subsequent treatment of 5 d in the cathode chamber. An anodic HRT of 10 d resulted in higher power generation (0.0254 kWh kg-1 COD), and higher COD removal efficiency up to 60%. A further 10 d treatment in the cathode chamber increased the COD removal efficiency up to 74%. Anode and cathode chambers combined removed 79% of NH4+-N concentration from the original synthetic wastewater within 20 d. This study demonstrated that the anodic effluent of the P-MFC can be utilized in the cathode chamber as a growth medium for microalgae if conducted with appropriate HRT in the anode. P-MFC provides a promising sustainable solution for wastewater treatment while generating electricity and algal biomass as by-products.
Collapse
Affiliation(s)
- Chamath D Y Yahampath Arachchige Don
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Sandhya Babel
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
14
|
Sustainable Materials and their Contribution to the Sustainable Development Goals (SDGs): A Critical Review Based on an Italian Example. Molecules 2021; 26:molecules26051407. [PMID: 33807763 PMCID: PMC7961538 DOI: 10.3390/molecules26051407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs’ interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a “Sustainable Materials Partnership for SDGs” is envisaged for more suitable resource management in the future.
Collapse
|
15
|
Abstract
The need to safeguard our planet by reducing carbon dioxide emissions has led to a significant development of research in the field of alternative energy sources. Hydrogen has proved to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various methods already exist for producing hydrogen, most of them are not sustainable. Thus, research focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce this precious molecule in a natural way. In this review, we provide a description of the biochemical and molecular processes for the production of biohydrogen and give a general overview of one of the most interesting technologies in which hydrogen finds application for electricity production: fuel cells.
Collapse
|
16
|
Elshobary ME, Zabed HM, Yun J, Zhang G, Qi X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2021; 46:3135-3159. [DOI: 10.1016/j.ijhydene.2020.06.251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Nagendranatha Reddy C, Nguyen HTH, Noori MT, Min B. Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2019; 292:122010. [PMID: 31473037 DOI: 10.1016/j.biortech.2019.122010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Production of biofuels and other value-added products from wastewater along with quality treatment is an uttermost necessity to achieve environmental sustainability and promote bio-circular economy. Algae-Microbial fuel cell (A-MFC) with algae in cathode chamber offers several advantages e.g. photosynthetic oxygenation for electricity recovery, CO2-fixation, wastewater treatment, etc. However, performance of A-MFC depends on several operational parameters and also on electrode materials types; therefore, enormous collective efforts have been made by researchers for finding optimal conditions in order to enhance A-MFC performance. The present review is a comprehensive snapshot of the recent advances in A-MFCs, dealing two major parts: 1) the power generation, which exclusively outlines the effect of different parameters and development of cutting edge cathode materials and 2) wastewater treatment at cathode of A-MFC. This review provides fundamental knowledge, critical constraints, current status and some insights for making A-MFC technology a reality at commercial scale operation.
Collapse
Affiliation(s)
- C Nagendranatha Reddy
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea; Department of Biotechnology, Chaitanya Bharathi Institute of Technology (Autonomous), Gandipet-500075, Hyderabad, Telangana State, India; Bhuma Shobha Nagireddy Memorial College of Engineering & Technology (BSNRMCET) Kandukuri Metta, Allagadda 518543, Andhra Pradesh, India
| | - Hai T H Nguyen
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Md T Noori
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|