1
|
Liao Z, Liu Y, Chen C, Lei IM, Dong L, Wang C. A Highly Adaptable Hydrogen Bond Re-Orientation (HyBRO) Strategy for Multiscale Vasculature Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417734. [PMID: 40344457 DOI: 10.1002/adma.202417734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/20/2025] [Indexed: 05/11/2025]
Abstract
Three-dimensional printing of microchannel networks mimicking native vasculature provides essential functions for biomedical applications. However, developing a highly "adaptable" technique - that can adjust to diverse materials choices, high shape accuracy, and broad size ranges - for producing physiologically responsive vasculature remains challenging. Here, an innovative hydrogen bond re-orientation (HyBRO) strategy for microchannel network fabrication is reported. By identifying interfacial instability of sacrificial material (SM) during embedding as a core limitation, this strategy prints the SM into an optimal "nonsolvent" to shape the desirable channel structure. In this process, the nonsolvent instantaneously switches the SM from forming hydrogen bonds with exterior water to forming interior linkages inside it. This transition protects the SM from external solvent "erosion" upon re-exposure to embedding material, inhibiting deformation. Consequently, this approach enables the creation of accurate (>90%), multiscale (10-fold), hierarchical microchannel networks, accommodating accurate printing of a wide range of ink materials - extending from typical hydrophilic polymers into non-typical hydrophobic ones. Further biological tests demonstrate that HyBRO-produced vasculature recapitulates not only essential endothelial barrier function but also delicate ion-channel responses to varying shear stresses, highlighting its potential for engineering physiologically responsive vasculature in broad applications.
Collapse
Affiliation(s)
- Zhencheng Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China
| | - Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chonghao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Iek Man Lei
- Department of Electromechanical Engineering, University of Macau, Taipa, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
- National Resource Center for Mutant Mice, Nanjing, Jiangsu, 210023, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China
- Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
2
|
Roberge P, Ruel J, Bégin-Drolet A, Lemay J, Gakwaya S, Masse JF, Sériès F. Preliminary Assessment of an Ambulatory Device Dedicated to Upper Airway Muscle Training in Patients With Sleep Apnea: Proof-of-Concept Study. JMIR BIOMEDICAL ENGINEERING 2024; 9:e51901. [PMID: 38875673 PMCID: PMC11058550 DOI: 10.2196/51901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a prevalent condition affecting a substantial portion of the global population, with its prevalence increasing over the past 2 decades. OSAHS is characterized by recurrent upper airway (UA) closure during sleep, leading to significant impacts on quality of life and heightened cardiovascular and metabolic morbidity. Despite continuous positive airway pressure (CPAP) being the gold standard treatment, patient adherence remains suboptimal due to various factors, such as discomfort, side effects, and treatment unacceptability. OBJECTIVE Considering the challenges associated with CPAP adherence, an alternative approach targeting the UA muscles through myofunctional therapy was explored. This noninvasive intervention involves exercises of the lips, tongue, or both to improve oropharyngeal functions and mitigate the severity of OSAHS. With the goal of developing a portable device for home-based myofunctional therapy with continuous monitoring of exercise performance and adherence, the primary outcome of this study was the degree of completion and adherence to a 4-week training session. METHODS This proof-of-concept study focused on a portable device that was designed to facilitate tongue and lip myofunctional therapy and enable precise monitoring of exercise performance and adherence. A clinical study was conducted to assess the effectiveness of this program in improving sleep-disordered breathing. Participants were instructed to perform tongue protrusion, lip pressure, and controlled breathing as part of various tasks 6 times a week for 4 weeks, with each session lasting approximately 35 minutes. RESULTS Ten participants were enrolled in the study (n=8 male; mean age 48, SD 22 years; mean BMI 29.3, SD 3.5 kg/m2; mean apnea-hypopnea index [AHI] 20.7, SD 17.8/hour). Among the 8 participants who completed the 4-week program, the overall compliance rate was 91% (175/192 sessions). For the tongue exercise, the success rate increased from 66% (211/320 exercises; SD 18%) on the first day to 85% (272/320 exercises; SD 17%) on the last day (P=.05). AHI did not change significantly after completion of training but a noteworthy correlation between successful lip exercise improvement and AHI reduction in the supine position was observed (Rs=-0.76; P=.03). These findings demonstrate the potential of the device for accurately monitoring participants' performance in lip and tongue pressure exercises during myofunctional therapy. The diversity of the training program (it mixed exercises mixed training games), its ability to provide direct feedback for each exercise to the participants, and the easy measurement of treatment adherence are major strengths of our training program. CONCLUSIONS The study's portable device for home-based myofunctional therapy shows promise as a noninvasive alternative for reducing the severity of OSAHS, with a notable correlation between successful lip exercise improvement and AHI reduction, warranting further development and investigation.
Collapse
Affiliation(s)
- Patrice Roberge
- Mechanical Engineering Department, Université Laval, Quebec City, QC, Canada
| | - Jean Ruel
- Mechanical Engineering Department, Université Laval, Quebec City, QC, Canada
| | - André Bégin-Drolet
- Mechanical Engineering Department, Université Laval, Quebec City, QC, Canada
| | - Jean Lemay
- Mechanical Engineering Department, Université Laval, Quebec City, QC, Canada
| | - Simon Gakwaya
- Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - Jean-François Masse
- Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - Frédéric Sériès
- Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
Moeun BN, Fernandez SA, Collin S, Gauvin-Rossignol G, Lescot T, Fortin MA, Ruel J, Bégin-Drolet A, Leask RL, Hoesli CA. Improving the 3D Printability of Sugar Glass to Engineer Sacrificial Vascular Templates. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:869-886. [PMID: 37886415 PMCID: PMC10599441 DOI: 10.1089/3dp.2021.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A prominent obstacle in scaling up tissue engineering technologies for human applications is engineering an adequate supply of oxygen and nutrients throughout artificial tissues. Sugar glass has emerged as a promising 3D-printable, sacrificial material that can be used to embed perfusable networks within cell-laden matrices to improve mass transfer. To characterize and optimize a previously published sugar ink, we investigated the effects of sucrose, glucose, and dextran concentration on the glass transition temperature (Tg), printability, and stability of 3D-printed sugar glass constructs. We identified a sucrose ink formulation with a significantly higher Tg (40.0 ± 0.9°C) than the original formulation (sucrose-glucose blend, Tg = 26.2 ± 0.4°C), which demonstrated a pronounced improvement in printability, resistance to bending, and final print stability, all without changing dissolution kinetics and decomposition temperature. This formulation allowed printing of 10-cm-long horizontal cantilever filaments, which can enable the printing of complex vascular segments along the x-, y-, and z-axes without the need for supporting structures. Vascular templates with a single inlet and outlet branching into nine channels were 3D printed using the improved formulation and subsequently used to generate perfusable alginate constructs. The printed lattice showed high fidelity with respect to the input geometry, although with some channel deformation after alginate casting and gelation-likely due to alginate swelling. Compared with avascular controls, no significant acute cytotoxicity was noted when casting pancreatic beta cell-laden alginate constructs around improved ink filaments, whereas a significant decrease in cell viability was observed with the original ink. The improved formulation lends more flexibility to sugar glass 3D printing by facilitating the fabrication of larger, more complex, and more stable sacrificial networks. Rigorous characterization and optimization methods for improving sacrificial inks may facilitate the fabrication of functional cellular constructs for tissue engineering, cellular biology, and other biomedical applications.
Collapse
Affiliation(s)
| | | | - Simon Collin
- Mechanical Engineering, Université Laval, Québec, Canada
| | | | - Theophraste Lescot
- Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ), Québec, Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
| | - Marc-André Fortin
- Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CR-CHUQ), Québec, Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Québec, Canada
| | - Jean Ruel
- Mechanical Engineering, Université Laval, Québec, Canada
| | | | | | - Corinne A. Hoesli
- Chemical Engineering, McGill University, Montreal, Canada
- Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Chen S, Gao Q, Hu Q, Zhang H. Preparation of a scaffold for a vascular network channel with spatially varying diameter based on sucrose. Biomed Mater 2023; 18:065004. [PMID: 37691568 DOI: 10.1088/1748-605x/acf541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
In the past few decades, although tissue engineering has made significant progress and achieved many accomplishments, there are still some key problems that remain unsolved. One of the urgent research challenges in this field is how to prepare large-scale tissue engineering scaffolds with spatially complex structures. In this work, a sacrificial template process using sucrose as the sacrificial material and a gelatin/microbial transglutaminase mixed solution as the bio-scaffold material is proposed to fabricate a bio-scaffold with multi-level branching and spatially complex vascular network channels that mimic the structure and function of the human vascular network. To validate the feasibility of the fabrication process and the rationality of the process parameters, the morphological characteristics, connectivity of vascular network channels, shaping accuracy, and mechanical properties of the bio-scaffold were tested and analyzed. The results showed that the bio-scaffold fabricated using this process had a complete morphology and excellent connectivity. The diameter of the sucrose sacrificial template showed a linear relationship with the feeding speed, and the average diameter error rate between the sucrose sacrificial template and the vascular network channels inside the bio-scaffold was less than 8%. The mechanical properties of the bio-scaffold met the requirements for large-scale tissue defect repair. To evaluate the effect of the bio-scaffold on cell activity, human umbilical vein endothelial cells (HUVECs) were seeded into the vascular network channels of the bio-scaffold, and their attachment, growth, and proliferation on the surface of the vascular network channels were observed. To further assess the biocompatibility of the bio-scaffold, the bio-scaffold was implanted subcutaneously in the dorsal tissue of rats, and the tissue regeneration status was compared and analyzed through immunohistochemical analysis. The results showed that the vascular network channels within the bio-scaffold allowed uniform cell attachment, growth, with fewer dead cells and high cell viability. Moreover, clear cell attachment and growth were observed within the vascular network channels of the bio-scaffold after implantation in rats. These results indicate that the fabricated bio-scaffold meets the basic performance requirements for the repair and regeneration of large-scale tissue defects, providing a new approach for oxygen and nutrient transport in large-scale tissues and opening up new avenues for clinical applications.
Collapse
Affiliation(s)
- Siyu Chen
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, People's Republic of China
| | - Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, People's Republic of China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, People's Republic of China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, People's Republic of China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
5
|
Flores-Torres S, Jiang T, Kort-Mascort J, Yang Y, Peza-Chavez O, Pal S, Mainolfi A, Pardo LA, Ferri L, Bertos N, Sangwan V, Kinsella JM. Constructing 3D In Vitro Models of Heterocellular Solid Tumors and Stromal Tissues Using Extrusion-Based Bioprinting. ACS Biomater Sci Eng 2023; 9:542-561. [PMID: 36598339 DOI: 10.1021/acsbiomaterials.2c00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant tumor tissues exhibit inter- and intratumoral heterogeneities, aberrant development, dynamic stromal composition, diverse tissue phenotypes, and cell populations growing within localized mechanical stresses in hypoxic conditions. Experimental tumor models employing engineered systems that isolate and study these complex variables using in vitro techniques are under development as complementary methods to preclinical in vivo models. Here, advances in extrusion bioprinting as an enabling technology to recreate the three-dimensional tumor milieu and its complex heterogeneous characteristics are reviewed. Extrusion bioprinting allows for the deposition of multiple materials, or selected cell types and concentrations, into models based upon physiological features of the tumor. This affords the creation of complex samples with representative extracellular or stromal compositions that replicate the biology of patient tissue. Biomaterial engineering of printable materials that replicate specific features of the tumor microenvironment offer experimental reproducibility, throughput, and physiological relevance compared to animal models. In this review, we describe the potential of extrusion-based bioprinting to recreate the tumor microenvironment within in vitro models.
Collapse
Affiliation(s)
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, Hunan 410073, China
| | | | - Yun Yang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, Hunan 410073, China
| | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sanjima Pal
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Alisia Mainolfi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Lucas Antonio Pardo
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Lorenzo Ferri
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Nicholas Bertos
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec H4A 3J1, Canada
| | - Veena Sangwan
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
6
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
7
|
Biofabrication of Sodium Alginate Hydrogel Scaffolds for Heart Valve Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158567. [PMID: 35955704 PMCID: PMC9368972 DOI: 10.3390/ijms23158567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a challenge for current biofabrication methods. We present a novel technique for rapid fabrication of native-like tricuspid aortic valve scaffolds made of an alginate-based hydrogel. Using this technique, a sodium alginate hydrogel formulation is injected into a mold produced using a custom-made sugar glass 3D printer. The mold is then dissolved using a custom-made dissolving module, revealing the aortic valve scaffold. To assess the reproducibility of the technique, three scaffolds were thoroughly compared. CT (computed tomography) scans showed that the scaffolds respect the complex native geometry with minimal variations. The scaffolds were then tested in a cardiac bioreactor specially designed to reproduce physiological flow and pressure (aortic and ventricular) conditions. The flow and pressure profiles were similar to the physiological ones for the three valve scaffolds, with small variabilities. These early results establish the functional repeatability of this new biofabrication method and suggest its application for rapid fabrication of ready-to-use cell-seeded sodium alginate scaffolds for heart valve tissue engineering.
Collapse
|
8
|
Williams MAC, Mair DB, Lee W, Lee E, Kim DH. Engineering Three-Dimensional Vascularized Cardiac Tissues. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:336-350. [PMID: 33559514 PMCID: PMC9063162 DOI: 10.1089/ten.teb.2020.0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Heart disease is one of the largest burdens to human health worldwide and has very limited therapeutic options. Engineered three-dimensional (3D) vascularized cardiac tissues have shown promise in rescuing cardiac function in diseased hearts and may serve as a whole organ replacement in the future. One of the major obstacles in reconstructing these thick myocardial tissues to a clinically applicable scale is the integration of functional vascular networks capable of providing oxygen and nutrients throughout whole engineered constructs. Without perfusion of oxygen and nutrient flow throughout the entire engineered tissue not only is tissue viability compromised, but also overall tissue functionality is lost. There are many supporting technologies and approaches that have been developed to create vascular networks such as 3D bioprinting, co-culturing hydrogels, and incorporation of soluble angiogenic factors. In this state-of-the-art review, we discuss some of the most current engineered vascular cardiac tissues reported in the literature and future directions in the field. Impact statement The field of cardiac tissue engineering is rapidly evolving and is now closer than ever to having engineered tissue models capable of predicting preclinical responses to therapeutics, modeling diseases, and being used as a means of rescuing cardiac function following injuries to the native myocardium. However, a major obstacle of engineering thick cardiac tissue remains to be the integration of functional vasculature. In this review, we highlight seminal and recently published works that have influenced and pushed the field of cardiac tissue engineering toward achieving vascularized functional tissues.
Collapse
Affiliation(s)
| | - Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wonjae Lee
- Department of Neurosurgery, Stanford School of Medicine, Stanford, California, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Hu C, Ahmad T, Haider MS, Hahn L, Stahlhut P, Groll J, Luxenhofer R. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting. Biofabrication 2021; 14. [PMID: 34875631 DOI: 10.1088/1758-5090/ac40ee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022]
Abstract
Alginates are the most commonly used bioink in biofabrication, but their rheological profiles makes it very challenging to perform real 3D printing. In this study, an advanced hybrid hydrogel ink was developed, a mixture of thermogelling diblock copolymer, alginate and clay i.e. Laponite XLG. The reversible thermogelling and shear thinning properties of the diblock copolymer in the ink system improves handling and 3D printability significantly. Various three-dimensional constructs, including suspended filaments, were printed successfully with high shape fidelity and excellent stackability. Subsequent ionic crosslinking of alginate fixates the printed scaffolds, while the diblock copolymer is washed out of the structure, acting as a fugitive material on the (macro)molecular level. Finally, cell-laden printing and culture over 21 days demonstrated good cytocompatibility and feasibility of the novel hybrid hydrogels for 3D bioprinting. We believe that the developed material could be interesting for a wide range of bioprinting applications including tissue engineering and drug screening, potentially enabling also other biological bioinks such as collagen, hyaluronic acid, decellularized extracellular matrix or cellulose based bioinks.
Collapse
Affiliation(s)
- Chen Hu
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Taufiq Ahmad
- Department for Functional Materials in Medicine and Dentistry , University of Würzburg, Pleicherwall 2, Würzburg, Würzburg, D-97070, GERMANY
| | - Malik Salman Haider
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Lukas Hahn
- Department of Chemistry and Pharmacy, Julius Maximilians University Würzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Julius Maximilians University Würzburg, Pleicherwall 2, Wurzburg, 97070, GERMANY
| | - Juergen Groll
- Department for Functional Materials in Medicine and Dentistry, Julius-Maximilians-Universitat Wurzburg, Pleicherwall 2, D17, D-97070 Wurzburg, Wurzburg, 97070, GERMANY
| | - Robert Luxenhofer
- Chemistry and Pharmacy, Julius-Maximilians-Universitat Wurzburg, Röntgenring 11, Würzburg, 97070, GERMANY
| |
Collapse
|
10
|
Chen L, Kenkel SM, Hsieh PH, Gryka MC, Bhargava R. Freeform Three-Dimensionally Printed Microchannels via Surface-Initiated Photopolymerization Combined with Sacrificial Molding. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50105-50112. [PMID: 33091299 DOI: 10.1021/acsami.0c12158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise freeform microchannels within an aqueous environment have several biomedical applications but remain a challenge to fabricate. Carbohydrate glass materials have shown potential for three-dimensionally (3D) printing precise, microscale structures and are suitable as a sacrificial material to reconstruct complex channel architectures, but due to the rapid dissolution kinetics in hydrogels and the aqueous environment, protective coatings are required. Here, conformal coatings were applied to carbohydrate structures via surface-initiated photopolymerization (SIP) by incorporating a photoinitiator (PI) into freeform 3D printed isomalt structures using a custom 3D printer. Structures were then immersed into a photocurable prepolymer bath and exposed to light for reaction initiation. To achieve uniform distribution of photoinitiator molecules in 3D printed constructs, miscibility between commercial photoinitiators and isomalt was modeled using the group contribution method. A dye-based, type-two photoinitiator, Eosin Y disodium salt (EY), was selected for its miscibility with isomalt and stability under high temperature. A previously described Eosin Y (EY)/triethanolamine (TEA) radical polymerization system was used to polymerize poly(ethylene glycol) diacrylate (PEGDA). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), surface morphology, and swelling ratio characterizations via SIP were performed. Coatings around freeform structures and solid surfaces were presented to demonstrate the capability of coating complex architectures. This coating method should facilitate the application of 3D sacrificial molding in a variety of hydrogels toward building biomimetic vascular constructs.
Collapse
Affiliation(s)
- Lin Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Seth M Kenkel
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pei-Hsuan Hsieh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mark C Gryka
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments of Chemistry, Mechanical Science and Engineering, Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting Vasculature: Materials, Cells and Emergent Techniques. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2701. [PMID: 31450791 PMCID: PMC6747573 DOI: 10.3390/ma12172701] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
Despite the great advances that the tissue engineering field has experienced over the last two decades, the amount of in vitro engineered tissues that have reached a stage of clinical trial is limited. While many challenges are still to be overcome, the lack of vascularization represents a major milestone if tissues bigger than approximately 200 µm are to be transplanted. Cell survival and homeostasis is to a large extent conditioned by the oxygen and nutrient transport (as well as waste removal) by blood vessels on their proximity and spontaneous vascularization in vivo is a relatively slow process, leading all together to necrosis of implanted tissues. Thus, in vitro vascularization appears to be a requirement for the advancement of the field. One of the main approaches to this end is the formation of vascular templates that will develop in vitro together with the targeted engineered tissue. Bioprinting, a fast and reliable method for the deposition of cells and materials on a precise manner, appears as an excellent fabrication technique. In this review, we provide a comprehensive background to the fields of vascularization and bioprinting, providing details on the current strategies, cell sources, materials and outcomes of these studies.
Collapse
Affiliation(s)
- Clarissa Tomasina
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Tristan Bodet
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Carlos Mota
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | - Sandra Camarero-Espinosa
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| |
Collapse
|