1
|
Barekatain M, Johansson LC, Lam JH, Chang H, Sadybekov AV, Han GW, Russo J, Bliesath J, Brice N, Carlton MBL, Saikatendu KS, Sun H, Murphy ST, Monenschein H, Schiffer HH, Popov P, Lutomski CA, Robinson CV, Liu ZJ, Hua T, Katritch V, Cherezov V. Structural insights into the high basal activity and inverse agonism of the orphan receptor GPR6 implicated in Parkinson's disease. Sci Signal 2024; 17:eado8741. [PMID: 39626010 PMCID: PMC11850111 DOI: 10.1126/scisignal.ado8741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/07/2024] [Indexed: 02/06/2025]
Abstract
GPR6 is an orphan G protein-coupled receptor with high constitutive activity found in D2-type dopamine receptor-expressing medium spiny neurons of the striatopallidal pathway, which is aberrantly hyperactivated in Parkinson's disease. Here, we solved crystal structures of GPR6 without the addition of a ligand (a pseudo-apo state) and in complex with two inverse agonists, including CVN424, which improved motor symptoms in patients with Parkinson's disease in clinical trials. In addition, we obtained a cryo-electron microscopy structure of the signaling complex between GPR6 and its cognate Gs heterotrimer. The pseudo-apo structure revealed a strong density in the orthosteric pocket of GPR6 corresponding to a lipid-like endogenous ligand. A combination of site-directed mutagenesis, native mass spectrometry, and computer modeling suggested potential mechanisms for high constitutive activity and inverse agonism in GPR6 and identified a series of lipids and ions bound to the receptor. The structures and results obtained in this study could guide the rational design of drugs that modulate GPR6 signaling.
Collapse
Affiliation(s)
- Mahta Barekatain
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Linda C. Johansson
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jordy H. Lam
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Anastasiia V. Sadybekov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gye Won Han
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph Russo
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Joshua Bliesath
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | | | | | | | - Hukai Sun
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Sean T. Murphy
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | | | - Hans H. Schiffer
- Takeda Development Center Americas, Inc, San Diego, CA 92121, USA
| | - Petr Popov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Corinne A. Lutomski
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Vsevolod Katritch
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Basavarajappa BS, Subbanna S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024; 14:1296. [PMID: 39456229 PMCID: PMC11506053 DOI: 10.3390/biom14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms. Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively. Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders. This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| |
Collapse
|
3
|
Yang Y, Wang Q, Wang C, Buxbaum J, Ionita-Laza I. KnockoffHybrid: A knockoff framework for hybrid analysis of trio and population designs in genome-wide association studies. Am J Hum Genet 2024; 111:1448-1461. [PMID: 38821058 PMCID: PMC11267528 DOI: 10.1016/j.ajhg.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
Both trio and population designs are popular study designs for identifying risk genetic variants in genome-wide association studies (GWASs). The trio design, as a family-based design, is robust to confounding due to population structure, whereas the population design is often more powerful due to larger sample sizes. Here, we propose KnockoffHybrid, a knockoff-based statistical method for hybrid analysis of both the trio and population designs. KnockoffHybrid provides a unified framework that brings together the advantages of both designs and produces powerful hybrid analysis while controlling the false discovery rate (FDR) in the presence of linkage disequilibrium and population structure. Furthermore, KnockoffHybrid has the flexibility to leverage different types of summary statistics for hybrid analyses, including expression quantitative trait loci (eQTL) and GWAS summary statistics. We demonstrate in simulations that KnockoffHybrid offers power gains over non-hybrid methods for the trio and population designs with the same number of cases while controlling the FDR with complex correlation among variants and population structure among subjects. In hybrid analyses of three trio cohorts for autism spectrum disorders (ASDs) from the Autism Speaks MSSNG, Autism Sequencing Consortium, and Autism Genome Project with GWAS summary statistics from the iPSYCH project and eQTL summary statistics from the MetaBrain project, KnockoffHybrid outperforms conventional methods by replicating several known risk genes for ASDs and identifying additional associations with variants in other genes, including the PRAME family genes involved in axon guidance and which may act as common targets for human speech/language evolution and related disorders.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biostatistics, City University of Hong Kong, Hong Kong SAR, China; School of Data Science, City University of Hong Kong, Hong Kong SAR, China.
| | - Qi Wang
- School of Data Science, City University of Hong Kong, Hong Kong SAR, China
| | - Chen Wang
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Joseph Buxbaum
- Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY 10032, USA; Department of Statistics, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
5
|
Wright NJD. A review of the direct targets of the cannabinoids cannabidiol, Δ9-tetrahydrocannabinol, N-arachidonoylethanolamine and 2-arachidonoylglycerol. AIMS Neurosci 2024; 11:144-165. [PMID: 38988890 PMCID: PMC11230856 DOI: 10.3934/neuroscience.2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Marijuana has been used by humans for thousands of years for both medicinal and recreational purposes. This included the treatment of pain, inflammation, seizures, and nausea. In the 1960s, the structure of the principal psychoactive ingredient Δ9-tetrahydrocannabinol was determined, and over the next few decades, two cannabinoid receptors were characterized along with the human endocannabinoid system and what it affects. This includes metabolism, the cardiovascular and reproductive systems, and it is involved in such conditions as inflammation, cancer, glaucoma, and liver and musculoskeletal disorders. In the central nervous system, the endocannabinoid system has been linked to appetite, learning, memory, and conditions such as depression, anxiety, schizophrenia, stroke, multiple sclerosis, neurodegeneration, addiction, and epilepsy. It was the profound effectiveness of cannabidiol, a non-psychoactive ingredient of marijuana, to relieve the symptoms of Dravet syndrome, a severe form of childhood epilepsy, that recently helped spur marijuana research. This has helped substantially to change society's attitude towards this potential source of useful drugs. However, research has also revealed that the actions of endocannabinoids, such as anandamide and 2-arachidonoylglycerol, and the phytocannabinoids, tetrahydrocannabinol and cannabidiol, were not just due to interactions with the two cannabinoid receptors but by acting directly on many other targets including various G-protein receptors and cation channels, such as the transient receptor potential channels for example. This mini-review attempts to survey the effects of these 4 important cannabinoids on these currently identified targets.
Collapse
|
6
|
Bresinsky M, Shahraki A, Kolb P, Pockes S, Schihada H. Development of Fluorescent AF64394 Analogues Enables Real-Time Binding Studies for the Orphan Class A GPCR GPR3. J Med Chem 2023; 66:15025-15041. [PMID: 37907069 PMCID: PMC10641823 DOI: 10.1021/acs.jmedchem.3c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
The orphan G protein-coupled receptor (oGPCR) GPR3 represents a potential drug target for the treatment of Alzheimer's disease and metabolic disorders. However, the limited toolbox of pharmacological assays hampers the development of advanced ligands. Here, we developed a signaling pathway-independent readout of compound-GPR3 interaction. Starting from computational binding pose predictions of the most potent GPR3 ligand, we designed a series of fluorescent AF64394 analogues and assessed their suitability for BRET-based binding studies. The most potent ligand, 45 (UR-MB-355), bound to GPR3 and closely related receptors, GPR6 and GPR12, with similar submicromolar affinities. Furthermore, we found that 45 engages GPR3 in a distinct mode compared to AF64394, and coincubation studies with the GPR3 agonist diphenyleneiodonium chloride revealed allosteric modulation of 45 binding. These insights provide new cues for the pharmacological manipulation of GPR3 activity. This novel binding assay will foster the development of future drugs acting through these pharmacologically attractive oGPCRs.
Collapse
Affiliation(s)
- Merlin Bresinsky
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Aida Shahraki
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Peter Kolb
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| | - Steffen Pockes
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Department
of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Hannes Schihada
- Department
of Pharmaceutical Chemistry, University
of Marburg, Marbacher Weg 8, 35032 Marburg, Germany
| |
Collapse
|
7
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Castillo-Arellano J, Canseco-Alba A, Cutler SJ, León F. The Polypharmacological Effects of Cannabidiol. Molecules 2023; 28:3271. [PMID: 37050032 PMCID: PMC10096752 DOI: 10.3390/molecules28073271] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer's disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.
Collapse
Affiliation(s)
- Jorge Castillo-Arellano
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana Canseco-Alba
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery of Mexico (INNN), Mexico City 14269, Mexico
| | - Stephen J. Cutler
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
9
|
Walsh KB, McKinney AE, Holmes AE. Minor Cannabinoids: Biosynthesis, Molecular Pharmacology and Potential Therapeutic Uses. Front Pharmacol 2021; 12:777804. [PMID: 34916950 PMCID: PMC8669157 DOI: 10.3389/fphar.2021.777804] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The medicinal use of Cannabis sativa L. can be traced back thousands of years to ancient China and Egypt. While marijuana has recently shown promise in managing chronic pain and nausea, scientific investigation of cannabis has been restricted due its classification as a schedule 1 controlled substance. A major breakthrough in understanding the pharmacology of cannabis came with the isolation and characterization of the phytocannabinoids trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). This was followed by the cloning of the cannabinoid CB1 and CB2 receptors in the 1990s and the subsequent discovery of the endocannabinoid system. In addition to the major phytocannabinoids, Δ9-THC and CBD, cannabis produces over 120 other cannabinoids that are referred to as minor and/or rare cannabinoids. These cannabinoids are produced in smaller amounts in the plant and are derived along with Δ9-THC and CBD from the parent cannabinoid cannabigerolic acid (CBGA). While our current knowledge of minor cannabinoid pharmacology is incomplete, studies demonstrate that they act as agonists and antagonists at multiple targets including CB1 and CB2 receptors, transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPARs), serotonin 5-HT1a receptors and others. The resulting activation of multiple cell signaling pathways, combined with their putative synergistic activity, provides a mechanistic basis for their therapeutic actions. Initial clinical reports suggest that these cannabinoids may have potential benefits in the treatment of neuropathic pain, neurodegenerative diseases, epilepsy, cancer and skin disorders. This review focuses on the molecular pharmacology of the minor cannabinoids and highlights some important therapeutic uses of the compounds.
Collapse
Affiliation(s)
- Kenneth B Walsh
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Amanda E McKinney
- Institute for Human and Planetary Health, Crete, NE, United States.,School of Integrative Learning, Doane University, Crete, NE, United States
| | - Andrea E Holmes
- School of Integrative Learning, Doane University, Crete, NE, United States.,Precision Plant Molecules, Denver, CO, United States
| |
Collapse
|
10
|
Biringer RG. Endocannabinoid signaling pathways: beyond CB1R and CB2R. J Cell Commun Signal 2021; 15:335-360. [PMID: 33978927 PMCID: PMC8222499 DOI: 10.1007/s12079-021-00622-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The search for cannabinoid receptors other than CB1R and CB2R has been ongoing for over a decade. A number of orphan receptors have been proposed as potential cannabinoid receptors primarily based on phylogenic arguments and reactivity towards known endocannabinoids and phytocannabinoids. Seven putative cannabinoid receptors are described and discussed, and evidence for and against their inclusion in this category are presented.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
11
|
Brice NL, Schiffer HH, Monenschein H, Mulligan VJ, Page K, Powell J, Xu X, Cheung T, Burley JR, Sun H, Dickson L, Murphy ST, Kaushal N, Sheardown S, Lawrence J, Chen Y, Bartkowski D, Kanta A, Russo J, Hosea N, Dawson LA, Hitchcock SH, Carlton MB. Development of CVN424: A Selective and Novel GPR6 Inverse Agonist Effective in Models of Parkinson Disease. J Pharmacol Exp Ther 2021; 377:407-416. [PMID: 33795395 DOI: 10.1124/jpet.120.000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 07/25/2024] Open
Abstract
GPR6 is an orphan G-protein-coupled receptor that has enriched expression in the striatopallidal, indirect pathway and medium spiny neurons of the striatum. This pathway is greatly impacted by the loss of the nigro-striatal dopaminergic neurons in Parkinson disease, and modulating this neurocircuitry can be therapeutically beneficial. In this study, we describe the in vitro and in vivo pharmacological characterization of (R)-1-(2-(4-(2,4-difluorophenoxy)piperidin-1-yl)-3-((tetrahydrofuran-3-yl)amino)-7,8-dihydropyrido[3,4-b]pyrazin-6(5H)-yl)ethan-1-one (CVN424), a highly potent and selective small-molecule inverse agonist for GPR6 that is currently undergoing clinical evaluation. CVN424 is brain-penetrant and shows dose-dependent receptor occupancy that attained brain 50% of receptor occupancy at plasma concentrations of 6.0 and 7.4 ng/ml in mice and rats, respectively. Oral administration of CVN424 dose-dependently increases locomotor activity and reverses haloperidol-induced catalepsy. Furthermore, CVN424 restored mobility in bilateral 6-hydroxydopamine lesion model of Parkinson disease. The presence and localization of GPR6 in medium spiny neurons of striatum postmortem samples from both nondemented control and patients with Parkinson disease were confirmed at the level of both RNA (using Nuclear Enriched Transcript Sort sequencing) and protein. This body of work demonstrates that CVN424 is a potent, orally active, and brain-penetrant GPR6 inverse agonist that is effective in preclinical models and is a potential therapeutic for improving motor function in patients with Parkinson disease. SIGNIFICANCE STATEMENT: CVN424 represents a nondopaminergic novel drug for potential use in patients with Parkinson disease.
Collapse
Affiliation(s)
- Nicola L Brice
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Hans H Schiffer
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Holger Monenschein
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Victoria J Mulligan
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Keith Page
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Justin Powell
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Xiao Xu
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Toni Cheung
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - J Russell Burley
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Huikai Sun
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Louise Dickson
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Sean T Murphy
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Nidhi Kaushal
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Steve Sheardown
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Jason Lawrence
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Yun Chen
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Darian Bartkowski
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Anne Kanta
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Joseph Russo
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Natalie Hosea
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Lee A Dawson
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Stephen H Hitchcock
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| | - Mark B Carlton
- Cerevance Ltd, Cambridge, United Kingdom (N.L.B., V.J.M., K.P., J.P., X.X., T.C., J.R.B., L.D., S.S., J.L., L.A.D., M.B.C.); and Takeda California, San Diego, California (H.H.S., H.M., H.S., S.T.M., N.K., Y.C., D.B., A.K., J.R., N.H., S.H.H.)
| |
Collapse
|
12
|
Stott LA, Brighton CA, Brown J, Mould R, Bennett KA, Newman R, Currinn H, Autore F, Higueruelo AP, Tehan BG, MacSweeney C, O'Brien MA, Watson SP. Characterisation of inverse agonism of the orphan-G protein-coupled receptor GPR52 by cannabinoid ligands Cannabidiol and O-1918. Heliyon 2021; 7:e07201. [PMID: 34189291 PMCID: PMC8219759 DOI: 10.1016/j.heliyon.2021.e07201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of cannabinoid ligands Cannabidiol and O-1918 as inverse agonists of the orphan receptor GPR52 is reported. Detailed characterisation of GPR52 pharmacology and modelling of the proposed receptor interaction is described. The identification of a novel and further CNS pharmacology for the polypharmacological agent and marketed drug Cannabidiol is noteworthy.
Collapse
Affiliation(s)
- Lisa A Stott
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Cheryl A Brighton
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Jason Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Richard Mould
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Kirstie A Bennett
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Robert Newman
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Heather Currinn
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Flavia Autore
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Alicia P Higueruelo
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Benjamin G Tehan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Cliona MacSweeney
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Michael A O'Brien
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Steve P Watson
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| |
Collapse
|
13
|
Vitale RM, Iannotti FA, Amodeo P. The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. Int J Mol Sci 2021; 22:4876. [PMID: 34062987 PMCID: PMC8124847 DOI: 10.3390/ijms22094876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cannabidiol (CBD), the major nonpsychoactive Cannabis constituent, has been proposed for the treatment of a wide panel of neurological and neuropsychiatric disorders, including anxiety, schizophrenia, epilepsy and drug addiction due to the ability of its versatile scaffold to interact with diverse molecular targets that are not restricted to the endocannabinoid system. Albeit the molecular mechanisms responsible for the therapeutic effects of CBD have yet to be fully elucidated, many efforts have been devoted in the last decades to shed light on its complex pharmacological profile. In particular, an ever-increasing number of molecular targets linked to those disorders have been identified for this phytocannabinoid, along with the modulatory effects of CBD on their cascade signaling. In this view, here we will try to provide a comprehensive and up-to-date overview of the molecular basis underlying the therapeutic effects of CBD involved in the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| |
Collapse
|
14
|
Mori MA, Meyer E, da Silva FF, Milani H, Guimarães FS, Oliveira RMW. Differential contribution of CB1, CB2, 5-HT1A, and PPAR-γ receptors to cannabidiol effects on ischemia-induced emotional and cognitive impairments. Eur J Neurosci 2021; 53:1738-1751. [PMID: 33522084 DOI: 10.1111/ejn.15134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/17/2021] [Indexed: 01/08/2023]
Abstract
An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Francielly F da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | | |
Collapse
|
15
|
Sampson PB. Phytocannabinoid Pharmacology: Medicinal Properties of Cannabis sativa Constituents Aside from the "Big Two". JOURNAL OF NATURAL PRODUCTS 2021; 84:142-160. [PMID: 33356248 DOI: 10.1021/acs.jnatprod.0c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant-based therapies date back centuries. Cannabis sativa is one such plant that was used medicinally up until the early part of the 20th century. Although rich in diverse and interesting phytochemicals, cannabis was largely ignored by the modern scientific community due to its designation as a schedule 1 narcotic and restrictions on access for research purposes. There was renewed interest in the early 1990s when the endocannabinoid system (ECS) was discovered, a complex network of signaling pathways responsible for physiological homeostasis. Two key components of the ECS, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), were identified as the molecular targets of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC). Restrictions on access to cannabis have eased worldwide, leading to a resurgence in interest in the therapeutic potential of cannabis. Much of the focus has been on the two major constituents, Δ9-THC and cannabidiol (CBD). Cannabis contains over 140 phytocannabinoids, although only a handful have been tested for pharmacological activity. Many of these minor cannabinoids potently modulate receptors, ionotropic channels, and enzymes associated with the ECS and show therapeutic potential individually or synergistically with other phytocannabinoids. The following review will focus on the pharmacological developments of the next generation of phytocannabinoid therapeutics.
Collapse
|
16
|
Piscitelli F, Di Marzo V. Cannabinoids: a class of unique natural products with unique pharmacology. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-020-00966-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Mizuno H, Kihara Y. Druggable Lipid GPCRs: Past, Present, and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:223-258. [PMID: 32894513 DOI: 10.1007/978-3-030-50621-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) have seven transmembrane spanning domains and comprise the largest superfamily with ~800 receptors in humans. GPCRs are attractive targets for drug discovery because they transduce intracellular signaling in response to endogenous ligands via heterotrimeric G proteins or arrestins, resulting in a wide variety of physiological and pathophysiological responses. The endogenous ligands for GPCRs are highly chemically diverse and include ions, biogenic amines, nucleotides, peptides, and lipids. In this review, we follow the KonMari method to better understand druggable lipid GPCRs. First, we have a comprehensive tidying up of lipid GPCRs including receptors for prostanoids, leukotrienes, specialized pro-resolving mediators (SPMs), lysophospholipids, sphingosine 1-phosphate (S1P), cannabinoids, platelet-activating factor (PAF), free fatty acids (FFAs), and sterols. This tidying up consolidates 46 lipid GPCRs and declutters several perplexing lipid GPCRs. Then, we further tidy up the lipid GPCR-directed drugs from the literature and databases, which identified 24 clinical drugs targeting 16 unique lipid GPCRs available in the market and 44 drugs under evaluation in more than 100 clinical trials as of 2019. Finally, we introduce drug designs for GPCRs that spark joy, such as positive or negative allosteric modulators (PAM or NAM), biased agonism, functional antagonism like fingolimod, and monoclonal antibodies (MAbs). These strategic drug designs may increase the efficacy and specificity of drugs and reduce side effects. Technological advances will help to discover more endogenous lipid ligands from the vast number of remaining orphan GPCRs and will also lead to the development novel lipid GPCR drugs to treat various diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
18
|
Morales P, Jagerovic N. Novel approaches and current challenges with targeting the endocannabinoid system. Expert Opin Drug Discov 2020; 15:917-930. [PMID: 32336154 PMCID: PMC7502221 DOI: 10.1080/17460441.2020.1752178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The pathophysiological relevance of the endocannabinoid system has been widely demonstrated in a variety of diseases including cancer, neurological disorders, and metabolic issues. Therefore, targeting the receptors and the endogenous machinery involved in this system can provide a successful therapeutic outcome. Ligands targeting the canonical cannabinoid receptors, CB1 and CB2, along with inhibitors of the endocannabinoid enzymes have been thoroughly studied in diverse disease models. In fact, phytocannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are currently on the market for the management of neuropathic pain due to spasticity in multiple sclerosis or seizures in children epilepsy amongst others. AREAS COVERED Challenges in the pharmacology of cannabinoids arise from its pharmacokinetics, off-target effects, and psychoactive effects. In this context, the current review outlines the novel molecular approaches emerging in the field discussing their clinical potential. EXPERT OPINION Even if orthosteric CB1 and CB2 ligands are on the forefront in cannabinoid clinical research, emerging strategies such as allosteric or biased modulation of these receptors along with controlled off-targets effects may increase the therapeutic potential of cannabinoids.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
19
|
Isawi IH, Morales P, Sotudeh N, Hurst DP, Lynch DL, Reggio PH. GPR6 Structural Insights: Homology Model Construction and Docking Studies. Molecules 2020; 25:molecules25030725. [PMID: 32046081 PMCID: PMC7037797 DOI: 10.3390/molecules25030725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023] Open
Abstract
GPR6 is an orphan G protein-coupled receptor that has been associated with the cannabinoid family because of its recognition of a sub-set of cannabinoid ligands. The high abundance of GPR6 in the central nervous system, along with high constitutive activity and a link to several neurodegenerative diseases make GPR6 a promising biological target. In fact, diverse research groups have demonstrated that GPR6 represents a possible target for the treatment of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. Several patents have claimed the use of a wide range of pyrazine derivatives as GPR6 inverse agonists for the treatment of Parkinson's disease symptoms and other dyskinesia syndromes. However, the full pharmacological importance of GPR6 has not yet been fully explored due to the lack of high potency, readily available ligands targeting GPR6. The long-term goal of the present study is to develop such ligands. In this paper, we describe our initial steps towards this goal. A human GPR6 homology model was constructed using a suite of computational techniques. This model permitted the identification of unique GPR6 structural features and the exploration of the GPR6 binding crevice. A subset of patented pyrazine analogs were docked in the resultant GPR6 inactive state model to validate the model, rationalize the structure-activity relationships from the reported patents and identify the key residues in the binding crevice for ligand recognition. We will take this structural knowledge into the next phase of GPR6 project, in which scaffold hopping will be used to design new GPR6 ligands.
Collapse
Affiliation(s)
- Israa H. Isawi
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Paula Morales
- Instituto de Química Medica (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Noori Sotudeh
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Dow P. Hurst
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Diane L. Lynch
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (I.H.I.); (D.P.H.); (D.L.L.)
- Correspondence:
| |
Collapse
|
20
|
Shrader SH, Song ZH. Discovery of endogenous inverse agonists for G protein-coupled receptor 6. Biochem Biophys Res Commun 2019; 522:1041-1045. [PMID: 31818461 DOI: 10.1016/j.bbrc.2019.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/01/2019] [Indexed: 01/01/2023]
Abstract
The orphan G protein-coupled receptor 6 (GPR6) is highly expressed in the striatum and has been linked to multiple striatal pathologies. The identification of endogenous ligands and their mechanisms of action at GPR6 will help to elucidate the physiological and pathological roles of the receptor. In the current study, we tested the concentration-dependent effects of a variety of endocannabinoid-like N-acylamides on GPR6 signaling. Here, we demonstrate for the first time that N-arachidonoyl dopamine, N-docosahexaenoyl dopamine, N-oleoyl dopamine and N-palmitoyl dopamine exert inverse agonism at GPR6. This effect was concentration-dependent, with potencies in the micromolar range, and functionally selective for β-arrestin2 recruitment. Structure-activity relationship studies demonstrate that both the N-acyl side chain and the dopamine head group are important for these ligands to act on GPR6. Our discovery of these N-acyl dopamines as endogenous inverse agonists for GPR6 moves us one step further in understanding the roles GPR6 play in neurodegenerative and neuropsychiatric disorders related to striatal dysfunction.
Collapse
Affiliation(s)
- Sarah H Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, United States.
| |
Collapse
|