1
|
Klein M, Bisot C, Oyarte Gálvez L, Kokkoris V, Shimizu TS, Dong L, Weedon JT, Bouwmeester H, Kiers ET. The potential of strigolactones to shift competitive dynamics among two Rhizophagus irregularis strains. Front Microbiol 2024; 15:1470469. [PMID: 39483758 PMCID: PMC11524933 DOI: 10.3389/fmicb.2024.1470469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Strigolactones are phytohormones that influence arbuscular mycorrhizal fungal (AMF) spore germination, pre-symbiotic hyphal branching, and metabolic rates. Historically, strigolactone effects have been tested on single AMF strains. An open question is whether intraspecific variation in strigolactone effects and intraspecific interactions can influence AMF competition. Using the Rhizophagus irregularis strains A5 and C2, we tested for intraspecific variation in the response of germination and pre-symbiotic growth (i.e., hyphal length and branching) to the strigolactones GR24 and 5-deoxystrigol. We also tested if interactions between these strains modified their germination rates and pre-symbiotic growth. Spore germination rates were consistently high (> 90%) for C2 spores, regardless of treatment and the presence of the other strain. For A5 spores, germination was increased by strigolactone presence from approximately 30 to 70% but reduced when grown in mixed culture. When growing together, branching increased for both strains compared to monocultures. In mixed cultures, strigolactones increased the branching for both strains but led to an increase in hyphal length only for the strain A5. These strain-specific responses suggest that strigolactones may have the potential to shift competitive dynamics among AMF species with direct implications for the establishment of the AMF community.
Collapse
Affiliation(s)
- Malin Klein
- Section of Ecology and Evolution, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Corentin Bisot
- Physics of Behavior, AMOLF Institute, Amsterdam, Netherlands
| | - Loreto Oyarte Gálvez
- Section of Ecology and Evolution, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Physics of Behavior, AMOLF Institute, Amsterdam, Netherlands
| | - Vasilis Kokkoris
- Section of Systems Ecology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Lemeng Dong
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - James T. Weedon
- Section of Systems Ecology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - E. Toby Kiers
- Section of Ecology and Evolution, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Naseer MA, Zhang ZQ, Mukhtar A, Asad MS, Wu HY, Yang H, Zhou XB. Strigolactones: A promising tool for nutrient acquisition through arbuscular mycorrhizal fungi symbiosis and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109057. [PMID: 39173365 DOI: 10.1016/j.plaphy.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/27/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere. The use of mineral resources, especially phosphorus (P), by host plants is accelerated by AMF, which also improves plant growth and resilience to a series of biotic and abiotic stresses. Thus, these SL treatments that promote rhizobial symbiosis are substitutes for artificial fertilizers and other chemicals, supporting ecologically friendly farming practices. Moreover, SLs have become a fascinating target for abiotic stress adaptation in plants, with an array of uses in sustainable agriculture. In this review, the biological activity has been summarized that SLs as a signaling hormone for AMF symbiosis, nutrient acquisition, and abiotic stress tolerance through interaction with other hormones. Furthermore, the processes behind the alterations in the microbial population caused by SL are clarified, emphasizing the interplay with other signaling mechanisms. This review covers the latest developments in SL studies as well as the properties of SLs on microbial populations, plant hormone transductions, interactions and abiotic stress tolerance.
Collapse
Affiliation(s)
- Muhammad Asad Naseer
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Zhi Qin Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Ahmed Mukhtar
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | | | - Hai Yan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hong Yang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Xun Bo Zhou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Mitra D, Panneerselvam P, Chidambaranathan P, Nayak AK, Priyadarshini A, Senapati A, Mohapatra PKD. Strigolactone GR24-mediated mitigation of phosphorus deficiency through mycorrhization in aerobic rice. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100229. [PMID: 38525307 PMCID: PMC10958977 DOI: 10.1016/j.crmicr.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Strigolactones (SLs) are a new class of plant hormones that play a significant role in regulating various aspects of plant growth promotion, stress tolerance and influence the rhizospheric microbiome. GR24 is a synthetic SL analog used in scientific research to understand the effects of SL on plants and to act as a plant growth promoter. This study aimed to conduct hormonal seed priming at different concentrations of GR24 (0.1, 0.5, 1.0, 5.0 and 10.0 µM with and without arbuscular mycorrhizal fungi (AMF) inoculation in selected aerobic rice varieties (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207), Kasalath-IC459373 (P-tolerant check), and IR-36 (P-susceptible check) under phosphorus (P)-deficient conditions to understand the enhancement of growth and priming effects in mycorrhization. Our findings showed that seed priming with 5.0 µM SL GR24 enhanced the performance of mycorrhization in CR Dhan 205 (88.91 %), followed by CR Dhan 204 and 207, and AMF sporulation in CR Dhan 201 (31.98 spores / 10 gm soil) and CR Dhan 207 (30.29 spores / 10 g soil), as well as rice growth. The study showed that the highly responsive variety CR Dhan 207 followed by CR Dhan 204, 205, 201, and Kasalath IC459373 showed higher P uptake than the control, and AMF treated with 5.0 µM SL GR24 varieties CR Dhan 205 followed by CR Dhan 207 and 204 showed the best performance in plant growth, chlorophyll content, and soil functional properties, such as acid and alkaline phosphatase activity, soil microbial biomass carbon (MBC), dehydrogenase activity (DHA), and fluorescein diacetate activity (FDA). Overall, AMF intervention with SL GR24 significantly increased plant growth, soil enzyme activity, and uptake of P compared to the control. Under P-deficient conditions, seed priming with 5.0 µM strigolactone GR24 and AMF inoculum significantly increased selected aerobic rice growth, P uptake, and soil enzyme activities. Application of SLs formulations with AMF inoculum in selected aerobic rice varieties, CR Dhan 207, CR Dhan 204, and CR Dhan 205, will play an important role in mycorrhization, growth, and enhancement of P utilization under P- nutrient deficient conditions.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134 West Bengal, India
- ICAR – National Rice Research Institute, Cuttack, 753006 Odisha, India
| | | | | | | | | | - Ansuman Senapati
- ICAR – National Rice Research Institute, Cuttack, 753006 Odisha, India
| | | |
Collapse
|
4
|
GAO X, LIU Y, LIU C, GUO C, ZHANG Y, MA C, DUAN X. Individual and combined effects of arbuscular mycorrhizal fungi and phytohormones on the growth and physiobiochemical characteristics of tea cutting seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1140267. [PMID: 37056488 PMCID: PMC10086264 DOI: 10.3389/fpls.2023.1140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Both arbuscular mycorrhizal fungi (AMF) and phytohormones collectively regulate plant growth and root development, but their individual and combined effects on tea [Camellia sinensis (L.) O. Kuntze] cutting seedings remain unclear. This study examined the individual and combined effects of two species of AMF (Rhizophagus intraradices, RI and Funneliformis mosseae, FM) and two types of palnt hormones (strigolactones, SLs; polyamines, PAs) on tea cutting seedings, by evaluating the growth and physiobiochemical characteristics of plants treated with the AMFs and/or hormones. The results showed that inoculation with either AMF individually or hormones treatment alone could significantly enhanced mycorrhizal colonization, growth target and physiobiochemical characteristics of tea cutting seedlings. Interestingly, the addition of a combination of AMFs and hormones showed superior effects, while SL and RI exhibited the most improvements to the colonization rate, plant growth, root-morphological traits, root DHA activity, photosynthesis, chlorophyll content, soluble sugar content in leaves, and the activities of antioxidant enzymes (SOD, POD, and CAT), compared to other treatment combinations (SL + FM, PA + RI, and PA + FM). Correlation analyses revealed a significantly (p < 0.05) positive correlation of root AMF colonization with root-related traits (e.g., DHA, root total length, surface area, and volume) and leaf-related traits (e.g., leaf area, shoot biomass, total chlorophyll, and antioxidant enzyme activities). This study demonstrated that while the apllication of individual AMF or plant hormones had a certain good effects on most growth and physiobiochemical characteristics parameters of tea cutting seedings, the additive effect was from specific combined of AMF and plant hormones. These results highlight the possibility for combined of AMF and plant hormones to improve the asexual reproduction of tea plants via cuttings.
Collapse
Affiliation(s)
- Xiubing GAO
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
- College of Horticalture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yan LIU
- Guizhou Institutes of Biology, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Chunyan LIU
- College of Horticalture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Can GUO
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Yuan ZHANG
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Chiyu MA
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| | - Xueyi DUAN
- Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Soliman S, Wang Y, Han Z, Pervaiz T, El-kereamy A. Strigolactones in Plants and Their Interaction with the Ecological Microbiome in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3499. [PMID: 36559612 PMCID: PMC9781102 DOI: 10.3390/plants11243499] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Phytohormones play an essential role in enhancing plant tolerance by responding to abiotic stresses, such as nutrient deficiency, drought, high temperature, and light stress. Strigolactones (SLs) are carotenoid derivatives that occur naturally in plants and are defined as novel phytohormones that regulate plant metabolism, growth, and development. Strigolactone assists plants in the acquisition of defensive characteristics against drought stress by initiating physiological responses and mediating the interaction with soil microorganisms. Nutrient deficiency is an important abiotic stress factor, hence, plants perform many strategies to survive against nutrient deficiency, such as enhancing the efficiency of nutrient uptake and forming beneficial relationships with microorganisms. Strigolactone attracts various microorganisms and provides the roots with essential elements, including nitrogen and phosphorus. Among these advantageous microorganisms are arbuscular mycorrhiza fungi (AMF), which regulate plant metabolic activities through phosphorus providing in roots. Bacterial nodulations are also nitrogen-fixing microorganisms found in plant roots. This symbiotic relationship is maintained as the plant provides organic molecules, produced in the leaves, that the bacteria could otherwise not independently generate. Related stresses, such as light stress and high-temperature stress, could be affected directly or indirectly by strigolactone. However, the messengers of these processes are unknown. The most prominent connector messengers have been identified upon the discovery of SLs and the understanding of their hormonal effect. In addition to attracting microorganisms, these groups of phytohormones affect photosynthesis, bridge other phytohormones, induce metabolic compounds. In this article, we highlighted the brief information available on SLs as a phytohormone group regarding their common related effects. In addition, we reviewed the status and described the application of SLs and plant response to abiotic stresses. This allowed us to comprehend plants' communication with the ecological microbiome as well as the strategies plants use to survive under various stresses. Furthermore, we identify and classify the SLs that play a role in stress resistance since many ecological microbiomes are unexplained.
Collapse
Affiliation(s)
- Sabry Soliman
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Yi Wang
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Zhenhai Han
- Department of Fruit Science, College of Horticulture, China Agriculture University, Beijing 100083, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Ashraf El-kereamy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Ito S, Braguy J, Wang JY, Yoda A, Fiorilli V, Takahashi I, Jamil M, Felemban A, Miyazaki S, Mazzarella T, Chen GTE, Shinozawa A, Balakrishna A, Berqdar L, Rajan C, Ali S, Haider I, Sasaki Y, Yajima S, Akiyama K, Lanfranco L, Zurbriggen MD, Nomura T, Asami T, Al-Babili S. Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. SCIENCE ADVANCES 2022; 8:eadd1278. [PMID: 36322663 PMCID: PMC9629705 DOI: 10.1126/sciadv.add1278] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/14/2022] [Indexed: 05/09/2023]
Abstract
Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.
Collapse
Affiliation(s)
- Shinsaku Ito
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Justine Braguy
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf 40225, Germany
| | - Jian You Wang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Akiyoshi Yoda
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Muhammad Jamil
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abrar Felemban
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sho Miyazaki
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Guan-Ting Erica Chen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Akihisa Shinozawa
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
- Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Aparna Balakrishna
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamis Berqdar
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chakravarty Rajan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shawkat Ali
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| | - Imran Haider
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Yasuyuki Sasaki
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kohki Akiyama
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, Torino 10125, Italy
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf 40225, Germany
| | - Takahito Nomura
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Salim Al-Babili
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Campos-López A, Uribe-López JA, Cázares-Ordoñez V, Garibay-Orijel R, Valdez-Cruz NA, Trujillo-Roldán MA. Quercetin and 1-methyl-2-oxindole mimic root signaling that promotes spore germination and mycelial growth of Gigaspora margarita. MYCORRHIZA 2022; 32:177-191. [PMID: 35194685 DOI: 10.1007/s00572-022-01074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/10/2022] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, and the difficulty of growing them in asymbiotic or monoxenic (AMF + root) conditions limits research and their large-scale production as biofertilizer. We hypothesized that a combination of flavanols and strigolactones can mimic complex root signaling during the presymbiotic stages of AMF. We evaluated the germination, mycelial growth, branching, and auxiliary cell clusters formation by Gigaspora margarita during the presymbiotic stage in the presence (or absence) of transformed Cichorium intybus roots in basal culture medium enriched with glucose, a flavonol (quercetin or biochanin A) and a strigolactone analogue (1-Methyl-2-oxindole or indole propionic acid). With quercetin (5 µM), methyl oxindole (2.5 nM), and glucose (8.2 g/L) in the absence of roots, the presymbiotic mycelium of G. margarita grew without cytoplasmic retraction and produced auxiliary cells over 71 days similar to presymbiotic mycelium in the presence of roots but without glucose, strigolactones, and flavonols. Our results indicate that glucose and a specific combination of certain concentrations of a flavonol and a strigolactone might be used in asymbiotic or monoxenic liquid or semisolid cultures to stimulate AMF inoculant bioprocesses.
Collapse
Affiliation(s)
- Alberto Campos-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Jaime A Uribe-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. Km 14 Vía Mosquera - Bogotá, 250047, Bogotá, Colombia
| | - Verna Cázares-Ordoñez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México. Av. Universidad, 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México.
| |
Collapse
|
8
|
Sun X, Feng J, Shi J. Stimulation of Hyphal Ramification and Sporulation in Funneliformis mosseae by Root Extracts Is Host Phosphorous Status-Dependent. J Fungi (Basel) 2022; 8:jof8020181. [PMID: 35205935 PMCID: PMC8876493 DOI: 10.3390/jof8020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
A simulation of the environment inhabited by arbuscular mycorrhizal (AM) fungi could provide clues as to how to cultivate these obligate biotrophs axenically. Host intraradical and rhizospheric environments, root extracts and exudates in particular, would be crucial for AM fungi to complete their life cycles. In this study, we analyzed and compared the effects of root exudates (RE) and root extracts (RET) of white clover (Trifolium repens) on the asymbiotic growth of the AM fungus Funneliformis mosseae in vitro, and furtherly analyzed the chemical components of different RET with the LC-MS/MS technique in order to establish an asymbiotic cultivation system for this important and hardly domesticated AM fungus. RET is superior to RE in stimulating spore germination, hyphal elongation and branching, and secondary spore formation (p < 0.05). RET-induced effects were dependent on phosphate supplement levels, and the RET obtained following the treatment with low levels of phosphorus significantly promoted hyphal growth and sporulation (p < 0.05). A few newly formed secondary spores showed limited colonization of white clover roots. The low phosphorus-induced effects could be ascribed to the metabolic adjustment (mainly lipids and organic acids) of white clover roots under low phosphate conditions. Our findings demonstrate that the low phosphate-induced RET boosts the asymbiotic growth of AM fungus, and thus offers an alternative way to fulfill the life cycle of AM fungi asymbiotically.
Collapse
Affiliation(s)
- Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Forest Cultivation in Plateau Moutain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
- Correspondence:
| | - Jingwei Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Forest Cultivation in Plateau Moutain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jing Shi
- School of Sociology, Guizhou Minzu University, Guiyang 550025, China;
| |
Collapse
|
9
|
Evaluation of the Effect of Strigolactones and Synthetic Analogs on Fungi. Methods Mol Biol 2021. [PMID: 34028680 DOI: 10.1007/978-1-0716-1429-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Strigolactones (SLs) are components of root exudates as a consequence of active release from the roots into the soil. Notably, they have been described as stimulants of seed germination in parasitic plants and of the presymbiotic growth in arbuscular mycorrhizal (AM) fungi, which are a crucial component of the plant root beneficial microbiota. SLs have therefore the potential to influence other microbes that proliferate in the soil around the roots and may interact with plants. A direct effect of SL analogs on the in vitro growth of a number of saprotrophic or plant pathogenic fungi was indeed reported.Here we describe a standardized method to evaluate the effect of SLs or their synthetic analogs on AM and filamentous fungi. For AM fungi, we propose a spore germination assay since it is more straightforward than the hyphal branching assay and it does not require deep expertise and skills. For filamentous fungi that can grow in axenic cultures, we describe the assay based on SLs embedded in the solid medium or dissolved in liquid cultures where the fungus is inoculated to evaluate the effect on growth, hyphal branching or conidia germination. These assays are of help to test the activity of natural SLs as well as of newly designed SL analogs for basic and applied research.
Collapse
|
10
|
Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. THE ISME JOURNAL 2021; 15:1919-1930. [PMID: 33568790 PMCID: PMC8245413 DOI: 10.1038/s41396-021-00894-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Many invasive plants have enhanced mutualistic arbuscular mycorrhizal (AM) fungal associations, however, mechanisms underlying differences in AM fungal associations between introduced and native populations of invasive plants have not been explored. Here we test the hypothesis that variation in root exudate chemicals in invasive populations affects AM fungal colonization and then impacts plant performance. We examined flavonoids (quercetin and quercitrin) in root exudates of native and introduced populations of the invasive plant Triadica sebifera and tested their effects on AM fungi and plant performance. We found that plants from introduced populations had higher concentrations of quercetin in root exudates, greater AM fungal colonization and higher biomass. Applying root exudates more strongly increased AM fungal colonization of target plants and AM fungal spore germination when exudate donors were from introduced populations. The role of root exudate chemicals was further confirmed by decreased AM fungal colonization when activated charcoal was added into soil. Moreover, addition of quercetin into soil increased AM fungal colonization, indicating quercetin might be a key chemical signal stimulating AM fungal associations. Together these results suggest genetic differences in root exudate flavonoids play an important role in enhancing AM fungal associations and invasive plants' performance, thus considering root exudate chemicals is critical to unveiling mechanisms governing shifting plant-soil microbe interactions during plant invasions.
Collapse
|
11
|
Taulera Q, Lauressergues D, Martin K, Cadoret M, Servajean V, Boyer FD, Rochange S. Initiation of arbuscular mycorrhizal symbiosis involves a novel pathway independent from hyphal branching. MYCORRHIZA 2020; 30:491-501. [PMID: 32506172 DOI: 10.1007/s00572-020-00965-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The arbuscular mycorrhizal symbiosis is a very common association between plant roots and soil fungi, which greatly contributes to plant nutrition. Root-exuded compounds known as strigolactones act as symbiotic signals stimulating the fungus prior to root colonization. Strigolactones also play an endogenous role in planta as phytohormones and contribute to the regulation of various developmental traits. Structure-activity relationship studies have revealed both similarities and differences between the structural features required for bioactivity in plants and arbuscular mycorrhizal fungi. In the latter case, bioassays usually measured a stimulation of hyphal branching on isolated fungi of the Gigaspora genus, grown in vitro. Here, we extended these investigations with a bioassay that evaluates the bioactivity of strigolactone analogs in a symbiotic situation and the use of the model mycorrhizal fungus Rhizophagus irregularis. Some general structural requirements for bioactivity reported previously for Gigaspora were confirmed. We also tested additional strigolactone analogs bearing modifications on the conserved methylbutenolide ring, a key element of strigolactone perception by plants. A strigolactone analog with an unmethylated butenolide ring could enhance the ability of R. irregularis to colonize host roots. Surprisingly, when applied to the isolated fungus in vitro, this compound stimulated germ tube elongation but inhibited hyphal branching. Therefore, this compound was able to act on the fungal and/or plant partner to facilitate initiation of the arbuscular mycorrhizal symbiosis, independently from hyphal branching and possibly from the strigolactone pathway.
Collapse
Affiliation(s)
- Quentin Taulera
- Laboratoire de Recherche en Sciences Végétales, CNRS, Université de Toulouse, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Castanet-Tolosan, France
| | - Dominique Lauressergues
- Laboratoire de Recherche en Sciences Végétales, CNRS, Université de Toulouse, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Castanet-Tolosan, France
| | - Katie Martin
- Laboratoire de Recherche en Sciences Végétales, CNRS, Université de Toulouse, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Castanet-Tolosan, France
| | - Maïna Cadoret
- Laboratoire de Recherche en Sciences Végétales, CNRS, Université de Toulouse, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Castanet-Tolosan, France
| | - Vincent Servajean
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, CNRS, Université de Toulouse, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Castanet-Tolosan, France.
| |
Collapse
|
12
|
Chiapello M, Das D, Gutjahr C. Ramf: An Open-Source R Package for Statistical Analysis and Display of Quantitative Root Colonization by Arbuscular Mycorrhiza Fungi. FRONTIERS IN PLANT SCIENCE 2019; 10:1184. [PMID: 31611898 PMCID: PMC6777641 DOI: 10.3389/fpls.2019.01184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Data analysis and graphical representation form an essential part of scientific research dissemination. The life-science community is moving towards a more transparent presentation of single data points or data distributions and away from mean values displayed as bar charts. To facilitate transparent data display to the mycorrhiza community, we present "Ramf" an open-source R package for statistical analysis and preparation of a variety of publication-ready plots, custom-made for analyzing and displaying quantitative root colonization by arbuscular mycorrhiza fungi or any kind of data to be displayed in the same format. Ramf replaces the scripting needed for data analysis and can be readily used by researchers not acquainted with R. In addition, the package is open to improvements by the community. Ramf is available at https://github.com/mchiapello/Ramf.
Collapse
Affiliation(s)
- Marco Chiapello
- Institute for Sustainable Plant Protection, CNR, Torino, Italy
| | - Debatosh Das
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|