1
|
Almutairi N, Khan N, Harrison-Smith A, Arlt VM, Stürzenbaum SR. Stage-specific exposure of Caenorhabditis elegans to cadmium identifies unique transcriptomic response cascades and an uncharacterized cadmium responsive transcript. Metallomics 2024; 16:mfae016. [PMID: 38549424 PMCID: PMC11066929 DOI: 10.1093/mtomcs/mfae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
Age/stage sensitivity is considered a significant factor in toxicity assessments. Previous studies investigated cadmium (Cd) toxicosis in Caenorhabditis elegans, and a plethora of metal-responsive genes/proteins have been identified and characterized in fine detail; however, most of these studies neglected age sensitivity and stage-specific response to toxicants at the molecular level. This present study compared the transcriptome response between C. elegans L3 vs L4 larvae exposed to 20 µM Cd to explore the transcriptional hallmarks of stage sensitivity. The results showed that the transcriptome of the L3 stage, despite being exposed to Cd for a shorter period, was more affected than the L4 stage, as demonstrated by differences in transcriptional changes and magnitude of induction. Additionally, T08G5.1, a hitherto uncharacterized gene located upstream of metallothionein (mtl-2), was transcriptionally hyperresponsive to Cd exposure. Deletion of one or both metallothioneins (mtl-1 and/or mtl-2) increased T08G5.1 expression, suggesting that its expression is linked to the loss of metallothionein. The generation of an extrachromosomal transgene (PT08G5.1:: GFP) revealed that T08G5.1 is constitutively expressed in the head neurons and induced in gut cells upon Cd exposure, not unlike mtl-1 and mtl-2. The low abundance of cysteine residues in T08G5.1 suggests, however, that it may not be involved directly in Cd sequestration to limit its toxicity like metallothionein, but might be associated with a parallel pathway, possibly an oxidative stress response.
Collapse
Affiliation(s)
- Norah Almutairi
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Naema Khan
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alexandra Harrison-Smith
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Jung J, Loschko T, Reich S, Rassoul-Agha M, Werner MS. Newly identified nematodes from the Great Salt Lake are associated with microbialites and specially adapted to hypersaline conditions. Proc Biol Sci 2024; 291:20232653. [PMID: 38471558 PMCID: PMC10932707 DOI: 10.1098/rspb.2023.2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Extreme environments enable the study of simplified food-webs and serve as models for evolutionary bottlenecks and early Earth ecology. We investigated the biodiversity of invertebrate meiofauna in the benthic zone of the Great Salt Lake (GSL), Utah, USA, one of the most hypersaline lake systems in the world. The hypersaline bays within the GSL are currently thought to support only two multicellular animals: brine fly larvae and brine shrimp. Here, we report the presence, habitat, and microbial interactions of novel free-living nematodes. Nematode diversity drops dramatically along a salinity gradient from a freshwater river into the south arm of the lake. In Gilbert Bay, nematodes primarily inhabit reef-like organosedimentary structures built by bacteria called microbialites. These structures likely provide a protective barrier to UV and aridity, and bacterial associations within them may support life in hypersaline environments. Notably, sampling from Owens Lake, another terminal lake in the Great Basin that lacks microbialites, did not recover nematodes from similar salinities. Phylogenetic divergence suggests that GSL nematodes represent previously undescribed members of the family Monhysteridae-one of the dominant fauna of the abyssal zone and deep-sea hydrothermal vents. These findings update our understanding of halophile ecosystems and the habitable limit of animals.
Collapse
Affiliation(s)
- Julie Jung
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tobias Loschko
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Max Planck Institute for Biology, Tübingen, Germany
| | - Shelley Reich
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Maxim Rassoul-Agha
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael S. Werner
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Hull B, Irby IM, Miller KM, Anderson A, Gardea EA, Sutphin GL. Experimental variables that impact outcomes in Caenorhabditis elegans aging stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574889. [PMID: 38260451 PMCID: PMC10802420 DOI: 10.1101/2024.01.09.574889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cellular stress is a fundamental component of age-associated disease. Cells encounter various forms of stress - oxidative stress, protein misfolding, DNA damage, etc. - and respond by activating specific, well-defined stress response pathways. As we age, the burden of stress and resulting damage increases while our cells' ability to deal with the consequences becomes diminished due to dysregulation of cellular stress response pathways. Many interventions that extend lifespan activate one or more stress response pathways or allow cells to maintain normal stress response later in life. The nematode Caenorhabditis elegans is a commonly used model for both aging and stress response research. As such, stress response experiments are regularly conducted as part of studies focused on mechanisms of aging in C. elegans. However, experimental design across experiments in the field are highly variable, including stressor dose, age at exposure, culture type (liquid vs. solid), bacterial strain used as a food source, and environmental temperature. These differences can result in different experimental outcomes, making comparison of results between studies challenging. Here we evaluate several experimental variables that are variable in the published literature and find that each can meaningfully alter experimental outcomes for multiple stressors. Our goal is to raise awareness of the issue of experimental variability within the field and suggest a standardized experimental design to serve as a set of guidelines for future experiments. By adopting these guidelines as a starting point, and explicitly noting differences in specific experiments, we aim to promote rigor and reproducibility, ultimately fostering more interpretable and translatable outcomes in geroscience research.
Collapse
|
4
|
Wang S, Chen C, Lu Y. Epigallocatechin-3-Gallate Reduces Cd-Induced Developmental Toxicity of Bodysize in Caenorhabditis elegans via the PEK-1/eIF-2α/ATF-4 Pathway. Molecules 2023; 28:6344. [PMID: 37687170 PMCID: PMC10489720 DOI: 10.3390/molecules28176344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Cadmium (Cd), a harmful heavy metal that has no biological purpose, can harm healthy fetal and child development. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in tea, has been shown to increase cell viability under Cd exposure and ameliorate Cd-induced kidney injury in adult male rats. Using the Caenorhabditis elegans (C. elegans) model, we demonstrated that EGCG mitigated Cd-induced body size developmental toxicity through a mechanism that did not involve chelation with EGCG and was not associated with Cd accumulation and efflux. Our research indicated that the beneficial effects of EGCG on Cd-induced body size developmental toxicity were associated with the mitigation of endoplasmic reticulum stress. Furthermore, our observations indicate that EGCG reduced Cd-induced developmental toxicity in C. elegans via the PEK-1/eIF-2α/ATF-4 pathway. Our results provide important evidence for the potential benefits of consuming tea as a detoxification agent.
Collapse
Affiliation(s)
- Shuanghui Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Chuhong Chen
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Yan Lu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Liu Y, Wang X, Yuan L, Liu Y, Shen T, Zhang Y. Comparative Small RNA Profiling and Functional Exploration on Wheat With High- and Low-Cadmium Accumulation. Front Genet 2021; 12:635599. [PMID: 33936166 PMCID: PMC8084923 DOI: 10.3389/fgene.2021.635599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cadmium is a toxic metal widely found in workplaces and plant soil because of extensive industrialization. Wheat is an important source of food generated from plant soil. The different responses of wheat against different omic levels of cadmium have been observed and widely studied worldwide. With the development of high-throughput sequencing, micro-level biological research has extended to the microRNA level. In this study, high-cadmium-accumulating wheat cultivars (Annong9267) and low-cadmium-accumulating wheat cultivars (Qian 102032) were used as experimental models. The two cultivars were treated by Cd for 2 h to explore the microRNA profiles in root and leaf tissues through small RNA sequencing. Important small RNAs, such as tae-miR9663-5p and tae-miR6201, and potential small RNA-mediated mechanisms associated with cadmium accumulation were identified by summarizing specific microRNA profiling patterns and their respective target genes. At the wheat roots and leaves, differentially expressed small RNAs related to cadmium accumulation in different plant tissues (roots or leaves) were identified, and functional enrichment analyses on target genes of differentially expressed miRNAs in low- and high-cadmium-accumulating wheat cultivars in different plant tissues (roots or leaves) obtained some known mature miRNAs and new miRNAs. The identified miRNA will be regarded as a potential screening biomarker for low-cadmium-accumulating wheat.
Collapse
Affiliation(s)
- Yuqing Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xudong Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Leyi Yuan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yuxiang Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Tong Shen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Wang S, You M, Wang C, Zhang Y, Fan C, Yan S. Heat shock pretreatment induced cadmium resistance in the nematode Caenorhabditis elegans is depend on transcription factors DAF-16 and HSF-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114081. [PMID: 32062098 DOI: 10.1016/j.envpol.2020.114081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure poses a serious environmental problem due to the metal's bioaccumulation and difficult to eliminate from body. Understanding the mechanisms of Cd detoxification and resistance can provide insights into methods to protect against the damaging effects of the heavy metal. In the present study, we found that heat shock (HS) pretreatment increased Cd resistance of the nematode Caenorhabditis elegans by reducing the bagging phenotype and protecting the integrity of the intestinal barrier. HS pretreatment increased the expression of heat shock protein-16.2 (HSP-16.2) prior to Cd exposure, and HS-induced Cd resistance was absent in worms with hsp-16.2 loss-of-function mutation. Worm strain with daf-2(e1370) mutation presented enhanced HS-induced Cd resistance, which was eliminated in worm strains of daf-16(mu86) and hsf-1(sy441). HS pretreatment increased DAF-16 nuclear localization and HSF-1 granule formation prior to Cd exposure. DAF-16 and HSF-1 was essential in reducing bagging formation and protecting the integrity of intestinal barrier after HS pretreatment. In conclusion, the present study demonstrated that HS-induced Cd resistance in C. elegans is regulated by the DAF-16/FOXO and HSF-1 pathways through regulation of HSP-16.2 expression.
Collapse
Affiliation(s)
- Shunchang Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China.
| | - Mu You
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Chengrun Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Yuecheng Zhang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Caiqi Fan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Shoubao Yan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|