1
|
Rastrepaeva DA, Argunov DA, Puchkin IA, Yashunsky DV, Krylov VB, Nifantiev NE. Synthesis of branched heterooligosaccharides related to Aspergillus galactomannan containing short Galf side chains. Carbohydr Res 2025; 549:109360. [PMID: 39718273 DOI: 10.1016/j.carres.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The members of a widespread Aspergillus fungi genus cause various diseases including the invasive aspergillosis with high morbidity and mortality rates, especially for immunosuppressed patients. One of the main carbohydrate structures on the surface of their cell wall is the galactomannan (GM) which is used in diagnostic kits for the detection of specific types of aspergillosis. However, limited specificity of currently available test systems urges the need for their further improvement. Herein we report the first synthesis of branched heterosaccharides related to GM and containing α-(1→2)-/α-(1→6)-linked tetramannoside backbone chain bearing one galactofuranoside unit or its β-(1→5)-linked dimer. The preparation of conjugates of the obtained spacered oligosaccharides with BSA is also performed to produce tools for the assessment the specificity of anti-Aspergillus immune response and to select antibodies suitable for the development of novel diagnostic kits that may discriminate distinct types of aspergillosis.
Collapse
Affiliation(s)
- Darya A Rastrepaeva
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Ilya A Puchkin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| |
Collapse
|
2
|
Argunov DA, Aladysheva US, Krylov VB, Nifantiev NE. Acid-Catalyzed Transformation of Pyranosides into Furanosides as a Tool for Preparation of Furanoside Synthetic Blocks. Org Lett 2024; 26:8090-8094. [PMID: 39269779 DOI: 10.1021/acs.orglett.4c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The importance of natural glycoconjugates containing furanoside residues causes a continued demand for the development of efficient methods for the synthesis of corresponding oligosaccharide derivatives to be used as molecular probes in glycobiological studies. Currently, the chemical synthesis of furanose-containing oligosaccharides often represents a significant challenge because of the lack of short, efficient, and reliable methods for the preparation of selectively substituted furanoside blocks. Herein, we report an easy protocol toward galactofuranose-containing molecules based on the unusual equilibrium between pyranoside and furanoside forms observed for a series of substituted galactosides. The method's utility is illustrated by the syntheses of furanoside-containing oligosaccharides related to the antigenic polysaccharides of Aspergillus fumigatus and Klebsiella pneumoniae O2ac.
Collapse
Affiliation(s)
- Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Uliana S Aladysheva
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| |
Collapse
|
3
|
Mukhametova LI, Zherdev DO, Eremin SA, Kuznetsov AN, Yudin VI, Sclyarov OD, Babicheva OV, Motorygin AV, Tsvetkov YE, Krylov VB, Nifantiev NE. Applying a Fluorescence Polarization Assay for Detection of Brucellosis in Animals Using the Fluorescently Labeled Synthetic Oligosaccharides as Biosensing Tracer. BIOSENSORS 2024; 14:404. [PMID: 39194633 DOI: 10.3390/bios14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Brucellosis in animals is an infectious disease caused by bacteria of the genus Brucella. Known methods for diagnosing brucellosis face some challenges, due to the difficulties in isolating and standardizing the natural brucellosis antigen. In this work, we investigated the possibility of using the fluorescence polarization assay (FPA) with synthetic glycoconjugate biosensing tracers to detect antibodies against Brucella as a new methodology for diagnosing brucellosis. Based on the received results, the synthetic fluorescein-labeled trisaccharide tracer is most effective for Brucellosis detection. This tracer is structurally related to the immune determinant fragment of the Brucella LPS buildup of N-formyl-d-perosamine units, connected via α-(1→3)-linkage at the non-reducing end and α-(1→2)-linkage at the reducing end. The sensitivity and specificity in the case of the use of trisaccharide tracer 3b were 71% and 100% (Yuden's method) and 87% and 88% (Euclidean method), respectively, which is comparable with the diagnostic efficiency of traditionally used serological methods, such as the agglutination test (AT), complement fixation test (CFT), and Rose Bengal test (RBT). Given the known advantages of FPA (e.g., speed, compactness of the equipment, and standard reagents) and the increased specificity of the developed test system, it would be appropriate to consider its widespread use for the diagnosis of brucellosis in animals, including rapid testing in the field.
Collapse
Affiliation(s)
| | - Dmitry O Zherdev
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Sergei A Eremin
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Anton N Kuznetsov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Viktor I Yudin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg D Sclyarov
- Russian State Centre of Quality and Standardization of Veterinary Drugs and Feeds, 123022 Moscow, Russia
| | - Olesia V Babicheva
- Russian State Centre of Quality and Standardization of Veterinary Drugs and Feeds, 123022 Moscow, Russia
| | - Anton V Motorygin
- Russian State Centre of Quality and Standardization of Veterinary Drugs and Feeds, 123022 Moscow, Russia
| | - Yury E Tsvetkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim B Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Tsvetkov YE, Volkov TM, Eremin SA, Sklyarov OD, Kulakov YK, Krylov VB, Nifantiev NE. New synthesis of oligosaccharides modelling the M epitope of the Brucella O-polysaccharide. Front Chem 2024; 12:1424157. [PMID: 38974993 PMCID: PMC11224555 DOI: 10.3389/fchem.2024.1424157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Brucellosis is a dangerous zoonotic disease caused by bacteria of the genus Brucella. Diagnosis of brucellosis is based on the detection in animal and human sera of antibodies to the O-polysaccharide of Brucella lipopolysaccharide. The currently employed serodiagnosis of brucellosis relies on the use of the Brucella O-polysaccharide as a diagnostic antigen. However, the existence of bacterial species, which also express O-polysaccharides structurally similar to that of Brucella, may decrease the specificity of the brucellosis detection due to false-positive test results. It has been shown that the efficiency of the test can be significantly improved by using synthetic oligosaccharides that correspond to the so-called M epitope of the Brucella O-antigen. This epitope is characterized by an α-(1→3)-linkage between d-perosamine units and is unique to Brucella. Here we report on an efficient approach to the synthesis of oligosaccharides that model the M epitope of the Brucella O-polysaccharide. The approach is based on the use of the α-(1→3)-linked disaccharide thioglycoside as the key donor block. Its application allowed the straightforward assembly of a set of four protected oligosaccharides, which includes a disaccharide, two trisaccharides, and a tetrasaccharide, in five glycosylation steps. The synthesized oligosaccharides are planned to be used in the development of diagnostic tools for identifying brucellosis in humans and domestic animals, as well as a potential vaccine against it.
Collapse
Affiliation(s)
- Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Timur M. Volkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Oleg D. Sklyarov
- Russian State Centre of Quality and Standardization of Veterinary Drugs and Feeds, Moscow, Russia
| | - Yuri K. Kulakov
- Laboratory of Brucellosis, N.F.Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Seničar M, Roubinet B, Lafite P, Legentil L, Ferrières V, Landemarre L, Daniellou R. Gal f-Specific Neolectins: Towards Promising Diagnostic Tools. Int J Mol Sci 2024; 25:4826. [PMID: 38732045 PMCID: PMC11084152 DOI: 10.3390/ijms25094826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.
Collapse
Affiliation(s)
- Mateja Seničar
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
- GLYcoDiag, 2 Rue du Cristal, 45100 Orléans, France; (B.R.); (L.L.)
| | - Benoît Roubinet
- GLYcoDiag, 2 Rue du Cristal, 45100 Orléans, France; (B.R.); (L.L.)
| | - Pierre Lafite
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
| | - Laurent Legentil
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France; (L.L.); (V.F.)
| | - Vincent Ferrières
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France; (L.L.); (V.F.)
| | | | - Richard Daniellou
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
- Chaire de Cosmétologie, AgroParisTech, 10 Rue Léonard de Vinci, 45100 Orléans, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Micalis, 78350 Jouy-en-Josas, France
| |
Collapse
|
6
|
Latgé JP. Cell wall of Aspergillus fumigatus: Variability and response to stress. Fungal Biol 2023; 127:1259-1266. [PMID: 37495316 DOI: 10.1016/j.funbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/28/2023]
Abstract
The fungal cell is surrounded by a thick cell wall which obviously play an essential role in the protection of the fungus against external aggressive environments. In spite of 50 years of studies, the cell wall remains poorly known and especially its constant modifications during growth as well as environmental changes is not well appreciated. This review focus on the cell wall changes seen between different fungal stages and cell populations with a specific view to explain the resistance to stresses.
Collapse
|
7
|
Alenichev M, Levin A, Yushina A, Kostrikina E, Lebedin Y, Andreeva I, Grigorenko V, Krylov V, Nifantiev N. Nano-biosensor based on the combined use of the dynamic and static light scattering for Aspergillus galactomannan analysis. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Yashunsky DV, Dorokhova VS, Komarova BS, Paulovičová E, Krylov VB, Nifantiev NE. Synthesis of biotinylated pentasaccharide structurally related to a fragment of glucomannan from Candida utilis. Russ Chem Bull 2022; 70:2208-2213. [PMID: 35068914 PMCID: PMC8761042 DOI: 10.1007/s11172-021-3334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022]
Abstract
The polysaccharide mannan is the main surface antigen of the cell wall of Candida fungi, playing an important role in the pathogenesis of diseases caused by these mycopathogens. Mannan has a complex, comb-like structure and includes a variety of structural units, with their combination varying depending on the Candida species and strain. Glucomannan, a polysaccharide from Candida utilis, contains terminal α-d-glucose residues attached to oligomannoside side chains. This paper describes the first synthesis of a pentasaccharide structurally related to C. utilis glucomannan fragment, which is an α-(1→2)-linked tetramannoside terminated at the non-reducing end by an α-d-glucopyranosyl residue. The pentasaccharide was obtained as a 3-aminopropyl glycoside, which made it possible to synthesize also its biotinylated derivative, suitable for various glycobiological studies. The most complicated step in the pentasaccharide synthesis was stereoselective 1,2-cis-glycosylation to attach the α-d-glucopyranosyl residue. This was accomplished using a glucosyl donor specially developed in our laboratory, the protecting groups of which provide the necessary α-stereoselectivity. The target biotinylated pentasaccharide thus obtained will be used in the future as a model antigen for the detection of immunodeterminant epitopes of Candida mannans.
Collapse
Affiliation(s)
- D. V. Yashunsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - V. S. Dorokhova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - B. S. Komarova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - E. Paulovičová
- Department of Immunochemistry of Glycoconjugates, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - V. B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| | - N. E. Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, 119991 Moscow, Russian Federation
| |
Collapse
|
9
|
Moloney NM, Larkin A, Xu L, Fitzpatrick DA, Crean HL, Walshe K, Haas H, Decristoforo C, Doyle S. Generation and characterisation of a semi-synthetic siderophore-immunogen conjugate and a derivative recombinant triacetylfusarinine C-specific monoclonal antibody with fungal diagnostic application. Anal Biochem 2021; 632:114384. [PMID: 34543643 DOI: 10.1016/j.ab.2021.114384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) is a severe life-threatening condition. Diagnosis of fungal disease in general, and especially that caused by Aspergillus fumigatus is problematic. A. fumigatus secretes siderophores to acquire iron during infection, which are also essential for virulence. We describe the chemoacetylation of ferrated fusarinine C to diacetylated fusarinine C (DAFC), followed by protein conjugation, which facilitated triacetylfusarinine C (TAFC)-specific monoclonal antibody production with specific recognition of the ferrated form of TAFC. A single monoclonal antibody sequence was ultimately elucidated by a combinatorial strategy involving protein LC-MS/MS, cDNA sequencing and RNAseq. The resultant murine IgG2a monoclonal antibody was secreted in, and purified from, mammalian cell culture (5 mg) and demonstrated to be highly specific for TAFC detection by competitive ELISA (detection limit: 15 nM) and in a lateral flow test system (detection limit: 3 ng), using gold nanoparticle conjugated- DAFC-bovine serum albumin for competition. Overall, this work reveals for the first time a recombinant TAFC-specific monoclonal antibody with diagnostic potential for IPA diagnosis in traditional and emerging patient groups (e.g., COVID-19) and presents a useful strategy for murine Ig sequence determination, and expression in HEK293 cells, to overcome unexpected limitations associated with aberrant or deficient murine monoclonal antibody production.
Collapse
Affiliation(s)
- Nicola M Moloney
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - David A Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Holly L Crean
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Kieran Walshe
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University Innsbruck, A-6020, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 5, A-6020, Innsbruck, Austria
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland.
| |
Collapse
|
10
|
Haran A, Temper V, Assous M, Bergel M, Chahanian N, Elinav H, Korem M. False-positive galactomannan antigen testing in pulmonary nocardiosis. Med Mycol 2021; 59:206-209. [PMID: 32944777 DOI: 10.1093/mmy/myaa084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Early diagnosis of invasive aspergillosis (IA) is facilitated by detection of galactomannan (GM) in serum and bronchoalveolar lavage fluid (BALF) using an enzyme-linked immunosorbent assay (ELISA). Although accurate, false positive results have been reported with these tests in numerous contexts. We report for the first time the occurrence of false positive GM ELISA due to nocardiosis, initially in a clinical sample of BALF from a patient with pulmonary nocardiosis, and subsequently corroborated by in vitro reactivity of 26% of tested isolates. Since patients at risk for IA are also at risk for nocardiosis, this finding has important clinical implications. LAY SUMMARY Early diagnosis of aspergillosis has been facilitated by the routine use of antibody-based detection of galactomannan in various bodily fluids. We report for the first time the occurrence of false positive results of this assay in the context of nocardiosis.
Collapse
Affiliation(s)
- Arnon Haran
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Violeta Temper
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marc Assous
- Clinical Microbiology Laboratory, Shaare Zedek Medical Center, affiliated with the
| | | | - Noga Chahanian
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hila Elinav
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Krylov VB, Solovev AS, Puchkin IA, Yashunsky DV, Antonets AV, Kutsevalova OY, Nifantiev NE. Reinvestigation of Carbohydrate Specificity of EBCA-1 Monoclonal Antibody Used for the Detection of Candida Mannan. J Fungi (Basel) 2021; 7:jof7070504. [PMID: 34202579 PMCID: PMC8303853 DOI: 10.3390/jof7070504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
Monoclonal antibody EBCA-1 is used in the sandwich immune assay for the detection of circulating Candida mannan in blood sera samples for the diagnosis of invasive candidiasis. To reinvestigate carbohydrate specificity of EBCA-1, a panel of biotinylated oligosaccharides structurally related to distinct fragments of Candida mannan were loaded onto a streptavidin-coated plate to form a glycoarray. Its use demonstrated that EBCA-1 recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man and not homo-α-(1→2)-linked pentamannoside, as was reported previously.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Ilya A. Puchkin
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
| | - Anna V. Antonets
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Medical Genetic Center, Rostov-on-Don State Medical University, Nakhichevansky, 29, 344022 Rostov-on-Don, Russia
| | - Olga Y. Kutsevalova
- National Medical Research Center of Oncology, Laboratory of Clinical Microbiology, 14 Liniya Str., 63, 344037 Rostov-on-Don, Russia;
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciencesa, Leninsky Prospect 47, 119991 Moscow, Russia; (V.B.K.); (A.S.S.); (I.A.P.); (D.V.Y.); (A.V.A.)
- Correspondence: ; Tel.: +7-499-135-87-84
| |
Collapse
|
12
|
Affinity characteristics of anti-β-(1→3)-d-glucan monoclonal antibody 3G11 by fluorescence polarization immunoassay. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Mercier T, Castagnola E, Marr KA, Wheat LJ, Verweij PE, Maertens JA. Defining Galactomannan Positivity in the Updated EORTC/MSGERC Consensus Definitions of Invasive Fungal Diseases. Clin Infect Dis 2021; 72:S89-S94. [PMID: 33709125 DOI: 10.1093/cid/ciaa1786] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consensus definitions of invasive fungal diseases from the EORTC/MSGERC were recently revised and updated. They now include consensus cutoff values for the galactomannan test that support the diagnosis of probable invasive aspergillosis. In this supplement article, we provide a rationale for these proposed thresholds based on the test's characteristics and performance in different patient populations and in different specimen types.
Collapse
Affiliation(s)
- Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Elio Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan A Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
15
|
Dorokhova VS, Gerbst AG, Komarova BS, Previato JO, Previato LM, Dmitrenok AS, Shashkov AS, Krylov VB, Nifantiev NE. Synthesis and conformational analysis of vicinally branched trisaccharide β-d-Galf-(1 → 2)-[β-d-Galf-(1 → 3)-]-α-Galp from Cryptococcus neoformans galactoxylomannan. Org Biomol Chem 2021; 19:2923-2931. [PMID: 33471013 DOI: 10.1039/d0ob02071k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of a vicinally branched trisaccharide composed of two d-galactofuranoside residues attached viaβ-(1 → 2)- and β-(1 → 3)-linkages to the α-d-galactopyranoside unit has been performed for the first time. The reported trisaccharide represents the galactoxylomannan moiety first described in 2017, which is the capsular polysaccharide of the opportunistic fungal pathogen Cryptococcus neoformans responsible for life-threatening infections in immunocompromised patients. The NMR-data reported here for the synthetic model trisaccharide are in good agreement with the previously assessed structure of galactoxylomannan and are useful for structural analysis of related polysaccharides. The target trisaccharide as well as the constituent disaccharides were analyzed by a combination of computational and NMR methods to demonstrate good convergence of the theoretical and experimental results. The results suggest that the furanoside ring conformation may strongly depend on the aglycon structure. The reported conformational tendencies are important for further analysis of carbohydrate-protein interaction, which is critical for the host response toward C. neoformans infection.
Collapse
Affiliation(s)
- Vera S Dorokhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kurbatova EA, Akhmatova NK, Zaytsev AE, Akhmatova EA, Egorova NB, Yastrebova NE, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. Higher Cytokine and Opsonizing Antibody Production Induced by Bovine Serum Albumin (BSA)-Conjugated Tetrasaccharide Related to Streptococcus pneumoniae Type 3 Capsular Polysaccharide. Front Immunol 2020; 11:578019. [PMID: 33343566 PMCID: PMC7746847 DOI: 10.3389/fimmu.2020.578019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
A number of studies have demonstrated the limited efficacy of S. pneumoniae type 3 capsular polysaccharide (CP) in the 13-valent pneumococcal conjugate vaccine against serotype 3 invasive pneumococcal diseases and carriage. Synthetic oligosaccharides (OSs) may provide an alternative to CPs for development of novel conjugated pneumococcal vaccines and diagnostic test systems. A comparative immunological study of di-, tri-, and tetra-bovine serum albumin (BSA) conjugates was performed. All oligosaccharides conjugated with biotin and immobilized on streptavidin-coated plates stimulated production of IL-1α, IL-2, IL-4, IL-5, IL-10, IFNγ, IL-17A, and TNFα, but not IL-6 and GM-CSF in monocultured mice splenocytes. The tetrasaccharide-biotin conjugate stimulated the highest levels of IL-4, IL-5, IL-10, and IFNγ, which regulate expression of specific immunoglobulin isotypes. The tetra-BSA conjugate adjuvanted with aluminum hydroxide elicited high levels of IgM, IgG1, IgG2a, and IgG2b antibodies (Abs). Anti-CP-induced Abs could only be measured using the biotinylated tetrasaccharide. The tetrasaccharide ligand possessed the highest binding capacity for anti-OS and antibacterial IgG Abs in immune sera. Sera to the tetra-BSA conjugate promoted greater phagocytosis of bacteria by neutrophils and monocytes than the CRM197-CP-antisera. Sera of mice immunized with the tetra-BSA conjugate exhibited the highest titer of anti-CP IgG1 Abs compared with sera of mice inoculated with the same doses of di- and tri-BSA conjugates. Upon intraperitoneal challenge with lethal doses of S. pneumoniae type 3, the tri- and tetra-BSA conjugates protected mice more significantly than the di-BSA conjugate. Therefore, it may be concluded that the tetrasaccharide ligand is an optimal candidate for development of a semi-synthetic vaccine against S. pneumoniae type 3 and diagnostic test systems.
Collapse
Affiliation(s)
- Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Nelli K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Anton E. Zaytsev
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A. Akhmatova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nadezhda B. Egorova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Natalya E. Yastrebova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
17
|
Krylov VB, Nifantiev NE. Synthetic carbohydrate based anti-fungal vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:35-43. [PMID: 33388126 DOI: 10.1016/j.ddtec.2020.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
18
|
Piguillem SV, Regiart M, Bertotti M, Raba J, Messina GA, Fernández-Baldo MA. Microfluidic fluorescence immunosensor using ZnONFs for invasive aspergillosis determination. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Tsvetkov YE, Paulovičová E, Paulovičová L, Farkaš P, Nifantiev NE. Synthesis of Biotin-Tagged Chitosan Oligosaccharides and Assessment of Their Immunomodulatory Activity. Front Chem 2020; 8:554732. [PMID: 33335882 PMCID: PMC7736555 DOI: 10.3389/fchem.2020.554732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
Chitin, a polymer of β-(1→4)-linked N-acetyl-d-glucosamine, is one of the main polysaccharide components of the fungal cell wall. Its N-deacetylated form, chitosan, is enzymatically produced in the cell wall by chitin deacetylases. It exerts immunomodulative, anti-inflammatory, anti-cancer, anti-bacterial, and anti-fungal activities with various medical applications. To study the immunobiological properties of chitosan oligosaccharides, we synthesized a series of β-(1→4)-linked N-acetyl-d-glucosamine oligomers comprising 3, 5, and 7 monosaccharide units equipped with biotin tags. The key synthetic intermediate employed for oligosaccharide chain elongation, a disaccharide thioglycoside, was prepared by orthogonal glycosylation of a 4-OH thioglycoside acceptor with a glycosyl trichloroacetimidate bearing the temporary 4-O-tert-butyldimethylsilyl group. The use of silyl protection suppressed aglycon transfer and provided a high yield for the target disaccharide donor. Using synthesized chitosan oligomers, as well as previously obtained chitin counterparts, the immunobiological relationship between these synthetic oligosaccharides and RAW 264.7 cells was studied in vitro. Evaluation of cell proliferation, phagocytosis, respiratory burst, and Th1, Th2, Th17, and Treg polarized cytokine expression demonstrated effective immune responsiveness and immunomodulation in RAW 264.7 cells exposed to chitin- and chitosan-derived oligosaccharides. Macrophage reactivity was accompanied by significant inductive dose- and structure-dependent protective Th1 and Th17 polarization, which was greater with exposure to chitosan- rather than chitin-derived oligosaccharides. Moreover, no antiproliferative or cytotoxic effects were observed, even following prolonged 48 h exposure. The obtained results demonstrate the potent immunobiological activity of these synthetically prepared chito-oligosaccharides.
Collapse
Affiliation(s)
- Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ema Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Farkaš
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
False-positive Aspergillus galactomannan immunoassays associated with intravenous human immunoglobulin administration. Clin Microbiol Infect 2020; 26:1555.e9-1555.e14. [DOI: 10.1016/j.cmi.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 01/10/2023]
|
21
|
Laverde D, Romero-Saavedra F, Argunov DA, Enotarpi J, Krylov VB, Kalfopoulou E, Martini C, Torelli R, van der Marel GA, Sanguinetti M, Codée JDC, Nifantiev NE, Huebner J. Synthetic Oligomers Mimicking Capsular Polysaccharide Diheteroglycan are Potential Vaccine Candidates against Encapsulated Enterococcal Infections. ACS Infect Dis 2020; 6:1816-1826. [PMID: 32364376 DOI: 10.1021/acsinfecdis.0c00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections caused by Enterococcus spp. are a major concern in the clinical setting. In Enterococcus faecalis, the capsular polysaccharide diheteroglycan (DHG), composed of ß-d-galactofuranose-(1 → 3)-ß-d-glucopyranose repeats, has been described as an important virulence factor and as a potential vaccine candidate against encapsulated strains. Synthetic structures emulating immunogenic polysaccharides present many advantages over native polysaccharides for vaccine development. In this work, we described the synthesis of a library of DHG oligomers, differing in length and order of the monosaccharide constituents. Using suitably protected thioglycoside building blocks, oligosaccharides up to 8-mer in length built up from either Galf-Glcp or Glcp-Galf dimers were generated, and we evaluated their immunoreactivity with antibodies raised against DHG. After the screening, we selected two octasaccharides, having either a galactofuranose or glucopyranose terminus, which were conjugated to a carrier protein for the production of polyclonal antibodies. The resulting antibodies were specific toward the synthetic structures and mediated in vitro opsonophagocytic killing of different encapsulated E. feacalis strains. The evaluated oligosaccharides are the first synthetic structures described to elicit antibodies that target encapsulated E. faecalis strains and are, therefore, promising candidates for the development of a well-defined enterococcal glycoconjugate vaccine.
Collapse
Affiliation(s)
- D. Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - F. Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - D. A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Enotarpi
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - V. B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - E. Kalfopoulou
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - C. Martini
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - R. Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - G. A. van der Marel
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - M. Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - J. D. C. Codée
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - N. E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| |
Collapse
|
22
|
Krylov VB, Petruk MI, Karimova MP, Mukhametova LI, Matveev AL, Tikunova NV, Eremin SA, Nifantiev NE. Potential of fluorescence polarization immunoassay for the detection of Aspergillus fumigatus galactomannan. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Kazakova ED, Yashunsky DV, Krylov VB, Bouchara JP, Cornet M, Valsecchi I, Fontaine T, Latgé JP, Nifantiev NE. Biotinylated Oligo-α-(1 → 4)-d-galactosamines and Their N-Acetylated Derivatives: α-Stereoselective Synthesis and Immunology Application. J Am Chem Soc 2020; 142:1175-1179. [PMID: 31913631 DOI: 10.1021/jacs.9b11703] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using 3-O-benzoyl-4,6-O-di-tert-butylsilylidene-2-azido-2-deoxy-selenogalactoside, biotinylated oligo-α-(1 → 4)-d-galactosamines comprising from two to six GalN units were prepared for the first time together with their N-acetylated derivatives. The combination of blocking groups used herein provided stereocontrol for the α-stereospecific glycosylation, to show also high efficiency of phenyl 2-azido-2-deoxy-selenogalactosides as glycosyl donors. The obtained glycoconjugates are related to fragments of exopolysaccharide galactosaminogalactan (GG) found in Aspergillus fumigatus, which is the most important airborne human fungal pathogen in industrialized countries. The synthesized glycoconjugates were arrayed on streptavidin-coated plates and used to investigate the GG epitopes recognized by mouse monoclonal antibodies against GG and by human antibodies in the sera of patients with aspergillosis. The obtained data showed that the oligo-α-(1 → 4)-d-galactosamines and their N-acetylated derivatives allowed the first precise analysis of the specificity of the antibody responses to this extremely complex fungal polysaccharide.
Collapse
Affiliation(s)
- Ekaterina D Kazakova
- N.D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| | - Dmitry V Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| | - Vadim B Krylov
- N.D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| | | | - Murielle Cornet
- University of Grenoble Alpes , CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38043 Grenoble , France
| | - Isabel Valsecchi
- Unité des Aspergillus , Institut Pasteur , 75724 Paris , France.,Fungal Biology and Pathogenicity Unit , Institut Pasteur , 75724 Paris , France
| | - Thierry Fontaine
- Unité des Aspergillus , Institut Pasteur , 75724 Paris , France.,Fungal Biology and Pathogenicity Unit , Institut Pasteur , 75724 Paris , France
| | - Jean-Paul Latgé
- Unité des Aspergillus , Institut Pasteur , 75724 Paris , France.,School of Medicine , University of Crete , Heraklion , Greece
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| |
Collapse
|
24
|
Vendele I, Willment JA, Silva LM, Palma AS, Chai W, Liu Y, Feizi T, Spyrou M, Stappers MHT, Brown GD, Gow NAR. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog 2020; 16:e1007927. [PMID: 31999794 PMCID: PMC7012452 DOI: 10.1371/journal.ppat.1007927] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/11/2020] [Accepted: 12/22/2019] [Indexed: 01/09/2023] Open
Abstract
During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4-7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the β-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface.
Collapse
Affiliation(s)
- Ingrida Vendele
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Janet A. Willment
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Lisete M. Silva
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Angelina S. Palma
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wengang Chai
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Maria Spyrou
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| |
Collapse
|
25
|
Schubert M, Xue S, Ebel F, Vaggelas A, Krylov VB, Nifantiev NE, Chudobová I, Schillberg S, Nölke G. Monoclonal Antibody AP3 Binds Galactomannan Antigens Displayed by the Pathogens Aspergillus flavus, A. fumigatus, and A. parasiticus. Front Cell Infect Microbiol 2019; 9:234. [PMID: 31380292 PMCID: PMC6646516 DOI: 10.3389/fcimb.2019.00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus and A. flavus are the fungal pathogens responsible for most cases of invasive aspergillosis (IA). Early detection of the circulating antigen galactomannan (GM) in serum allows the prompt application of effective antifungal therapy, thus improving the survival rate of IA patients. However, the use of monoclonal antibodies (mAbs) for the diagnosis of IA is often associated with false positives due to cross-reaction with bacterial polysaccharides. More specific antibodies are therefore needed. Here we describe the characterization of the Aspergillus-specific mAb AP3 (IgG1κ), including the precise identification of its corresponding antigen. The antibody was generated using A. parasiticus cell wall fragments and was shown to bind several Aspergillus species. Immunofluorescence microscopy revealed that AP3 binds a cell wall antigen, but immunoprecipitation and enzyme-linked immunosorbent assays showed that the antigen is also secreted into the culture medium. The inability of AP3 to bind the A. fumigatus galactofuranose (Galf )-deficient mutant ΔglfA confirmed that Galf residues are part of the epitope. Several lines of evidence strongly indicated that AP3 recognizes the Galf residues of O-linked glycans on Aspergillus proteins. Glycoarray analysis revealed that AP3 recognizes oligo-[β-D-Galf-1,5] sequences containing four or more residues with longer chains more efficiently. We also showed that AP3 captures GM in serum, suggesting it may be useful as a diagnostic tool for patients with IA.
Collapse
Affiliation(s)
- Max Schubert
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Sheng Xue
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Frank Ebel
- Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annegret Vaggelas
- Faculty of Veterinary Medicine, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vadim B Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivana Chudobová
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Greta Nölke
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
26
|
Argunov DA, Trostianetskaia AS, Krylov VB, Kurbatova EA, Nifantiev NE. Convergent Synthesis of Oligosaccharides Structurally Related to Galactan I and Galactan II ofKlebsiella Pneumoniaeand their Use in Screening of Antibody Specificity. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dmitry A. Argunov
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Anastasiia S. Trostianetskaia
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
- Higher Chemical College; N.D. Zelinsky Institute of Organic Chemistry; D. I. Mendeleev University of Chemical Technology of Russia; Miusskaya sq. 9 125047 Moscow Russia
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Ekaterina A. Kurbatova
- Laboratory of Immunology; N.D. Zelinsky Institute of Organic Chemistry; I. I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry; N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| |
Collapse
|
27
|
Matveev AL, Krylov VB, Khlusevich YA, Baykov IK, Yashunsky DV, Emelyanova LA, Tsvetkov YE, Karelin AA, Bardashova AV, Wong SSW, Aimanianda V, Latgé JP, Tikunova NV, Nifantiev NE. Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS One 2019; 14:e0215535. [PMID: 31022215 PMCID: PMC6483564 DOI: 10.1371/journal.pone.0215535] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/03/2019] [Indexed: 01/27/2023] Open
Abstract
β-(1→3)-D-Glucan is an essential component of the fungal cell wall. Mouse monoclonal antibodies (mAbs) against synthetic nona-β-(1→3)-D-glucoside conjugated with bovine serum albumin (BSA) were generated using hybridoma technology. The affinity constants of two selected mAbs, 3G11 and 5H5, measured by a surface plasmon resonance biosensor assay using biotinylated nona-β-(1→3)-D-glucan as the ligand, were approximately 11 nM and 1.9 nM, respectively. The glycoarray, which included a series of synthetic oligosaccharide derivatives representing β-glucans with different lengths of oligo-β-(1→3)-D-glucoside chains, demonstrated that linear tri-, penta- and nonaglucoside, as well as a β-(1→6)-branched octasaccharide, were recognized by mAb 5H5. By contrast, only linear oligo-β-(1→3)-D-glucoside chains that were not shorter than pentaglucosides (but not the branched octaglucoside) were ligands for mAb 3G11. Immunolabelling indicated that 3G11 and 5H5 interact with both yeasts and filamentous fungi, including species from Aspergillus, Candida, Penicillium genera and Saccharomyces cerevisiae, but not bacteria. Both mAbs could inhibit the germination of Aspergillus fumigatus conidia during the initial hours and demonstrated synergy with the antifungal fluconazole in killing C. albicans in vitro. In addition, mAbs 3G11 and 5H5 demonstrated protective activity in in vivo experiments, suggesting that these β-glucan-specific mAbs could be useful in combinatorial antifungal therapy.
Collapse
Affiliation(s)
- Andrey L. Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yana A. Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan K. Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry V. Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ljudmila A. Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yury E. Tsvetkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Karelin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alevtina V. Bardashova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sarah S. W. Wong
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Vishukumar Aimanianda
- Aspergillus Unit, Institut Pasteur, Paris, France
- Molecular Mycology Unit, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Aspergillus Unit, Institut Pasteur, Paris, France
- * E-mail: (JPL); (NVT); (NEN)
| | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail: (JPL); (NVT); (NEN)
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (JPL); (NVT); (NEN)
| |
Collapse
|
28
|
Krylov VB, Nifantiev NE. Synthetic Oligosaccharides Mimicking Fungal Cell Wall Polysaccharides. Curr Top Microbiol Immunol 2019; 425:1-16. [PMID: 31875266 DOI: 10.1007/82_2019_187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cell wall of pathogenic fungi is highly important for the development of fungal infections and is the first cellular component to interact with the host immune system. The fungal cell wall is mainly built up of different polysaccharides representing ligands for pattern recognition receptors (PRRs) on immune cells and antibodies. Purified fungal polysaccharides are not easily available; in addition, they are structurally heterogenic and have wide molecular weight distribution that limits the possibility to use natural polysaccharides to assess the structure of their active determinants. The synthetic oligosaccharides of definite structure representing distinct polysaccharide fragments are indispensable tools for a variety of biological investigations and represent an advantageous alternative to natural polysaccharides. The attachment of a spacer group to these oligosaccharides permits their efficient transformation into immunogenic glycoconjugates as well as their immobilization on plates or microbeads. Herein, we summarize current information on synthetic availability of the variety of oligosaccharides related to main types of fungal cell wall components: galactomannan, α- and β-mannan, α- and β-(1 → 3)-glucan, chitin, chitosan, and others. These data are supplemented with published results of biochemical and immunological applications of synthetic oligosaccharides as molecular probes especially as the components of thematic glycoarrays suitable for characterization of anti-polysaccharide antibodies and cellular lectins or PRRs.
Collapse
Affiliation(s)
- Vadim B Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia.
| |
Collapse
|