1
|
El-Sheekh MM, El-Kassas HY, Ali SS. Microalgae-based bioremediation of refractory pollutants: an approach towards environmental sustainability. Microb Cell Fact 2025; 24:19. [PMID: 39810167 PMCID: PMC11734528 DOI: 10.1186/s12934-024-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants. This is due to their advantages, such as rapid growth rate, cost-effectiveness, high oil-rich biomass production, and ease of implementation. Moreover, microalgae-based remediation is more environmentally sustainable for not generating additional waste sludge, capturing atmospheric CO2, and being efficient for nutrient recycling and sustainable algal biomass production for biofuels and high-value-added products generation. Hence, microalgae can achieve sustainability's three main pillars (environmental, economic, and social). Microalgal biomass can mediate contaminated wastewater effectively through accumulation, adsorption, and metabolism. These mechanisms enable the microalgae to reduce the concentration of heavy metals and organic contaminants to levels that are considered non-toxic. However, several factors, such as microalgal strain, cultivation technique, and the type of pollutants, limit the understanding of the microalgal removal mechanism and efficiency. Furthermore, adopting novel technological advancements (e.g., nanotechnology) may serve as a viable approach to address the challenge of refractory pollutants and bioremediation process sustainability. Therefore, this review discusses the mechanism and the ability of different microalgal species to mitigate persistent refractory pollutants, such as industrial effluents, dyes, pesticides, and pharmaceuticals. Also, this review paper provided insight into the production of nanomaterials, nanoparticles, and nanoparticle-based biosensors from microalgae and the immobilization of microalgae on nanomaterials to enhance bioremediation process efficiency. This review may open a new avenue for future advancing research regarding a sustainable biodegradation process of refractory pollutants.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hala Y El-Kassas
- National Institute of Oceanography and Fisheries, NIOF, Alexandria, 21556, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Al-Sareji OJ, Grmasha RA, Meiczinger M, Al-Juboori RA, Jakab M, Boros A, Majdi HS, Miskolczi N, Hashim KS. A novel two stages chemical activation of pinewood waste for removing organic micropollutants from water and wastewater. CHEMOSPHERE 2024; 363:142974. [PMID: 39084301 DOI: 10.1016/j.chemosphere.2024.142974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The prevalent presence of pharmaceuticals in aquatic ecosystems underscores the necessity for developing cost-effective techniques to remove them from water. The utilization of affordable precursors in producing activated carbon, capable of rivaling commercial alternatives, remains a persistent challenge. The adsorption of diclofenac and ciprofloxacin onto a novel pinewood-derived activated carbon (FPWAC) was explored, employing a sequential activation process involving ammonium nitrate (NH4NO3) treatment followed by sodium hydroxide (NaOH) activation. The produced FPWAC was then thoroughly characterized by employing several techniques. The removal of diclofenac and ciprofloxacin in water and real wastewater effluent was examined in batch tests. The optimum removal conditions were an FPWAC dosage of 1 g L-1, pH 6, mixture concentration of 25 mg L-1, and a temperature of 25 °C. The FPWAC was able to remove both pharmaceuticals for up to six cycles, with more than 95% removal for water and 90% for wastewater in the first cycle. The adsorption performance fitted well with the non-linear Freundlich isotherm for both pollutants. The kinetics of adsorption of diclofenac followed a pseudo-first-order model, while ciprofloxacin showed adherence to the pseudo-second-order model. FPWAC proved its potency as a low-cost adsorbent for pharmaceutical removal from wastewater.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary; Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201, Veszprém, Hungary.
| | - Ruqayah Ali Grmasha
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200, Veszprem, Egyetem u. 10, Hungary
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Miklós Jakab
- Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201, Veszprém, Hungary
| | - Adrienn Boros
- Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201, Veszprém, Hungary
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Al-Hillah, Babylon, 51001, Iraq
| | - Norbert Miskolczi
- Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon & Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, H-8200, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, L3 2ET, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; Dijlah University College, Baghdad, Iraq
| |
Collapse
|
3
|
Borham A, Haroun M, Saleh IA, Zomot N, Okla MK, Askar M, Elmasry M, Elshahat A, Liu L, Zhao C, Wang J, Qian X. A statistical optimization for almost-complete methylene blue biosorption by Gracilaria bursa-pastoris. Heliyon 2024; 10:e34972. [PMID: 39145033 PMCID: PMC11320206 DOI: 10.1016/j.heliyon.2024.e34972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
In this study, the dried biomass of four marine algae, namely Porphyra sp., Gracilaria bursa-pastoris, Undaria pinnatifida and Laminaria sp., were screened for their ability to remove methylene blue (MB) dye from aqueous solutions. Statistical approaches of the Plackett-Burman Design (PBD) and Box-Behnken Design (BBD) were applied to optimize different environmental conditions in order to achieve the maximum MB removal percentage by Gracilaria bursa-pastoris. The biosorbent was characterized before and after adsorption process using FTIR, XRD and SEM analysis. Additionally, isotherms, kinetics and thermodynamics studies were conducted to investigate the adsorption behavior of the adsorbent. The results showed that Gracilaria bursa-pastoris achieved the highest dye removal efficiency (98.5 %) compared to 96.5 %, 93.5 % and 93.9 % for Undaria pinnatifida, Porphyra sp. and Laminaria sp., respectively. PBD analysis revealed that the agitation speed, pH, and biomass dose were found to be the significant parameters affecting MB removal onto Gracilaria dried biomass. According to the BBD results, the maximum dye removal percentage (99.68 %) was obtained at agitation speed of 132 rpm, pH 7 and biomass dose of 7.5 g/L. FTIR, XRD and SEM analysis demonstrated the participation of several functional groups in the adsorption process and changes in the cell surface morphology of the adsorbent following the dye adsorption. The adsorption isotherms showed better fit to Freundlich model (R2 = 0.9891) than the Langmuir, Temkin, and Dubinin-Radushkevich models. The adsorption kinetics were best described by the pseudo-second-order model (R2 = 0.9999), suggesting the chemical interactions between dye ions and the algal biomass. The thermodynamic parameters indicated that the adsorption of MB onto Gracilaria dried biomass was spontaneous, feasible, endothermic and random. These results indicate that dried biomass of Gracilaria bursa-pastoris is an attractive, environmentally friendly, cheap and effective agent for MB dye removal from environmental discharges.
Collapse
Affiliation(s)
- Ali Borham
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Mohammed Haroun
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110, Jordan
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mofeed Askar
- Economic Entomology Department, Faculty of Agriculture, Damietta University, Egypt
| | - Mohamad Elmasry
- Animal Production Research Institute (APRI), Agricultural Research Centre (ARC), Egypt
| | - Abdelmonem Elshahat
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Lei Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Juanjuan Wang
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaoqing Qian
- Agricultural Products Safety and Environment, College of Agriculture, Yangzhou University, Yangzhou, 225127, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
4
|
Ali I, Wan P, Peng C, Tan X, Sun H, Li J. Integration of metal organic framework nanoparticles into sodium alginate biopolymer-based three-dimensional membrane capsules for the efficient removal of toxic metal cations from water and real sewage. Int J Biol Macromol 2024; 266:131312. [PMID: 38582471 DOI: 10.1016/j.ijbiomac.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.
Collapse
Affiliation(s)
- Imran Ali
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China; College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China.
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen, 518001, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiao Tan
- College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Huibin Sun
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Ajala EO, Aliyu MO, Ajala MA, Mamba G, Ndana AM, Olatunde TS. Adsorption of lead and chromium ions from electroplating wastewater using plantain stalk modified by amorphous alumina developed from waste cans. Sci Rep 2024; 14:6055. [PMID: 38480818 PMCID: PMC10937642 DOI: 10.1038/s41598-024-56183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024] Open
Abstract
Waste beneficiation is key to environmental protection and the realisation of a circular economy. Herein, amorphous alumina (a-Al2O3) derived from aluminium waste cans (AWC) was used to modify plantain stalk as an adsorbent for sequestration of lead (II) and chromium (VI) ions from electroplating wastewater. Raw plantain-stalk (RPS) and amorphous-alumina modified plantain stalk (APS) developed as adsorbents were characterised using various equipment such as x-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). The FTIR revealed that the adsorbents are rich in functional groups that could promote the adsorption process which includes carboxyl, hydroxyl, and aliphatic groups. Also, the BET analysis showed a substantial increase in the surface area of APS (174.448 m2/g) compared to that of RPS (40.531 m2/g) which could be due to the effect of modification by the a-Al2O3. The batch adsorption studies revealed that the APS achieved 99.38% and 98.33% removal of Cr(VI) and Pb(II), respectively, which is superior to RPS adsorption efficiency. Also, the estimated and experimental data for the APS compared well under all the kinetic models studied with R2 > 0.88. This suggested that chemisorption is the most plausible adsorption mechanism of Cr(VI) and Pb(II) onto the APS. Further analysis showed that the Cr(VI) and Pb(II) adsorption followed the Langmuir model with the RL value of 0.038 and 0.999, respectively, which indicated that the two metal ions were effectively adsorbed onto the APS. Therefore, this work demonstrated that the modification of plantain-stalk with amorphous-alumina derived from AWC enhanced the characteristics of the APS and favoured its adsorption of the selected heavy metals.
Collapse
Affiliation(s)
- E O Ajala
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.
| | - M O Aliyu
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - M A Ajala
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - G Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - A M Ndana
- Department of Chemical Engineering, Federal Polytechnic, Bida, Nigeria
| | - T S Olatunde
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
6
|
Al-Sareji OJ, Grmasha RA, Meiczinger M, Al-Juboori RA, Somogyi V, Hashim KS. A Sustainable Banana Peel Activated Carbon for Removing Pharmaceutical Pollutants from Different Waters: Production, Characterization, and Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1032. [PMID: 38473504 DOI: 10.3390/ma17051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Due to the growing concerns about pharmaceutical contamination and its devastating impact on the economy and the health of humans and the environment, developing efficient approaches for removing such contaminants has become essential. Adsorption is a cost-effective technique for removing pollutants. Thus, in this work, banana peels as agro-industrial waste were utilized for synthesizing activated carbon for removing pharmaceuticals, namely amoxicillin and carbamazepine from different water matrices. The chemically activated carbon by phosphoric acid (H3PO4) was carbonized at temperatures 350 °C, 450 °C and 550 °C. The material was characterized by several techniques such as scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), Boehm titration, point of zero charge (pHPZC), BET surface area (SBET), the proximate and ultimate analyses, X-ray powder diffraction (XRD), and thermos-gravimetric analysis (TGA). The SEM of banana peel activated carbon (BPAC) depicted a semi-regular and heterogeneous morphology, characterized by an abundance of pores with diverse forms and sizes. Boehm titration revealed an increase in the amounts of acidic groups by 0.711 mmol/g due to activation by H3PO4. FTIR recorded different peaks suggesting significant modifications in the spectroscopic characteristics of the BPAC surface due to the successful activation and adsorption of the pollutant molecules. The pHpzc of BPAC was calculated to be 5.005. The SBET surface area dramatically increased to 911.59 m2/g after the activation. The optimum conditions were 25 °C, a materials dosage of 1.2 g/L, a saturation time of 120 min, a pollutants mixture of 25 mg/L, and a pH of 5. Langmuir exhibits a slightly better fit than Freundlich with a low value of the residual sum of squares (SSE) and the data were better fitted to the pseudo-second-order kinetic. Furthermore, the efficacy of BPAC in eliminating pharmaceuticals from Milli Q water, lake water, and wastewater was successfully investigated over the seven cycles. The results of the present work highlighted a potential usage of agro-industrial waste in eliminating organic micropollutants while exhibiting sustainable management of this waste.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq
| | - Ruqayah Ali Grmasha
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq
- Research Group of Limnology, Center for Natural Science, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 Espoo, Finland
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 2ET, UK
- Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah 51001, Iraq
- Civil Engineering Department, Dijlah University College, Baghdad 00964, Iraq
| |
Collapse
|
7
|
Hasnain M, Zainab R, Ali F, Abideen Z, Yong JWH, El-Keblawy A, Hashmi S, Radicetti E. Utilization of microalgal-bacterial energy nexus improves CO 2 sequestration and remediation of wastewater pollutants for beneficial environmental services. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115646. [PMID: 37939556 DOI: 10.1016/j.ecoenv.2023.115646] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon dioxide (CO2) emissions from the combustion of fossil fuels and coal are primary contributors of greenhouse gases leading to global climate change and warming. The toxicity of heavy metals and metalloids in the environment threatens ecological functionality, diversity and global human life. The ability of microalgae to thrive in harsh environments such as industrial wastewater, polluted lakes, and contaminated seawaters presents new, environmentally friendly, and less expensive CO2 remediation solutions. Numerous microalgal species grown in wastewater for industrial purposes may absorb and convert nitrogen, phosphorus, and organic matter into proteins, oil, and carbohydrates. In any multi-faceted micro-ecological system, the role of bacteria and their interactions with microalgae can be harnessed appropriately to enhance microalgae performance in either wastewater treatment or algal production systems. This algal-bacterial energy nexus review focuses on examining the processes used in the capture, storage, and biological fixation of CO2 by various microalgal species, as well as the optimized production of microalgae in open and closed cultivation systems. Microalgal production depends on different biotic and abiotic variables to ultimately deliver a high yield of microalgal biomass.
Collapse
Affiliation(s)
- Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan; Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, 23456, Sweden.
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Saud Hashmi
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Emanuele Radicetti
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
8
|
Hamd A, Shaban M, Al-Senani GM, Alshabanat MN, Al-Ghamdi A, Dryaz AR, Ahmed SA, El-Sayed R, Soliman NK. Comprehensive evaluation of zeolite/marine alga nanocomposite in the removal of waste dye from industrial wastewater. Sci Rep 2023; 13:8082. [PMID: 37202430 DOI: 10.1038/s41598-023-34094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
A systematic study integrating laboratory, analytical, and case study field trial was conducted to figure out the effective adsorbent that could be used for the removal of Congo red (CR) dye from industrial wastewater effluent. The ability of the zeolite (Z) to adsorb CR dye from aqueous solutions was evaluated after it was modified by the Cystoseira compressa algae (CC) (Egyptian marine algae). Zeolite, CC algae were combined together in order to form the new composite zeolite/algae composite (ZCC) using wet impregnation technique and then characterized by the aid of different techniques. A noticeable enhancement in the adsorption capacity of newly synthesized ZCC was observed if compared to Z and CC, particularly at low CR concentrations. The batch style experiment was selected to figure out the impact of various experimental conditions on the adsorption behavior of different adsorbents. Moreover, isotherms and kinetics were estimated. According to the experimental results, the newly synthesized ZCC composite might be applied optimistically as an adsorbent for eliminating anionic dye molecules from industrial wastewater at low dye concentration. The dye adsorption on Z and ZCC followed the Langmuir isotherm, while that of CC followed the Freundlich isotherm. The dye adsorption kinetics on ZCC, CC, and Z were agreed with Elovich, intra-particle, and pseudo-second-order kinetic models, correspondingly. Adsorption mechanisms were also assessed using Weber's intraparticle diffusion model. Finally, field tests showed that the newly synthesized sorbent has a 98.5% efficient in eliminating dyes from industrial wastewater, authorizing the foundation for a recent eco-friendly adsorbent that facilitate industrial wastewater reuse.
Collapse
Grants
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
- PNURSP2023R67 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Ahmed Hamd
- Basic Science Department, Faculty of Oral and Dental Medicine, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mashael N Alshabanat
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Azza Al-Ghamdi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
- Renewable and Sustainable Energy Unit, Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Asmaa Ragab Dryaz
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
- Basic Science Department, Faculty of Engineering, Nahda University Beni-Suef (NUB), Beni Suef, Egypt
| | - Refat El-Sayed
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Mekka 25376, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - N K Soliman
- Basic Science Department, Faculty of Oral and Dental Medicine, Nahda University Beni-Suef (NUB), Beni Suef, Egypt.
| |
Collapse
|
9
|
Saheed IO, Yusof ENM, Oh WD, Hanafiah MAKM, Suah FBM. Fabrication of chitosan@activated carbon composites in EmimAc for Cd(II) adsorption from aqueous solution: Experimental, optimization and DFT study. Int J Biol Macromol 2023; 242:124798. [PMID: 37178882 DOI: 10.1016/j.ijbiomac.2023.124798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Adsorption efficiency of a duo-material blend featuring the fabrication of modified chitosan adsorbents (powder (C-emimAc), bead (CB-emimAc) and sponge (CS-emimAc)) for the removal of Cd(II) from aqueous solution was investigated. The chitosan@activated carbon (Ch/AC) blend was developed in a green ionic solvent, 1-ethyl-3-methyl imidazolium acetate (EmimAc) and its characteristics was examined using FTIR, SEM, EDX, BET and TGA. The possible mechanism of interaction between the composites and Cd(II) was also predicted using the density functional theory (DFT) analysis. The interactions of various blend forms (C-emimAc, CB-emimAc and CS-emimAc) with Cd(II) gave better adsorption at pH 6. The composites also present excellent chemical stability in both acidic and basic conditions. The monolayer adsorption capacities obtained (under the condition 20 mg/L [Cd], adsorbent dosage 5 mg, contact time 1 h) for the CB-emimAc (84.75 mg/g) > C-emimAc (72.99 mg/g) > CS-emimAc (55.25 mg/g), as this was supported by their order of increasing BET surface area (CB-emimAc (120.1 m2/g) > C-emimAc (67.4 m2/g) > CS-emimAc (35.3 m2/g)). The feasible adsorption interactions between Cd(II) and Ch/AC occurs through the O-H and N-H groups of the composites, as supported by DFT analysis in which an electrostatic interactions was predicted as the dominant force. The interaction energy (-1309.35 eV) calculated via DFT shows that the Ch/AC with amino (-NH) and hydroxyl (-OH) groups are more effective with four significant electrostatic interactions with the Cd(II) ion. The various form of Ch/AC composites developed in EmimAc possess good adsorption capacity and stability for the adsorption Cd(II).
Collapse
Affiliation(s)
- Ismaila Olalekan Saheed
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P.M.B 1530 Ilorin, Nigeria
| | - Enis Nadia Md Yusof
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Wen-Da Oh
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | | | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
10
|
Andriayani, Marpongahtun, Muis Y, Pakpahan J, Daulay A. Stability of mesoporous silica using ricinoleic methyl ester as a template with the addition of HCl and application of Cd 2+ adsorption optimized by Box-Behnken design. RSC Adv 2023; 13:7329-7338. [PMID: 36891488 PMCID: PMC9987514 DOI: 10.1039/d2ra06973c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Mesoporous silica is restricted to organic solvents or other acidic media. The application of mesoporous silica depends on the medium's chemical stability and mechanical properties. It is necessary to stabilize the mesoporous silica material under acidic conditions. The results of the nitrogen adsorption characterization show that MS-50 has a large surface area and porosity, resulting in good mesoporous silica. Using variance analysis (ANOVA) to compare the collected data, the best conditions were found at a pH of 6.32, a Cd2+ concentration of 25.30 ppm, an adsorbent dose of 0.06 g, and a time of 70.44 min. The Cd2+ adsorption experiment data best fit the Langmuir isotherm model with the maximum amount of Cd2+ that MS-50 could absorb being 103.10 mg g-1.
Collapse
Affiliation(s)
- Andriayani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Jl. Bioteknologi No. 1 Medan 20155 Indonesia
| | - Marpongahtun
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Jl. Bioteknologi No. 1 Medan 20155 Indonesia
| | - Yugia Muis
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Jl. Bioteknologi No. 1 Medan 20155 Indonesia
| | - Jessica Pakpahan
- Graduate School, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Jl. Bioteknologi No. 1 Medan 20155 Indonesia
| | - Amru Daulay
- Postgraduate School, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Jl. Bioteknologi No. 1 Medan 20155 Indonesia
| |
Collapse
|
11
|
Ali I, Wan P, Raza S, Peng C, Tan X, Sun H, Li J. Development of novel MOF-mixed matrix three-dimensional membrane capsules for eradicating potentially toxic metals from water and real electroplating wastewater. ENVIRONMENTAL RESEARCH 2022; 215:113945. [PMID: 36027965 DOI: 10.1016/j.envres.2022.113945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The stability and applicability of UiO-66-(NH2)2 metal-organic framework (MOF) nanoparticles (NPs) were successfully improved in this study by incorporating them into alginate biopolymer during the manifestation of crosslinking agents-calcium chloride and glutaraldehyde-via a simple, environment-friendly, and facile approach to eradicate potentially toxic metals (PTMs) such as Cr6+, Cr3+, Cu2+, and Cd2+ from water and real electroplating wastewater. Hydrophilic functional groups (i.e., -OH, -COOH, and -NH2) are imperative in the smooth loading of UiO-66-(NH2)2 MOF- NPs into three-dimensional (3-D) membrane capsules (MCs). The X-ray photoelectron spectroscopy (XPS) results suggested that UiO-66-(NH2)2 MOF was effectively bonded in/on the capsule via electrostatic crosslinking between -H3N+ and -COO-. Scanning electron microscopy results revealed a porous honeycomb configuration of the 3-D SGMMCs (S: sodium alginate, G: glutaraldehyde, M: MOF NPs, and MCs: membrane capsules). The maximum monolayer absorption capacities for Cr6+, Cr3+, Cu2+, and Cd2+ were 495, 975, 1295, and 1350 mg/g, respectively. The results of Fourier transform infrared spectroscopy and XPS analyses showed that electrostatic attraction and ion exchange were the main processes for PTM removal used by the as-developed 3-D SGMMCs. The as-developed 3-D SGMMCs exhibited outstanding selectivity for removing the targeted PTMs under the specified pH/conditions and maintained >80% removal efficiency for up to six consecutive treatment cycles. Notably, > 60% removal efficiencies for Cr6+ and Cu2+ were observed when treating real electroplating wastewater. Therefore, the as-developed 3-D SGMMCs can be used as an exceptional multifunctional sorbent to remove and recover PTMs from real electroplating wastewater.
Collapse
Affiliation(s)
- Imran Ali
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen, 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen, 518001, China
| | - Saleem Raza
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Changsheng Peng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Department of Environmental Engineering, College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Huibin Sun
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Department of Environmental Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Mohamed HS, Tawfik WZ, Hamza ZS, Kfafy YR, El-Bassuony AA, Ahmed SA, El-Mageed HRA, Soliman NK. Removal of Dye by Adsorption on Nitric Acid Treated Sugar Bagasse Wastes, an Experimentally, Theoretically, and Computational Studies. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022; 96:3232-3243. [DOI: 10.1134/s0036024423020085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 09/02/2023]
|
13
|
Polyaniline/Glauconite Nanocomposite Adsorbent for Congo Red Dye from Textile Wastewater. SEPARATIONS 2022. [DOI: 10.3390/separations9110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glauconite (Gl), a naturally occurring clay material, was utilized as an affordable and ecologically friendly adsorbent to explore its capturing capacity towards Congo red (CR) dye from textile industrial waste effluent. To improve adsorption and removal effectiveness, a modification technique utilizing polyaniline (PAN) was investigated. An X-ray diffractometer (XRD), a scanning electron microscope (SEM), and Fourier transformer infrared (FTI-R) were applied as strong familiar characterization techniques for all used adsorbents. The effects of starting concentration, contact duration, adsorbent dose, pH, and temperature on the adsorption process were also studied. The reusability of the adsorbent was studied over four adsorption cycles. The results show that PAN modification of Gl enhances the effectiveness of CR elimination. The clearance efficiency of raw and modified glauconite at 25 °C and pH 7 was 77% and 91%, respectively. The kinetics and isotherms of Congo red dye adsorption were investigated using batch studies to determine the impacts of various experimental conditions. The maximum adsorption capacity of the glauconite/polyaniline (Gl/PAN) nanocomposite rose from 11.9 mg/g for Gl to 14.1 mg/g in accordance with the isotherm analysis, which shows that the Langmuir isotherm properly characterizes the experimental data. The pseudo-second-order model (R2 = 0.998) properly expresses the experimental data. The reusability research proved that the adsorbents may be reused effectively. The overall results suggest that the modified Gl by PAN might be used as a low-cost, natural adsorbent for eliminating CR color from textile effluent.
Collapse
|
14
|
Tattibayeva Z, Tazhibayeva S, Kujawski W, Zayadan B, Musabekov K. Peculiarities of adsorption of Cr (VI) ions on the surface of Chlorella vulgaris ZBS1 algae cells. Heliyon 2022; 8:e10468. [PMID: 36105478 PMCID: PMC9465124 DOI: 10.1016/j.heliyon.2022.e10468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhadra Tattibayeva
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
- Corresponding author.
| | - Sagdat Tazhibayeva
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, 7 Gagarina Street, 87-100, Torun, Poland
| | - Bolatkhan Zayadan
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
| | - Kuanyshbek Musabekov
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
| |
Collapse
|
15
|
Khamwichit A, Dechapanya W, Dechapanya W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell. Heliyon 2022; 8:e09610. [PMID: 35706950 PMCID: PMC9189894 DOI: 10.1016/j.heliyon.2022.e09610] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 05/26/2022] [Indexed: 12/01/2022] Open
Abstract
Among available technologies to remove heavy metals from wastewater, biosorption has gained more attention due to its high removal efficiency, friendly operation, and inexpensive cost. Despite many studies on metal adsorption from single ion solutions, kinetics and isotherms of binary metal ions simultaneously adsorbed onto biosorbents have not been thoroughly investigated to provide insight on involving mechanisms. This study explored the adsorption potential of untreated venus shells (UVS) that can be utilized in economical and environmentally-friendly ways. In this work, UVS of different sizes were prepared without chemical treatment as a biosorbent. Characterization of UVS was accomplished using nitrogen adsorption isotherm, FTIR, and SEM-EDX. Batch adsorption was carried out to study the effect of initial metal ion concentration, adsorbent dosage, and size on removing Cu(II) and Zn(II) from a binary solution of both metal ions using UVS. The experimental values of maximum adsorption capacities of Cu(II) and Zn(II) were 0.446 and 0.465 mg/g, respectively. The adsorption data were analyzed using the pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion rate equations. The pseudo-second order and the intraparticle diffusion model yielded the best fit to the experimental data for Cu(II) and Zn(II) ions, respectively. The equilibrium isotherm was examined using the Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R), and Elovich models. The Freundlich model best fits the Cu(II) and Zn(II) equilibrium adsorption data. The results indicated that the adsorption of Cu(II) and Zn(II) onto UVS-600 adsorbent could undergo a chemisorption mechanism. Both metal ions in an aqueous solution were competitively adsorbed onto the heterogeneous active sites available on the shell surfaces. Cu(II) and Zn(II) ions in the binary system could result in ionic interference between the adsorbed ions and the active sites.
Collapse
Affiliation(s)
- Attaso Khamwichit
- School of Engineering and Technology, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
- Excellent Research Center of Palm Oil and Biomass, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Wipawee Dechapanya
- School of Engineering and Technology, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
- Excellent Research Center of Palm Oil and Biomass, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
- Corresponding author.
| | - Wipada Dechapanya
- Faculty of Engineering, Ubon Ratchathani University, 85 Sathonlamark Rd. Mueang Si Khai, Warin Chamrap, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
16
|
Hamd A, Shaban M, AlMohamadi H, Dryaz AR, Ahmed SA, Abu Al-Ola KA, Abd El-Mageed HR, Soliman NK. Novel Wastewater Treatment by Using Newly Prepared Green Seaweed-Zeolite Nanocomposite. ACS OMEGA 2022; 7:11044-11056. [PMID: 35415323 PMCID: PMC8991928 DOI: 10.1021/acsomega.1c06998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 05/04/2023]
Abstract
A dependent step-by-step study that included experimental and field study was applied to explore the simplest and most effective system that could be applied for adsorption of Congo Red (CR) dye from the effluent of wastewater that comes out from different industries. Zeolite (Z) surface and pores were subjected to a modification process using green seaweed (GS) algae. Thereafter, each Z, GS, and composite from both were evaluated based on the adsorption efficacy to clean up CR dyes from aqueous solutions. A wet impregnation method was followed to fabricate the zeolite/algae (ZGS) nanocomposite which was characterized using the most appropriate characterization techniques. Batch experiments were selected to be the method of choice in order to follow up the performance of the adsorption process versus different practical variables. Moreover, dye adsorption kinetics and isotherms were investigated as well. At lowered concentrations of CR, the novel nanocomposite ZGS revealed more efficacy than its counterparts, Z and GS, in terms of the adsorption capacity. The maximum adsorption capacities were found to be 8.10, 10.30, and 19.70 mg/g for Z, GS, and ZGS, respectively. Laboratory tests confirmed that the novel nanocomposite ZGS could be introduced as a new and economical nanoadsorbent to capture and remove negatively charged dyes from wastewater effluents that come out from industries at lower concentrations of CR dye and analogous compounds. The dye adsorption on GS, Z, and ZGS coincide with the pseudo-first, Langmuir isotherm, and second-order models. Evaluation for the sorption mechanism was conducted using a diffusion model known as Weber's intraparticle. Depending on the last findings, field experiments on removing dyes from industrial wastewater revealed optimistic findings as the efficiency of our modern and eco-friendly nanoadsorbent reached 91.11%, which helps in the reuse of industrial wastewater.
Collapse
Affiliation(s)
- Ahmed Hamd
- Basic
Science Department, Faculty of Oral and Dental Medicine, Nahda University Beni-Suef (NUB), Beni Suef, 11787, Egypt
- Nanophotonics
and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef 62514, Egypt
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Al-Madinah
Al-Munawarah 42351, Saudi
Arabia
- Nanophotonics
and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef 62514, Egypt
| | - Hamad AlMohamadi
- Department
of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, 41411, Saudi Arabia
| | - Asmaa Ragab Dryaz
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni Suef 62511, Egypt
| | - Sayed A. Ahmed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni Suef 62511, Egypt
| | - Khulood A. Abu Al-Ola
- Department
of Chemistry, College of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Hamada R. Abd El-Mageed
- Micro-analysis
and Environmental Research and Community Services Center, Faculty
of Science, Beni-Suef University, Beni-Suef City, 62511, Egypt
| | - Nofal K. Soliman
- Basic
Science Department, Faculty of Oral and Dental Medicine, Nahda University Beni-Suef (NUB), Beni Suef, 11787, Egypt
| |
Collapse
|
17
|
El Mansouri F, El Farissi H, Cacciola F, Talhaoui A, El Bachiri A, Tahani A, Esteves da Silva JCG, Brigui J. Rapid elimination of copper (
II
), nickel (
II
) and chromium (
VI
) ions from aqueous solutions by charcoal modified with phosphoric acid used as a green biosorbent. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fouad El Mansouri
- Laboratory of Chemical Engineering and Valorization of Resources, Department of Chemistry Faculty of Sciences and Technology, Abdelmalek Essaâdi University Tangier Morocco
| | - Hammadi El Farissi
- Laboratory of Environment and Applied Chemistry (LCAE), Team: Physical Chemistry of the Natural Resources and Processes, Department of Chemistry Faculty of Sciences, Mohamed First University Oujda Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences University of Messina Messina Italy
| | - Abdelmonaem Talhaoui
- Laboratory of Environment and Applied Chemistry (LCAE), Team: Physical Chemistry of the Natural Resources and Processes, Department of Chemistry Faculty of Sciences, Mohamed First University Oujda Morocco
| | - Ali El Bachiri
- Laboratory of Environment and Applied Chemistry (LCAE), Team: Physical Chemistry of the Natural Resources and Processes, Department of Chemistry Faculty of Sciences, Mohamed First University Oujda Morocco
| | - Abdesselam Tahani
- Laboratory of Environment and Applied Chemistry (LCAE), Team: Physical Chemistry of the Natural Resources and Processes, Department of Chemistry Faculty of Sciences, Mohamed First University Oujda Morocco
| | | | - Jamal Brigui
- Laboratory of Chemical Engineering and Valorization of Resources, Department of Chemistry Faculty of Sciences and Technology, Abdelmalek Essaâdi University Tangier Morocco
| |
Collapse
|
18
|
The Adsorption of Copper, Lead Metal Ions, and Methylene Blue Dye from Aqueous Solution by Pure and Treated Fennel Seeds. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5787690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This research work reports on pure and acid-treated fennel seed biomaterials for the removal of metal ions of copper Cu(II), lead Pb(II), and methylene blue (MB) dye from aqueous solution by batch adsorption. Pure fennel seeds were labelled as PFS; nitric and sulphuric acid-treated seeds were designated as NAFS and SAFS, respectively. The adsorbents were characterised by SEM, EDX, FTIR, XRD, and BET. The SEM images revealed that the surface of the adsorbents was porous. However, physicochemical characterization further revealed that BET surface area, pore size, and pore width increased for NAFS and SAFS compared to PFS. FTIR results revealed that the peaks for cellulose −COC and −OH decreased considerably for NAFS and SAFS; this indicated that cellulose was hydrolyzed during acid treatment. Adsorption data showed that all biomaterials had a higher affinity for MB dye more than Pb(II) and Cu(II) metal ions. The maximum adsorption capacities onto PFS were 6.834, 4.179, and 2.902 mg/g and onto NAFS are 15.28, 14.44, and 4.475 mg/g, while those onto SAFS are 19.81, 18.79 and 6.707 mg/g respective for MB dye, Pb(II), and Cu(II) ions. Postadsorption analysis revealed that adsorption of Pb(II) and Cu(II) was controlled mainly by the electrostatic attraction, while that of MB was synergistic of electrostatic attraction, π-π interaction, and hydrogen bond. It was found that the uptake processes of MB dye onto all adsorbents fitted Freundlich while both cations were described by Langmuir model. The thermodynamic parameters
o and
o indicated the endothermic nature and spontaneity of the processes, respectively.
Collapse
|
19
|
Basnet P, Gyawali D, Nath Ghimire K, Paudyal H. An assessment of the lignocellulose-based biosorbents in removing Cr(VI) from contaminated water: A critical review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Ningrum EO, Gotoh T, Ciptonugroho W, Karisma AD, Agustiani E, Safitri ZM, Dzaky MA. Novel Thermosensitive- co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization. Gels 2021; 7:273. [PMID: 34940333 PMCID: PMC8701273 DOI: 10.3390/gels7040273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Zwitterionic betaine polymers are promising adsorbents for the removal of heavy metal ions from industrial effluents. Although the presence of both negative and positively charged groups imparts them the ability to simultaneously remove cations and anions, intra- and/or inter-chain interactions can significantly reduce their adsorption efficiencies. Therefore, in this study, novel gels based on crosslinked co-polymers of thermosensitive N-isopropylacrylamide (NIPAAM) and zwitterionic sulfobetaine N,N-dimethylacrylamido propyl ammonium propane sulfonate (DMAAPS) were synthesized, characterized, and evaluated for ion removal. Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) analyses confirmed the success of the co-polymerization of NIPAAM and DMAAPS to form poly(NIPAAM-co-DMAAPS). The phase transition temperature of the co-polymer increased with increasing DMAAPS content in the co-polymer, indicating temperature-dependent amphiphilic behavior, as evidenced by contact angle measurements. The ion adsorption analyses of the poly(NIPAAM-co-DMAAPS) gels indicated that co-polymerization increased the molecular distance and weakened the interaction between the DMAAPS-charged groups (SO3- and N+), thereby increasing the ion adsorption. The results confirmed that, with a low concentration of DMAAPS in the co-polymer gels (~10%), the maximum amount of Cr3+ ions adsorbed onto the gel was ~58.49% of the sulfonate content in the gel.
Collapse
Affiliation(s)
- Eva Oktavia Ningrum
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
- Department of Chemical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Japan
| | - Takehiko Gotoh
- Department of Chemical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Japan
| | - Wirawan Ciptonugroho
- Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Jalan Ir. Sutami 36A, Surakarta 57126, Indonesia;
| | - Achmad Dwitama Karisma
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| | - Elly Agustiani
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| | - Zela Marni Safitri
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| | - Muhammad Asyam Dzaky
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia; (E.O.N.); (A.D.K.); (E.A.); (Z.M.S.); (M.A.D.)
| |
Collapse
|
21
|
Taghavi S, Taghavi M, Ghaemy M, Farsadrooh M, Javadian H. Green and selective synthesis of sulfonated poly(pyrimidine-amides) in ionic liquid and their nanocomposites based on carboxylated MWCNTs: Investigation on photophysical, solubility, thermal, and removal of ions behaviors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Surface functionalization of mesoporous silica with maltodextrin for efficient adsorption of selective heavy metal ions from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Potential application of thermophilic bacterium Aeribacillus pallidus MRP280 for lead removal from aqueous solution. Heliyon 2021; 7:e08304. [PMID: 34805564 PMCID: PMC8586783 DOI: 10.1016/j.heliyon.2021.e08304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
Bacteria used for application of lead (Pb) removal is usually kept under suboptimal growth conditions. Certain application of Pb removal may be carried out under different condition, such as under aqueous and high temperature conditions. It is, therefore, of interest to examine the Pb removal capacity of the bacteria under adverse environmental conditions. In the present study, Aeribacillus pallidus MRP280, a lead-tolerant thermophilic bacterium was used as an absorbent for the removal of Pb from aqueous solution. The Pb removal and uptake capacity of living and non-living bacterial cells of A. pallidus MRP280 was investigated in 100 mg/L Pb solution. The optimum condition was examined based on several analytical parameters, including temperature, pH, contact time, and cell density. Biosorbent analysis and characterization was carried out using Fourier Transform Infrared (FT-IR) spectroscopy, Scanning Electron Microscope (SEM)-Energy Dispersive X-ray (EDX), and Transmission Electron Microscope (TEM). The results showed that the maximum Pb removal of 96.78 ± 0.19% and 88.64 ± 0.60% were obtained using living and non-living biomass, respectively at 55 °C, pH 6, OD6000.5 for 100 min. Meanwhile, the maximum uptake capacity of 86.47 ± 1.32 mg/g and 85.31 ± 1.37 mg/g by living and non-living cells was reached at 55 °C, pH 6, OD6000.25 for 60 min. Moreover, Pb removing activity was facilitated by the biosorption and bioaccumulation process. Overall, it is shown that A. pallidus MRP280 is effective when applied as biosorbent in removing Pb from contaminated wastewater at high temperatures.
Collapse
|
24
|
Dziergowska K, Wełna M, Szymczycha-Madeja A, Chęcmanowski J, Michalak I. Valorization of Cladophora glomerata Biomass and Obtained Bioproducts into Biostimulants of Plant Growth and as Sorbents (Biosorbents) of Metal Ions. Molecules 2021; 26:6917. [PMID: 34834009 PMCID: PMC8624861 DOI: 10.3390/molecules26226917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to propose a complete approach for macroalgae biomass valorization into products useful for sustainable agriculture and environmental protection. In the first stage, the effects of macroalgal extracts and ZnO NPs (zinc oxide nanoparticles) on the germination and growth of radish were examined. Macroalgal extract was produced from freshwater macroalga, i.e., Cladophora glomerata by ultrasound assisted extraction (UAE). The extract was used to biosynthesize zinc oxide nanoparticles. In germination tests, extracts and solutions of ZnO NPs were applied on paper substrate before sowing. In the second stage, sorption properties of macroalga, post-extraction residue, and ZnO NPs to absorb Cr(III) ions were examined. In the germination tests, the highest values of hypocotyl length (the edible part of radish), i.e., 3.3 and 2.6 cm were obtained for 60 and 80% extract (among the tested concentrations 20, 40, 60, 80, and 100%) and 10 and 50 mg/L NPs, respectively. The highest sorption capacity of Cr(III) ions (344.8 mg/g) was obtained by both macroalga and post-extraction residue at a pH of 5 and initial Cr(III) ions concentration of 200 mg/L. This study proves that macroalgae and products based on them can be applied in both sustainable agriculture and wastewater treatment.
Collapse
Affiliation(s)
- Katarzyna Dziergowska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland; (K.D.); (J.C.)
| | - Maja Wełna
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland; (M.W.); (A.S.-M.)
| | - Anna Szymczycha-Madeja
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland; (M.W.); (A.S.-M.)
| | - Jacek Chęcmanowski
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland; (K.D.); (J.C.)
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland; (K.D.); (J.C.)
| |
Collapse
|
25
|
Hosseini SA, Samani MR, Toghraie D. Investigating the hexavalent chromium removal from aqueous solution applying bee carcasses and corpses modified with Polyaniline. Sci Rep 2021; 11:19117. [PMID: 34580324 PMCID: PMC8476580 DOI: 10.1038/s41598-021-97518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
There are currently heavy metals in most industrial effluents which are among the most significant environmental pollutants. Hexavalent chromium is one of the most significant heavy metals. In this research for the first time, eliminating the hexavalent chromium from the aqueous medium/aquedia applying bee carcasses and corpses modified with polyethylene was examined. Adsorption experiments were conducted discontinuously on laboratory solutions, including hexavalent chromium. The optimal adsorption conditions such as different pH factors, contact time, initial chromium concentration, and adsorbent value on the adsorption rate were examined at different levels, and adsorption isotherms were plotted. Some adsorbent properties were examined using Field Emission Scanning Electron Microscopy, XRD analysis, Fourier Transform Infrared Spectroscopy, and BET test to study the properties of the synthesized adsorbent. This study indicated that the highest percentage of removal related to polyethylene composite and bee carcasses in the presence of polyethylene glycol was 50.56% among the bee carcasses composites. The parameters effective on the adsorption process for polyethylene composite and bee carcasses and losses in the presence of polyethylene glycol suggested that the adsorption percentage increased for this composite by decreasing the pH, increasing the contact time, and increasing the adsorbent. The highest percentage of adsorption was obtained when the pH was 2, the contact time was 120 min and the adsorbent value was 8 g/L and the initial concentration of chromium was 100 ppm. The most optimal removal percentage was achieved at the pH = 2, the contact time was 30 min, and the adsorbent value was 2 g/L, and the initial chromium concentration was 100 ppm. The results of drawing adsorption isotherms also indicated that higher R2 had a better fit than Langmuir for polyethylene composite and bee carcasses in the polyethylene glycol Freundlich equation.
Collapse
Affiliation(s)
- Seyed Ali Hosseini
- Department of Civil Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Majid Riahi Samani
- Department of Civil Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.
| |
Collapse
|
26
|
Hamd A, Dryaz AR, Shaban M, AlMohamadi H, Abu Al-Ola KA, Soliman NK, Ahmed SA. Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2441. [PMID: 34578757 PMCID: PMC8464800 DOI: 10.3390/nano11092441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Systematic investigations involving laboratory, analytical, and field trials were carried out to obtain the most efficient adsorbent for the removal of congo red (CR) dye from industrial effluent. Modification of the zeolite (Z) by the Acanthophora Spicifera algae (AS; marine algae) was evaluated in terms of adsorption capability of the zeolite to remove CR dye from aqueous solution. The zeolite/algae composite (ZAS) was fabricated using the wet impregnation technique. The AS, Z, and the synthesized ZAS composite were analyzed utilizing various characterization techniques. The newly synthesized ZAS composite has an adsorption capacity that is significantly higher than that of Z and AS, particularly at low CR concentrations. Batch experiments were carried out to explore the effects of different experimental factors, as well as the dye adsorption isotherms and kinetics. Owing to the presence of intermolecular interactions, the computational analysis showed that the adsorption of the CR molecule on zeolite surfaces is exothermic, energetically favorable, and spontaneous. Furthermore, growing the zeolite surface area has no discernible effect on the adsorption energies in all configurations. The ZAS composite may be used as a low-cost substitute adsorbent for the removal of anionic dyes from industrial wastewater at lower dye concentrations, according to the experimental results. Adsorption of CR dye onto Z, AS, and ZAS adsorbents was adequately explained by pseudo-second-order kinetics and the Langmuir isotherm. The sorption mechanism was also evaluated using Weber's intra-particle diffusion module. Finally, field testing revealed that the newly synthesized adsorbent was 98.0% efficient at extracting dyes from industrial wastewater, proving the foundation of modern eco-friendly materials that aid in the reuse of industrial wastewater.
Collapse
Affiliation(s)
- Ahmed Hamd
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
- Basic Science Department, Nahda University Beni-Suef, Beni-Suef 62764, Egypt;
| | - Asmaa Ragab Dryaz
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.R.D.); (S.A.A.)
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Khulood A. Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | | | - Sayed A. Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.R.D.); (S.A.A.)
| |
Collapse
|
27
|
Razmara Z, Kubicki M. Sonochemical synthesis, crystal structure, and magnetic properties of a novel organic-inorganic complex based on Mn (II), designed to produce a highly efficient and recyclable sorbent. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Singh RJ, Martin CE, Barr D, Rosengren RJ. Cucumber peel bead biosorbent for multi-ion decontamination of drinking water collected from a mine region in New Zealand. ENVIRONMENTAL TECHNOLOGY 2021; 42:2461-2477. [PMID: 31825744 DOI: 10.1080/09593330.2019.1703824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Cucumber peel as a bead was examined for its ability to remove heavy metals from drinking water. Deionised laboratory water was spiked with seven toxic ions namely, arsenic, cadmium, chromium, copper, mercury, lead and nickel at 0.1 mg L-1 and kinetic studies were performed over 72 h. Kinetic data were modelled using film diffusion, pore diffusion, Weber-Morris, pseudo-first-order, pseudo-second-order and Elovich equation. The bead surface was imaged before and after biosorption using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS). Results indicated that different ions contained in a multi-ion solution were biosorbed by different mechanisms and at different rates. Equilibrium biosorption for Cd, Hg and Ni was ∼91, 90 and 67%, respectively, at 24 h. These ions diffused through the pores of the bead, as they were not identified by EDS, and their biosorption increased with an increase in temperature. The least biosorbed ions were As and Cr with ∼21 and 17% equilibrium biosorption, respectively. The removal of only Cu, Hg, Pb and Ni was pH-dependent. Cucumber peel beads removed all spiked ions from real drinking water collected near the Macraes gold mine in New Zealand, but the biosorption percentage was lower for Cd, Cu, Pb and Ni compared to spiked deionised laboratory water. The results of this study suggest that cucumber peel when immobilised on a sodium alginate bead can be used as a potential biosorbent for the removal of multiple toxic ions from drinking water and their use warrants further examination in contaminated drinking water.
Collapse
Affiliation(s)
- Risha Jasmine Singh
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
- Geology Department, University of Otago, Dunedin, New Zealand
| | | | - Dave Barr
- Centre for Trace Element Analysis, Chemistry Department, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Pharmacology & Toxicology Department, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Tho PT, Van HT, Nguyen LH, Hoang TK, Ha Tran TN, Nguyen TT, Hanh Nguyen TB, Nguyen VQ, Le Sy H, Thai VN, Tran QB, Sadeghzadeh SM, Asadpour R, Thang PQ. Enhanced simultaneous adsorption of As(iii), Cd(ii), Pb(ii) and Cr(vi) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles. RSC Adv 2021; 11:18881-18897. [PMID: 35478660 PMCID: PMC9033486 DOI: 10.1039/d1ra01599k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
This study presents the modification of cassava root husk-derived biochar (CRHB) with ZnO nanoparticles (ZnO-NPs) for the simultaneous adsorption of As(iii), Cd(ii), Pb(ii) and Cr(vi). By conducting batch-mode experiments, it was concluded that 3% w/w was the best impregnation ratio for the modification of CRHB using ZnO-NPs, and was denoted as CRHB-ZnO3 in this study. The optimal conditions for heavy metal adsorption were obtained at a pH of 6–7, contact time of 60 min, and initial metal concentration of 80 mg L−1. The heavy metal adsorption capacities onto CRHB-ZnO3 showed the following tendency: Pb(ii) > Cd(ii) > As(iii) > Cr(vi). The total optimal adsorption capacity achieved in the adsorption of the 4 abovementioned metals reached 115.11 and 154.21 mg g−1 for CRHB and CRHB-ZnO3, respectively. For each Pb(ii), Cd(ii), As(iii), and Cr(vi) metal, the maximum adsorption capacities of CRHB-ZnO3 were 44.27, 42.05, 39.52, and 28.37 mg g−1, respectively, and those of CRHB were 34.47, 32.33, 26.42 and 21.89 mg g−1, respectively. In terms of kinetics, both the pseudo-first-order and the pseudo-second-order fit well with metal adsorption onto biochars with a high correlation coefficient of R2, while the best isothermal description followed the Langmuir model. As a result, the adsorption process of heavy metals onto biochars was chemisorption on homogeneous monolayers, which was mainly controlled by cation exchange and surface precipitation mechanisms due to enriched oxygen-containing surface groups with ZnO-NP modification of biochar. The FTIR and EDS analysis data confirmed the important role of oxygen-containing surface groups, which significantly contributed to removal of heavy metals with extremely high adsorption capacities, comparable with other studies. In conclusion, due to very high adsorption capacities for metal cations, the cassava root husk-derived biochar modified with ZnO-NPs can be applied as the alternative, inexpensive, non-toxic and highly effective adsorbent in the removal of various toxic cations. This study presents the modification of cassava root husk-derived biochar (CRHB) with ZnO nanoparticles (ZnO-NPs) for the simultaneous adsorption of As(iii), Cd(ii), Pb(ii) and Cr(vi).![]()
Collapse
Affiliation(s)
- P T Tho
- Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials Science, Ton Duc Thang University Ho Chi Minh City Vietnam .,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Huu Tap Van
- Faculty of Natural Resources and Environment, TNU - University of Sciences (TNUS) Tan Thinh Ward Thai Nguyen City Vietnam
| | - Lan Huong Nguyen
- Faculty of Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI) Ho Chi Minh City Vietnam
| | - Trung Kien Hoang
- Faculty of Natural Resources and Environment, TNU - University of Sciences (TNUS) Tan Thinh Ward Thai Nguyen City Vietnam
| | - Thi Ngoc Ha Tran
- Faculty of Natural Resources and Environment, TNU - University of Sciences (TNUS) Tan Thinh Ward Thai Nguyen City Vietnam
| | - Thi Tuyet Nguyen
- Faculty of Natural Resources and Environment, TNU - University of Sciences (TNUS) Tan Thinh Ward Thai Nguyen City Vietnam
| | - Thi Bich Hanh Nguyen
- Faculty of Natural Resources and Environment, TNU - University of Sciences (TNUS) Tan Thinh Ward Thai Nguyen City Vietnam
| | - Van Quang Nguyen
- The Center for Technology Incubator and Startup Support, Thai Nguyen University of Agriculture and Forestry Quyet Thang Ward Thai Nguyen City Vietnam
| | - Hung Le Sy
- Advanced Educational Program, Thai Nguyen University of Agriculture and Forestry Quyet Thang Ward Thai Nguyen City Vietnam
| | - Van Nam Thai
- HUTECH Institute of Applied Sciences, Ho Chi Minh City University of Technology (HUTECH) 475A Dien Bien Phu, Ward 25, Binh Thanh Dist Ho Chi Minh City Vietnam
| | - Quoc Ba Tran
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam .,Faculty of Environmental and Chemical Engineering, Duy Tan University Da Nang 550000 Vietnam
| | - Seyed Mohsen Sadeghzadeh
- New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University Neyshabur Iran
| | - Robabeh Asadpour
- Geosciences & Petroleum Engineering Department, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Phan Quang Thang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Ha Noi City Vietnam
| |
Collapse
|
30
|
Soliman NK, Moustafa AF, El-Mageed HRA, Abdel-Gawad OF, Elkady ET, Ahmed SA, Mohamed HS. Experimentally and theoretically approaches for disperse red 60 dye adsorption on novel quaternary nanocomposites. Sci Rep 2021; 11:10000. [PMID: 33976331 PMCID: PMC8113254 DOI: 10.1038/s41598-021-89351-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Abstract
A comprehensive study that combined both experimental and computational experiments was performed to evaluate the usage of organo-metal oxide nanocomposite for the elimination of disperse red 60 dye (DR) from aqueous solutions. Chitosan was modified by Schiff base to form nanoneedles chitosan-4-chloroacetophenone derivative. The derivatives were then impregnated with CeO2–CuO–Fe2O3 or CeO2–CuO–Al2O3 metal oxides to prepare a novel quarternary organo-metal oxide nanocomposite. The novel nanocomposite, chitosan-4-chloroacetophenone/CeO2–CuO–Fe2O3 (CF) and chitosan-4-chloroacetophenone/CeO2–CuO–Al2O3 (CA) are cheap and effective nano adsorbents that can be used for the uptake of DR from aqueous solution. The CF and CA nano-composites were characterized using different techniques. Moreover, the effect of adsorption parameters (initial DR concentration, time of contact, pH, temperature, and adsorbent mass) as well as CA and CF reusability tests were performed. Langmuir adsorption isotherm and pseudo-second-order kinetics models were best fitted with the adsorption process. The maximum amount of DR adsorbed was 100 mg/g on CF and CA at pH 2 and 4, respectively with a physical spontaneous, and exothermic adsorption process. Monte Carlo (MC) simulation studies indicated the adsorption of DR molecule on the CF and CA surfaces following a parallel mode in most of all studied configurations, confirming the strong interactions between the DR and surfaces atoms of CF and CA. The molecular structure analysis of DR dye adsorbed on the surface of CF and CA indicated that the adsorption process related to Van der Waals dispersion force. Consequently, this helps to trap DR dye molecules on the surface of CF and CA (i.e., physical adsorption), which supports our experimental results.
Collapse
Affiliation(s)
- N K Soliman
- Basic Science Department, Nahda University, Beni-Suef, Egypt.
| | - A F Moustafa
- Ministry of Health and Population, Central Administration of Environmental Affairs, Beni-Suef Branch, Beni-Suef, Beni-Suef Governorate, Egypt
| | - H R Abd El-Mageed
- Faculty of Science, Micro-Analysis and Environmental Research and Community Services Center, Beni-Suef University, Beni-Suef City, Egypt
| | - Omima F Abdel-Gawad
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Esraa T Elkady
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Sayed A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Hussein S Mohamed
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
31
|
Mohammed D, Al-Malack MH, Chanbasha B. Sulfamic acid functionalized slag for effective removal of organic dye and toxic metal from the aqueous samples. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Mohamed HS, El-Mageed HRA, Ali HS, Mahmoud TR, Ahmed SA, Soliman NK. Adsorption of Mn+7 ions on chitosan/cellulose composite: experimentally and theoretically approaches. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1877555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hussein S. Mohamed
- Chemistry of Natural Products, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef City, Egypt
| | - H. R. Abd El-Mageed
- Micro-analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef university, Beni-Suef City, Egypt
| | - Hadeel S. Ali
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Toqa R. Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Sayed A. Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - N. K. Soliman
- Basic Science Department, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
33
|
Investigating the adsorption behavior and mechanisms of insoluble Humic acid/starch composite microspheres for metal ions from water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
34
|
Rahman N, Nasir M. Facile synthesis of thiosalicylic acid functionalized silica gel for effective removal of Cr(III): Equilibrium modeling, kinetic and thermodynamic studies. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett-Burman design and response surface methodology. Heliyon 2020; 6:e05219. [PMID: 33088969 PMCID: PMC7566099 DOI: 10.1016/j.heliyon.2020.e05219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Statistical optimization models were employed to optimize the adsorption of textile dye effluent onto Gracilaria edulis. Significant factors responsible for adsorption were determined using Plackett-Burman design (PBD) and were time, pH, and dye concentration. Box-Behnken (BB) design was used for further optimization. The predicted and the experimental values were found to be in good agreement, the coefficient of determination value 0.9935 and adjusted coefficient of determination value 0.9818 indicated that the model was significant. The results of predicted response optimization showed that maximum decolorization could be attained with time 131.51 min, pH 7.48, and dye concentration 23.13%. The model was validated experimentally with 92.65% decolorization efficiency. The experiment was confirmed using Fourier transform infrared spectroscopy (FTIR), high-resolution scanning electron microscope coupled with energy dispersive X-ray analysis (HR-SEM-EDX), X-ray diffraction spectrometry (XRD) and Brunauer-Emmett-Teller (BET) surface area and pore size analysis techniques. Desorption studies at various pH (2–14) were performed and a maximum of 23% of the dye was recovered from the adsorbed biomass.
Collapse
|
36
|
Ranaweera KH, Godakumbura PI, Perera BA. Adsorptive removal of Co(II) in aqueous solutions using clearing nut seed powder. Heliyon 2020; 6:e03684. [PMID: 32274433 PMCID: PMC7132072 DOI: 10.1016/j.heliyon.2020.e03684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 11/30/2022] Open
Abstract
The present study assessed the potential use of clearing nut seed powder (Strychnos potatorum) as an adsorbent for the removal of Co(II) ions from aqueous solutions. Based on FTIR analysis, the adsorbent possesses hydroxyl, C-N, and C-O functional groups and SEM analysis indicated the presence of uneven porous surface structure, which is important for adsorption. Batch adsorption studies were performed to investigate the effect of contact time, initial pH, initial Co(II) concentration, adsorbent dosage, and temperature on adsorption. The Langmuir isotherm model provided the best explanation to experimental data with the highest correlation coefficient and the maximum monolayer adsorption capacity obtained was 4.245 mg/g. The pseudo-second-order kinetic model fitted well with the adsorption kinetic data. Sorption thermodynamic data showed that the adsorption process is spontaneous and exothermic in nature. The clearing nut seed powder obtained after surface modification by acid treatment showed a higher adsorption capacity.
Collapse
Affiliation(s)
- Kavitha H. Ranaweera
- Department of Chemistry, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Pahan I. Godakumbura
- Department of Chemistry, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - B. Asiri Perera
- Department of Chemistry, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
- Corresponding author.
| |
Collapse
|
37
|
Shao F, Zhang X, Sun X, Shang J. Antibiotic removal by activated biochar: performance, isotherm, and kinetic studies. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1737106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fengli Shao
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiantao Sun
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Jingge Shang
- School of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Yunus ZM, Othman N, Al-Gheethi A, Hamdan R, Ruslan NN. Adsorption of heavy metals from mining effluents using honeydew peels activated carbon; isotherm, kinetic and column studies. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1709493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zalilah Murni Yunus
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh, Muar, Johor, Malaysia
| | - Norzila Othman
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Adel Al-Gheethi
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Rafidah Hamdan
- Micro-Pollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil & Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Nurun Najwa Ruslan
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh, Muar, Johor, Malaysia
| |
Collapse
|