1
|
Freire BM, Cavalcanti YT, Lange CN, Pieretti JC, Pereira RM, Gonçalves MC, Nakazato G, Seabra AB, Batista BL. Evaluation of collision/reaction gases in single-particle ICP-MS for sizing selenium nanoparticles and assessment of their antibacterial activity. NANOTECHNOLOGY 2022; 33:355702. [PMID: 35605588 DOI: 10.1088/1361-6528/ac723e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Selenium nanoparticles (SeNPs) have recently attracted attention because they combine the benefits of Se and lower toxicity compared to other chemical forms of this element. In this study, SeNPs were synthesized by a green method using ascorbic acid as the reducing agent and polyvinyl alcohol as stabilizer. The nanoparticles were widely characterized. To determine the total concentration of Se by ICP-MS, several isotopes and the use of He as collision gas were evaluated, which was effective in minimizing interferences. A method for sizing SeNPs by single particle ICP-MS (SP-ICP-MS) was developed. For this purpose, He and H2were evaluated as collision/reaction gases, and the second one showed promising results, providing an average diameter of 48 nm for the SeNPs. These results agree with those obtained by TEM (50.1 nm). Therefore, the SP-ICP-MS can be implemented for characterizing SeNPs in terms of size and size distribution, being an important analytical tool for Se and other widely studied nanoparticles (e.g. Ag, Au, Ce, Cu, Fe, Zn). Finally, the antibacterial activity of SeNPs was assessed. The SeNPs showed bacteriostatic activity against three strains of Gram-positive bacteria and were particularly efficient in inhibiting the growthE. faecaliseven at very low concentrations (MIC < 1.4 mg l-1). In addition, a bactericidal activity of SeNPs againstS. aureuswas observed. These nanoparticles may have potential application in pharmaceutical industry, biomedicine and agriculture.
Collapse
Affiliation(s)
- Bruna Moreira Freire
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Yasmin Tavares Cavalcanti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Camila Neves Lange
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Rodrigo Mendes Pereira
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | - Gerson Nakazato
- Department of Microbiology, State University of Londrina, Londrina, PR, Brazil
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|
2
|
Quantitative Determination of the Surface Distribution of Supported Metal Nanoparticles: A Laser Ablation–ICP–MS Based Approach. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).
Collapse
|
3
|
Kohatsu MY, Pelegrino MT, Monteiro LR, Freire BM, Pereira RM, Fincheira P, Rubilar O, Tortella G, Batista BL, de Jesus TA, Seabra AB, Lange CN. Comparison of foliar spray and soil irrigation of biogenic CuO nanoparticles (NPs) on elemental uptake and accumulation in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16350-16367. [PMID: 33389577 DOI: 10.1007/s11356-020-12169-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/18/2020] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) can be used in several ways in agriculture, including increasing production rates and improving nutritional values in plants. The present study aims to clarify how biogenic copper oxide nanoparticles (CuO NPs) applied by two routes of exposure (foliar spray and soil irrigation) affect the elemental uptake by lettuce. In vivo experiments using lettuce (n = 4) were performed with CuO NPs in comparison with copper salt (CuSO4), considering a final mass added of 20 mg of CuO per plant. The elemental composition of roots was mostly affected by the soil irrigation exposure for both Cu forms (NPs and salt). Neither Cu form added by soil irrigation was translocated to leaves. Copper concentration in leaves was mainly affected by foliar spray exposure for both Cu forms (NPs and salt). All Cu forms through foliar spray were sequestered in the leaves and no translocation to roots was observed. Foliar spray of CuO NPs caused no visual damage in leaves, resulted in less disturbance of elemental composition, and improved dry weight, number of leaves, CO2 assimilation, and the levels of K, Na, S, Ag, Cd, Cr, Cu, and Zn in leaves without causing significant changes in daily intake of most elements, except for Cu. Although Cu concentration increased in leaves by foliar spray of CuO NPs, it remained safe for consumption.
Collapse
Affiliation(s)
- Marcio Yukihiro Kohatsu
- Programa de pós-graduação em Ciência e Tecnologia Ambiental (CTA), Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Milena Trevisan Pelegrino
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Lucilena Rebelo Monteiro
- Centro de Química e Meio Ambiente, IPEN/CNEN-SP - Instituto de Pesquisas Energéticas e Nucleares/Comissão Nacional de Energia Nuclear, São Paulo, SP, Brazil
| | - Bruna Moreira Freire
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Rodrigo Mendes Pereira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Paola Fincheira
- Department of Chemical Engineering, Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Olga Rubilar
- Department of Chemical Engineering, Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tortella
- Department of Chemical Engineering, Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Tatiane Araujo de Jesus
- Programa de pós-graduação em Ciência e Tecnologia Ambiental (CTA), Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Amedea Barozzi Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil
| | - Camila Neves Lange
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Avenida dos Estados, 5001 - Bairro Santa Terezinha, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
4
|
Industrial Waste Utilization of Carbon Dust in Sustainable Cementitious Composites Production. MATERIALS 2020; 13:ma13153295. [PMID: 32722107 PMCID: PMC7436200 DOI: 10.3390/ma13153295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
This paper experimentally investigates the effect of utilization of carbon dust generated as an industrial waste from aluminum factories in cementitious composites production. Carbon dust is collected, characterized, and then used to partially replace cement particles in cement mortar production. The effect of adding different dosages of carbon dust in the range of 5% to 40% by weight of cement on compressive strength, microstructure, and chemical composition of cement mortar is investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF) analysis are used to justify the results. Experimental results show that incorporation of carbon dust in cement mortar production not only reduces its environmental side effects but also enhances the strength of cementitious composites. Up to 10% carbon dust by weight of cement can be added to the mixture without adversely affecting the strength of the mortar. Any further addition of carbon dust would decrease the strength. Best enhancement in compressive strength (27%) is achieved in the case of using 5% replacement ratio. SEM images show that incorporation of small amount of carbon dust (less than 10%) lead to produce denser and more compact-structure cement mortar.
Collapse
|
6
|
Pinheiro VS, Souza FM, Gentil TC, Böhnstedt P, Paz EC, Parreira LS, Hammer P, Batista BL, Santos MC. Insights in the Study of the Oxygen Reduction Reaction in Direct Ethanol Fuel Cells using Hybrid Platinum‐Ceria Nanorods Electrocatalysts. ChemElectroChem 2019. [DOI: 10.1002/celc.201901253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Victor S. Pinheiro
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Felipe M. Souza
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Tuani C. Gentil
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Paula Böhnstedt
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Edson C. Paz
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
- Instituto Federal de EducaçãoCiência e Tecnologia do Maranhão (IFMA), Campus Açailândia, CEP 65.930-000, R. Projetada, s/n Açailândia, MA Brazil
| | - Luanna S. Parreira
- Instituto de Química (IQ)Universidade de São Paulo (USP), CEP 05.508-000 Av. Prof. Lineu Prestes, 748 São Paulo, SP Brazil
| | - Peter Hammer
- Instituto de Química, UNESPUniversidade Estadual Paulista, CEP 14800-060 Araraquara, SP Brazil
| | - Bruno L. Batista
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| | - Mauro C. Santos
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN) Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC), CEP 09.210-170 Rua Santa Adélia 166, Bairro Bangu Santo André, SP Brazil
| |
Collapse
|