1
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Mast Cells in Cardiac Remodeling: Focus on the Right Ventricle. J Cardiovasc Dev Dis 2024; 11:54. [PMID: 38392268 PMCID: PMC10889421 DOI: 10.3390/jcdd11020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
In response to various stressors, cardiac chambers undergo structural remodeling. Long-term exposure of the right ventricle (RV) to pressure or volume overload leads to its maladaptive remodeling, associated with RV failure and increased mortality. While left ventricular adverse remodeling is well understood and therapeutic options are available or emerging, RV remodeling remains underexplored, and no specific therapies are currently available. Accumulating evidence implicates the role of mast cells in RV remodeling. Mast cells produce and release numerous inflammatory mediators, growth factors and proteases that can adversely affect cardiac cells, thus contributing to cardiac remodeling. Recent experimental findings suggest that mast cells might represent a potential therapeutic target. This review examines the role of mast cells in cardiac remodeling, with a specific focus on RV remodeling, and explores the potential efficacy of therapeutic interventions targeting mast cells to mitigate adverse RV remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Ferrario CM, Ahmad S, Speth R, Dell’Italia LJ. Is chymase 1 a therapeutic target in cardiovascular disease? Expert Opin Ther Targets 2023; 27:645-656. [PMID: 37565266 PMCID: PMC10529260 DOI: 10.1080/14728222.2023.2247561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Non-angiotensin converting enzyme mechanisms of angiotensin II production remain underappreciated in part due to the success of current therapies to ameliorate the impact of primary hypertension and atherosclerotic diseases of the heart and the blood vessels. This review scrutinize the current literature to highlight chymase role as a critical participant in the pathogenesis of cardiovascular disease and heart failure. AREAS COVERED We review the contemporaneous understanding of circulating and tissue biotransformation mechanisms of the angiotensins focusing on the role of chymase as an alternate tissue generating pathway for angiotensin II pathological mechanisms of action. EXPERT OPINION While robust literature documents the singularity of chymase as an angiotensin II-forming enzyme, particularly when angiotensin converting enzyme is inhibited, this knowledge has not been fully recognized to clinical medicine. This review discusses the limitations of clinical trials' that explored the benefits of chymase inhibition in accounting for the failure to duplicate in humans what has been demonstrated in experimental animals.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Robert Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida 33314
| | - Louis J Dell’Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB), Birmingham AL 35294
- Birmingham Department of Veterans Affairs Health Care System, Birmingham AL 35233
| |
Collapse
|
3
|
Butts B, Goeddel LA, Zheng J, Pat B, Powell P, Mobley J, Ahmad S, Steele C, McGiffin D, Davies JE, George JF, Melby SJ, Ferrario CM, Dell’Italia LJ. Impact of early pericardial fluid chymase activation after cardiac surgery. Front Cardiovasc Med 2023; 10:1132786. [PMID: 37265571 PMCID: PMC10230304 DOI: 10.3389/fcvm.2023.1132786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Chymase is a highly destructive serine protease rapidly neutralized in the circulation by protease inhibitors. Here we test whether pericardial fluid (PCF) chymase activation and other inflammatory biomarkers determine intensive care unit length of stay, and explore mechanisms of chymase delivery by extracellular vesicles to the heart. Methods PCF was collected from adult patients (17 on-pump; 13 off-pump) 4 h after cardiac surgery. Extracellular vesicles (EVs) containing chymase were injected into Sprague-Dawley rats to test for their ability to deliver chymase to the heart. Results The mean intensive care unit (ICU) stay and mean total length of stay was 2.17 ± 3.8 days and 6.41 ± 1.3 days respectively. Chymase activity and 32 inflammatory markers did not differ in on-pump vs. off-pump cardiac surgery. Society of Thoracic Surgeons Predicted Risk of Morbidity and Mortality Score (STS-PROM), 4-hour post-surgery PCF chymase activity and C-X-C motif chemokine ligand 6 (CXCL6) were all independent predictors of ICU and total hospital length of stay by univariate analysis. Mass spectrometry of baseline PCF shows the presence of serine protease inhibitors that neutralize chymase activity. The compartmentalization of chymase within and on the surface of PCF EVs was visualized by immunogold labeling and transmission electron microscopy. A chymase inhibitor prevented EV chymase activity (0.28 fmol/mg/min vs. 14.14 fmol/mg/min). Intravenous injection of PCF EVs obtained 24 h after surgery into Sprague Dawley rats shows diffuse human chymase uptake in the heart with extensive cardiomyocyte damage 4 h after injection. Discussion Early postoperative PCF chymase activation underscores its potential role in cardiac damage soon after on- or off-pump cardiac surgery. In addition, chymase in extracellular vesicles provides a protected delivery mechanism from neutralization by circulating serine protease inhibitors.
Collapse
Affiliation(s)
- Brittany Butts
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Lee A. Goeddel
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jingyi Zheng
- Department of Mathematics and Statistics, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Betty Pat
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham Veterans Affairs Health Care System, Birmingham, AL, United States
| | - Pamela Powell
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham Veterans Affairs Health Care System, Birmingham, AL, United States
| | - James Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chad Steele
- School of Medicine—Microbiology and Immunology, Tulane University, New Orleans, LA, United States
| | - David McGiffin
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - James E. Davies
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - James F. George
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Spencer J. Melby
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University, Saint Louis, MO, United States
- Saint Louis VA Medical Center, Birmingham VA Health Care System, Birmingham, AL, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Louis J. Dell’Italia
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Veterans Affairs, Birmingham Veterans Affairs Health Care System, Birmingham, AL, United States
| |
Collapse
|
4
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|
5
|
Jin J, Jiang Y, Chakrabarti S, Su Z. Cardiac Mast Cells: A Two-Head Regulator in Cardiac Homeostasis and Pathogenesis Following Injury. Front Immunol 2022; 13:963444. [PMID: 35911776 PMCID: PMC9334794 DOI: 10.3389/fimmu.2022.963444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiac mast cells (CMCs) are multifarious immune cells with complex roles both in cardiac physiological and pathological conditions, especially in cardiac fibrosis. Little is known about the physiological importance of CMCs in cardiac homeostasis and inflammatory process. Therefore, the present review will summarize the recent progress of CMCs on origin, development and replenishment in the heart, including their effects on cardiac development, function and ageing under physiological conditions as well as the roles of CMCs in inflammatory progression and resolution. The present review will shed a light on scientists to understand cardioimmunology and to develop immune treatments targeting on CMCs following cardiac injury.
Collapse
Affiliation(s)
- Jing Jin
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Immunology, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Jiang
- Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Immunology, Jiangsu University, Zhenjiang, China
- *Correspondence: Zhaoliang Su,
| |
Collapse
|
6
|
Ferrario CM, Groban L, Wang H, Sun X, VonCannon JL, Wright KN, Ahmad S. The renin–angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney Int Suppl (2011) 2022; 12:36-47. [DOI: 10.1016/j.kisu.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
|
7
|
Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, Sun X, Ahmad S. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol 2021; 529:111119. [PMID: 33309638 PMCID: PMC8127338 DOI: 10.1016/j.mce.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin II generation from angiotensin-(1-12) does not require renin participation while chymase rather than angiotensin converting enzyme shows high catalytic activity in converting this tissue substrate into angiotensin II directly.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
8
|
Butts B, Ahmed MI, Bajaj NS, Cox Powell P, Pat B, Litovsky S, Gupta H, Lloyd SG, Denney TS, Zhang X, Aban I, Sadayappan S, McNamara JW, Watson MJ, Ferrario CM, Collawn JF, Lewis C, Davies JE, Dell'Italia LJ. Reduced Left Atrial Emptying Fraction and Chymase Activation in Pathophysiology of Primary Mitral Regurgitation. JACC Basic Transl Sci 2020; 5:109-122. [PMID: 32140620 PMCID: PMC7046515 DOI: 10.1016/j.jacbts.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
Abstract
Increasing left atrial (LA) size predicts outcomes in patients with isolated mitral regurgitation (MR). Chymase is plentiful in the human heart and affects extracellular matrix remodeling. Chymase activation correlates to LA fibrosis, LA enlargement, and a decreased total LA emptying fraction in addition to having a potential intracellular role in mediating myofibrillar breakdown in LA myocytes. Because of the unreliability of the left ventricular ejection fraction in predicting outcomes in MR, LA size and the total LA emptying fraction may be more suitable indicators for timing of surgical intervention.
Collapse
Affiliation(s)
- Brittany Butts
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mustafa I Ahmed
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Navkaranbir S Bajaj
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pamela Cox Powell
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Betty Pat
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Silvio Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Himanshu Gupta
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
- Department of Cardiology, Valley Health System, Paramus, New Jersey
| | - Steven G Lloyd
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University School of Engineering, Auburn, Alabama
| | - Xiaoxia Zhang
- Department of Electrical and Computer Engineering, Auburn University School of Engineering, Auburn, Alabama
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sakthivel Sadayappan
- Division of Cardiovascular Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James W McNamara
- Division of Cardiovascular Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael J Watson
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Clifton Lewis
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - James E Davies
- Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
9
|
Mitry MA, Laurent D, Keith BL, Sira E, Eisenberg CA, Eisenberg LM, Joshi S, Gupte S, Edwards JG. Accelerated cardiomyocyte senescence contributes to late-onset doxorubicin-induced cardiotoxicity. Am J Physiol Cell Physiol 2020; 318:C380-C391. [PMID: 31913702 DOI: 10.1152/ajpcell.00073.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Children surviving cancer and chemotherapy are at risk for adverse health events including heart failure that may be delayed by years. Although the early effects of doxorubicin-induced cardiotoxicity may be attributed to a direct effect on the cardiomyocytes, the mechanisms underlying the delayed or late effects (8-20 yr) are unknown. The goal of this project was to develop a model of late-onset doxorubicin-induced cardiotoxicity to better delineate the underlying pathophysiology responsible. The underlying hypothesis was that doxorubicin-induced "late-onset cardiotoxicity" was the result of mitochondrial dysfunction leading to cell failure and death. Wistar rats, 3-4 wk of age, were randomly assigned to vehicle or doxorubicin injection groups (1-45 mg/kg). Cardiovascular function was unaltered at the lower dosages (1-15 kg/mg), but beginning at 6 mo after injection significant cardiac degradation was observed in the 45 mg/kg group. Doxorubicin significantly increased myocardial mitochondrial DNA (mtDNA) damage. In contrast, in isolated c-kit left ventricular (LV) cells, doxorubicin treatment did not increase mtDNA damage. Biomarkers of senescence within the LV were significantly increased, suggesting accelerated aging of the LV. Doxorubicin also significantly increased LV histamine content suggestive of mast cell activation. With the use of flow cytometry, a significant expansion of the c-kit and stage-specific embryonic antigen 1 cell populations within the LV were concomitant with significant decreases in the circulating peripheral blood population of these cells. These results are consistent with the concept that doxorubicin induced significant damage to the cardiomyocyte population and that although the heart attempted to compensate it eventually succumbed to an inability for self-repair.
Collapse
Affiliation(s)
- Maria A Mitry
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dimitri Laurent
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Britny L Keith
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Elizabeth Sira
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Carol A Eisenberg
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | - Sachindra Joshi
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
10
|
Reyes S, Cheng CP, Roberts DJ, Yamashita T, Ahmad S, VonCannon JL, Wright KN, Dell'Italia LJ, Varagic J, Ferrario CM. Angiotensin-(1-12)/chymase axis modulates cardiomyocyte L-type calcium currents in rats expressing human angiotensinogen. Int J Cardiol 2019; 297:104-110. [PMID: 31629566 PMCID: PMC6939452 DOI: 10.1016/j.ijcard.2019.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Activation of the intracrine renin angiotensin systems (RAS) is increasingly recognized as contributing to human pathologies, yet non-canonical renin-independent mechanisms for angiotensin II (Ang II) biosynthesis remain controversial. Direct Ang II generation from angiotensin-(1-12) [Ang-(1-12)] by chymase is an essential intracrine source for regulation of cardiac function. Using a transgenic rat model that overexpresses the human angiotensinogen gene [TGR(hAGT)L1623] and displays increased cardiac Ang II levels, this study aimed to provide evidence for intracrine activation of L-type calcium currents (ICa-L) mediated by the Ang-(1-12)/chymase axis. METHODS AND RESULTS On patch clamp, ICa-L density was significantly higher in TGR(hAGT)L1623 (-6.4 ± 0.3 pA/pF) compared to Sprague Dawley (SD) cardiomyocytes (-4.8, ± 0.5 pA/pF). Intracellular administration of Ang II and Ang-(1-12) elicited a ICa-L increase in both SD and TGR(hAGT)L1623 cardiomyocytes, albeit blunted in transgenic cells. ICa-L activation by intracellular Ang II and Ang-(1-12) was abolished by the specific Ang II type 1 receptor blocker E-3174. Co-administration of a chymase inhibitor prevented activation of ICa-L by Ang-(1-12). Confocal micrographs revealed abundant chymase (mast cell protease 5) immunoreactive protein in SD and TGR(hAGT)L1623 cardiomyocytes. CONCLUSIONS Our data demonstrate the existence in cardiomyocytes of a calcium channel modulatory activity responsive to Ang II generated by the Ang-(1-12)/chymase axis that signals via intracellular receptors. Chronically elevated Ang II in TGR(hAGT)L1623 hearts leading to increased intracellular calcium through ICa-L suggests that activation of this Ang-(1-12)/chymase-governed cardiac intracrine RAS may contribute to the pathological phenotypes observed in the humanized model of chronic hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Santiago Reyes
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Drew J Roberts
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tomohisa Yamashita
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Louis J Dell'Italia
- Birmingham Veteran Affairs Medical Center and Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jasmina Varagic
- Department of Surgery and Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carlos M Ferrario
- Departments of Surgery, Physiology and Pharmacology, and Social Sciences, Division of Public Health, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
11
|
Ferrario CM, VonCannon J, Ahmad S, Wright KN, Roberts DJ, Wang H, Yamashita T, Groban L, Cheng CP, Collawn JF, Dell'Italia LJ, Varagic J. Activation of the Human Angiotensin-(1-12)-Chymase Pathway in Rats With Human Angiotensinogen Gene Transcripts. Front Cardiovasc Med 2019; 6:163. [PMID: 31803758 PMCID: PMC6872498 DOI: 10.3389/fcvm.2019.00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Angiotensin-(1-12) [Ang-(1-12)], an alternate substrate for tissue angiotensin II (Ang II) formation, underscores the importance of alternative renin-independent pathway(s) for the generation of angiotensins. Since renin enzymatic activity is species-specific, a transgenic model of hypertension due to insertion of the human angiotensinogen (AGT) gene in Sprague Dawley rats allowed for characterizing the contribution of a non-renin dependent mechanism for Ang II actions in their blood and heart tissue. With this in mind, we investigated whether TGR(hAGT)L1623 transgenic rats express the human sequence of Ang-(1-12) before and following a 2-week oral therapy with the type I Ang II receptor (AT1-R) antagonist valsartan. Plasma and cardiac expression of angiotensins, plasma renin activity, cardiac angiotensinogen, and chymase protein and the enzymatic activities of chymase, angiotensin converting enzyme (ACE) and ACE2 were determined in TGR(hAGT)L1623 rats given vehicle or valsartan. The antihypertensive effect of valsartan after 14-day treatment was associated with reduced left ventricular wall thickness and augmented plasma concentrations of angiotensin I (Ang I) and Ang II; rat and human concentrations of angiotensinogen or Ang-(1-12) did not change. On the other hand, AT1-R blockade produced a 55% rise in left ventricular content of human Ang-(1-12) concentration and no changes in rat cardiac Ang-(1-12) levels. Mass-Spectroscopy analysis of left ventricular Ang II content confirmed a >4-fold increase in cardiac Ang II content in transgenic rats given vehicle; a tendency for decreased cardiac Ang II content following valsartan treatment did not achieve statistical significance. Cardiac chymase and ACE2 activities, significantly higher than ACE activity in TGR(hAGT)L1623 rats, were not altered by blockade of AT1-R. We conclude that this humanized model of angiotensinogen-dependent hypertension expresses the human sequence of Ang-(1-12) in plasma and cardiac tissue and responds to blockade of AT1-R with further increases in the human form of cardiac Ang-(1-12). Since rat renin has no hydrolytic activity on human angiotensinogen, the study confirms and expands knowledge of the importance of renin-independent mechanisms as a source for Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Social Science and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jessica VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Drew J Roberts
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hao Wang
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Tomohisa Yamashita
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leanne Groban
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Che Ping Cheng
- Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|