1
|
Cao H, Huang Z, Hu X, Zhang X, Makunga NP, Zhao H, Du L, Guo L, Ren Y. Structural insight into the unexploited allosteric binding site of fructose 1, 6-bisphosphate aldolase from C. albicans with α-lipoic acid. Int J Biol Macromol 2025; 309:143096. [PMID: 40222520 DOI: 10.1016/j.ijbiomac.2025.143096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The rising incidence of drug-resistant fungal infections underscores the urgent need for innovative therapeutic strategies. However, developing selective treatments remains a formidable challenge due to the similarities between humans and fungal cells. Class II fructose 1,6-bisphosphate aldolase (FBA) represents an attractive pharmacological target for the development of antifungal agents due to its crucial role in microbial survival and its absence in human. In this work, we identified α-lipoic acid (ALA), a naturally occurring compound, as a novel inhibitor of C. albicans FBA (CaFBA). The co-crystallography, enzyme inhibition assays, and site-directed mutagenesis revealed that ALA acts as a non-covalent inhibitor, binding to an unexploited allosteric site on CaFBA, distinct from the previously reported substrate-binding pocket or C292 covalent binding site. Notably, ALA selectively inhibits CaFBA, likely due to the non-conservation of the allosteric binding site, particularly S268, across species. The synergistic inhibition of C. albicans by ALA and amphotericin B highlights its therapeutic potential as part of a combined antifungal strategy. In summary, this study provides a structural basis for the design and optimization of novel CaFBA inhibitors, enhancing our understanding of FBA's role in fungal growth and establishing a foundation for developing effective antifungal therapeutics against C. albicans.
Collapse
Affiliation(s)
- Hongxuan Cao
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zeyue Huang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiuqi Hu
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao Zhang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nokwanda P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Hui Zhao
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Liji Du
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China.
| | - Yanliang Ren
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Siswina T, Rustama MM, Sumiarsa D, Apriyanti E, Dohi H, Kurnia D. Antifungal Constituents of Piper crocatum and Their Activities as Ergosterol Biosynthesis Inhibitors Discovered via In Silico Study Using ADMET and Drug-Likeness Analysis. Molecules 2023; 28:7705. [PMID: 38067436 PMCID: PMC10708292 DOI: 10.3390/molecules28237705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Along with the increasing resistance of Candida spp. to some antibiotics, it is necessary to find new antifungal drugs, one of which is from the medicinal plant Red Betel (Piper crocatum). The purpose of this research is to isolate antifungal constituents from P. crocatum and evaluate their activities as ergosterol biosynthesis inhibitors via an in silico study of ADMET and drug-likeness analysis. Two new active compounds 1 and 2 and a known compound 3 were isolated, and their structures were determined using spectroscopic methods, while their bioactivities were evaluated via in vitro and in silico studies, respectively. Antifungal compound 3 was the most active compared to 1 and 2 with zone inhibition values of 14.5, 11.9, and 13.0 mm, respectively, at a concentration of 10% w/v, together with MIC/MFC at 0.31/1.2% w/v. Further in silico study demonstrated that compound 3 had a stronger ΔG than the positive control and compounds 1 and 2 with -11.14, -12.78, -12.00, and -6.89 Kcal/mol against ERG1, ERG2, ERG11, and ERG24, respectively, and also that 3 had the best Ki with 6.8 × 10-3, 4 × 10-4, 1.6 × 10-3, and 8.88 μM. On the other hand, an ADMET analysis of 1-3 met five parameters, while 1 had one violation of Ro5. Based on the research data, the promising antifungal constituents of P. crocatum allow P. crocatum to be proposed as a new antifungal candidate to treat and cure infections due to C. albicans.
Collapse
Affiliation(s)
- Tessa Siswina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
- Department of Midwifery, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Mia Miranti Rustama
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Eti Apriyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Hirofumi Dohi
- Graduate School of Horticulture, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan;
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| |
Collapse
|
3
|
Organophosphorus Azoles Incorporating a Tetra-, Penta-, and Hexacoordinated Phosphorus Atom: NMR Spectroscopy and Quantum Chemistry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020669. [PMID: 36677725 PMCID: PMC9862086 DOI: 10.3390/molecules28020669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The review presents extensive data (from the author's work and the literature) on the stereochemical structure of functionalized organophosphorus azoles (pyrroles, pyrazoles, imidazoles and benzazoles) and related compounds, using multinuclear 1H, 13C, 31P NMR spectroscopy and quantum chemistry. 31P NMR spectroscopy, combined with high-level quantum-chemical calculations, is the most convenient and reliable approach to studying tetra-, penta-, and hexacoordinated phosphorus atoms of phosphorylated N-vinylazoles and evaluating their Z/E isomerization.
Collapse
|
4
|
Zhuravleva PA, Kolina AI, Svintsitskaya NI, Dogadina AV. Synthesis of New 2-Aryl-4-[1,2-bis(dialkoxyphosphoryl)vinyl]-5-ethoxy-1,3-oxazoles. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
6
|
Metelytsia LO, Trush MM, Kovalishyn VV, Hodyna DM, Kachaeva MV, Brovarets VS, Pilyo SG, Sukhoveev VV, Tsyhankov SA, Blagodatnyi VM, Semenyuta IV. 1,3-Oxazole derivatives of cytisine as potential inhibitors of glutathione reductase of Candida spp.: QSAR modeling, docking analysis and experimental study of new anti-Candida agents. Comput Biol Chem 2021; 90:107407. [DOI: 10.1016/j.compbiolchem.2020.107407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
|
7
|
Semenyuta IV, Trush MM, Kovalishyn VV, Rogalsky SP, Hodyna DM, Karpov P, Xia Z, Tetko IV, Metelytsia LO. Structure-Activity Relationship Modeling and Experimental Validation of the Imidazolium and Pyridinium Based Ionic Liquids as Potential Antibacterials of MDR Acinetobacter Baumannii and Staphylococcus Aureus. Int J Mol Sci 2021; 22:ijms22020563. [PMID: 33429999 PMCID: PMC7827895 DOI: 10.3390/ijms22020563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = 0.66 - 0.79 with cross-validation and independent test sets. The models were used to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected, synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates.
Collapse
Affiliation(s)
- Ivan V. Semenyuta
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Maria M. Trush
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Vasyl V. Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Sergiy P. Rogalsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Diana M. Hodyna
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| | - Pavel Karpov
- Institute of Structural Biology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (P.K.); (Z.X.)
| | - Zhonghua Xia
- Institute of Structural Biology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (P.K.); (Z.X.)
| | - Igor V. Tetko
- Institute of Structural Biology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (P.K.); (Z.X.)
- BIGCHEM GmbH, Unterschleißheim, Valerystr. 49, D-85716 Neuherberg, Germany
- Correspondence: ; Tel.: +49-89-3187-3575
| | - Larisa O. Metelytsia
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660 Kyiv, Ukraine; (I.V.S.); (M.M.T.); (V.V.K.); (S.P.R.); (D.M.H.); (L.O.M.)
| |
Collapse
|
8
|
Selection of potential anti-adhesion drugs by in silico approaches targeted to ALS3 from Candida albicans. Biotechnol Lett 2019; 41:1391-1401. [DOI: 10.1007/s10529-019-02747-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022]
|