1
|
Gutiérrez-Hernández ID, Rodríguez-Antolín J, Cervantes-Rodríguez M, Díaz R, Díaz-Godínez G. Antihyperlipidemic Effect of Oyster Culinary-Medicinal Mushroom Pleurotus ostreatus (Agaricomycetes) Extract in Rats with Postnatal Sucrose Consumption Whose Mothers Also Consumed Sucrose. Int J Med Mushrooms 2025; 27:39-51. [PMID: 39912606 DOI: 10.1615/intjmedmushrooms.2024057783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Male offspring of rats whose mothers consumed sucrose (5% solution) during gestation and lactation were also given the sucrose solution instead of drinking water for 3 months, and subsequently, for 1 month, they were given an aqueous extract obtained from dehydrated fruiting bodies of Pleurotus ostreatus. The offspring that consumed sucrose (experimental group) did not show differences in body weight compared with those that did not consume sucrose (control group), however, total adiposity was higher in the experimental group. In rats that consumed the aqueous extract, a decrease in the amount of cholesterol and triglycerides in blood plasma was observed, total adiposity also decreased and the average size of adipocytes in the visceral area was reduced. Consumption of the aqueous extract of P. ostreatus showed an antihyperlipidemic effect when triglyceride, cholesterol and adipose tissue levels were increased by the consumption of sucrose in rats descended from mothers who also consumed sucrose.
Collapse
Affiliation(s)
- Itzel Daysi Gutiérrez-Hernández
- Master in Biological Sciences, Autonomous University of Tlaxcala, Tlaxcala, Mexico; University Health Complex, Teziutlan Headquarters, Autonomous University of Puebla, Puebla, Mexico
| | | | | | - Rubén Díaz
- Research Center for Biological Sciences, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | | |
Collapse
|
2
|
Lumbanraja MP, Anggadiredja K, Kurniati NF, Muhammad HN. Pandanus amaryllifoius Roxb. Leaves Ethanol Extract Ameliorates Lipid and Proinflammatory Cytokines Profiles in a Rat Model of Dyslipidemia. J Pharmacopuncture 2024; 27:101-109. [PMID: 38948314 PMCID: PMC11194525 DOI: 10.3831/kpi.2024.27.2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/10/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Dyslipidemia has currently become a major health challenge that still opens for safer and more effective modes of treatment. The plant Pandanus amaryllifolius Roxb. (pandan) has been indicated to contain active ingredients that interfere with the pathological pathway of dyslipidemia. The aim of the study was to test the effects of pandan leaves ethanol extract on lipid and proinflammatory profiles in a rat dyslipidemic model. Methods Dyslipidemia was induced by administration of high-fat feed for 8 weeks. Treatments (vehicle, the reference drug simvastatin at 1.8 mg/kg, and extract at 200, 300 or 600 mg/kg) were given for 4 weeks following the completion of induction. Results Significant post-treatment decreases in total cholesterol, low density lipoprotein (LDL), and triglyceride levels in groups receiving all doses of extract and simvastatin were observed. Similar results were also found in regards to proinflammatory cytokines levels. Pandan extracts significantly lowered the concentrations of IL-6, TNF-α, and NFκB p65. Characterization of metabolite contents of the extract confirmed the presence of the previously suggested active alkaloids pandamarilactonine-A and B. Conclusion Taken together, results of the present study implied the ameliorating effects of pandan leaves ethanol extract in dyslipidemic condition which is potential for opening an avenue in combating this essential component of metabolic disorder.
Collapse
Affiliation(s)
- Martohap Parotua Lumbanraja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Kusnandar Anggadiredja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Neng Fisheri Kurniati
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Hubbi Nashrullah Muhammad
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
3
|
Sangande F, Agustini K, Budipramana K. Antihyperlipidemic mechanisms of a formula containing Curcuma xanthorrhiza, Sechium edule, and Syzigium polyanthum: In silico and in vitro studies. Comput Biol Chem 2023; 105:107907. [PMID: 37392529 DOI: 10.1016/j.compbiolchem.2023.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Herbal medicines are multi-component and can exhibit synergistic effects in the treatment of diseases. Sechium edule, Syzigium polyanthum, and Curcuma xanthorrhiza have been used in traditional medicine to reduce serum lipid levels. However, the molecular mechanism was not described clearly, especially as a mixture. Thus, we performed a network pharmacology study combined with molecular docking to find a rational explanation regarding the molecular mechanisms of this antihyperlipidemic formula. According to the network pharmacology study, we predicted that this extract mixture would act as an antihyperlipidemic agent by modulating several pathways including insulin resistance, endocrine resistance, and AMP-activated protein kinase (AMPK) signaling pathway. Based on the topology parameters, we identified 6 significant targets that play an important role in reducing lipid serum levels: HMG-CoA reductase (HMGCR), peroxisome proliferator-activated receptor alpha (PPARA), RAC-alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), matrix metalloproteinase-9 (MMP9), and tumor necrosis factor-alpha (TNF). Meanwhile, 8 compounds: β-sitosterol, bisdesmethoxycurcumin, cucurbitacin D, cucurbitacin E, myricetin, phloretin, quercitrin, and rutin were the compounds with a high degree, indicating that these compounds have a multitarget effect. Our consensus docking study revealed that HMGCR was the only protein targeted by all potential compounds, and rutin was the compound with the best consensus docking score for almost all targets. The in vitro study revealed that the extract combination could inhibit HMGCR with an IC50 value of 74.26 µg/mL, indicating that HMGCR inhibition is one of its antihyperlipidemic mechanisms.
Collapse
Affiliation(s)
- Frangky Sangande
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor 16915, Indonesia.
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor 16915, Indonesia
| | - Krisyanti Budipramana
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
4
|
Tiwari P, Mishra R, Mazumder A, Mazumder R, Singh A. An Insight into Diverse Activities and Targets of Flavonoids. Curr Drug Targets 2023; 24:89-102. [PMID: 36111764 DOI: 10.2174/1389450123666220915121236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoids belong to the chemical class of polyphenols and are in the category of secondary metabolites imparting a wide protective effect against acute and chronic diseases. OBJECTIVE The study aims to investigate and summarize the information of various flavonoids extracted, isolated from various sources, and possess different pharmacological properties by acting on multiple targets. METHODS This comprehensive review summarizes the research information related to flavonoids and their pharmacological action targets from various sources like PubMed, Google Scholar and Google websites. RESULTS Extracted information in the paper discusses various therapeutic effects of flavonoids isolated from medicinal plant sources, which have the property to inhibit several enzymes, which finally results in health benefits like anti-cancer, anti-bacterial, antioxidant, anti-allergic, and anti-viral effects. This study also showed the different solvents and methods involved in the extraction and characterization of the isolated phytochemical constituents. CONCLUSION The findings showed the contribution of several flavonoids in the management and inhibition of various acute and chronic sicknesses by acting on different sites in the body. This study may lead to gaining interest for more research on the bioactives of different medicinal plants for the discovery of new lead compounds or further improvement of the efficacy of the existing compound.
Collapse
Affiliation(s)
- Prashant Tiwari
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| | - Ayushi Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Falade AO, Adewole KE, Adekola ARO, Ikokoh HA, Okaiyeto K, Oguntibeju OO. Aqueous extract of bay leaf ( Laurus nobilis) ameliorates testicular toxicity induced by aluminum chloride in rats. Vet World 2022; 15:2525-2534. [PMID: 36590130 PMCID: PMC9798052 DOI: 10.14202/vetworld.2022.2525-2534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
Background and Aim Human exposure to aluminum is inevitable, and one of the most adverse health effects of aluminum is a decrease in male fertility rates. Therefore, this study investigated the ameliorative effects of an aqueous extract from Laurus nobilis-bay leaf (BL) on aluminum chloride (AlCl3)-induced testicular toxicity in rats. Materials and Methods Twenty-four Wistar rats were divided into four groups (n = 6, each group): The control (group 1) received normal saline; Group 2 animals were intraperitoneally administered with 30 mg/kg body weight (BW) AlCl3; and Groups 3 and 4 were co-administered AlCl3 with 125 or 250 mg/kg BW of BL extract, respectively, for 21 days. Testes, epididymis, and blood samples were collected. Testicular plasma enzyme activity was measured using a spectrophotometric assay, while concentrations of inflammatory biomarkers were determined using enzyme-linked immunosorbent assay kits. Results There was a significant increase (p < 0.05) in testicular enzyme activity in the group treated with AlCl3. However, there was no significant (p > 0.05) difference in testicular enzyme activity in groups co-administered AlCl3 and BL extract as compared with that in control. There was a significant (p < 0.05) increase in testicular nitrite concentration in the AlCl3-treated group, whereas the administration of BL extract significantly (p < 0.05) decreased nitrite concentration in Groups 3 and 4. Furthermore, the administration of BL extracts increased sperm count and improved the morphology of the testes in AlCl3-treated rats. Flavonoids, phenolic compounds, alkaloids, tannin, glycosides, saponin, anthraquinones, and steroids were identified in BL extract, with alkaloids and glycosides being the most abundant. Conclusion Aqueous extract from BL ameliorated the toxic effect of AlCl3 and exhibited anti-inflammatory properties by inhibiting nitrite production while improving sperm count and morphology in AlCl3-treated rats. The bioactivity of the extract may be attributed to the presence of a wide range of phytochemicals. Therefore, BL aqueous extract could be a promising source of novel compounds with male fertility-promoting and anti-inflammatory properties.
Collapse
Affiliation(s)
- Ayodeji O. Falade
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria,Corresponding author: Ayodeji O. Falade, e-mail: Co-authors: KEA: , AOA: , HAI: , KO: , OOO:
| | - Kayode E. Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
| | - Abdul-Rahman O. Adekola
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
| | - Hilary A. Ikokoh
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
| | - Kunle Okaiyeto
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Oluwafemi O. Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
6
|
Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S, Gupta G, Hansbro PM, Oliver BG, Madheswaran T, Dua K, Chellappan DK. Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases. Nutrients 2022; 14:3828. [PMID: 36145202 PMCID: PMC9503475 DOI: 10.3390/nu14183828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara 144411, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Atal Nagar 174103, India
| | - Sonia Saad
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
7
|
Zhou L, Li H, Hou G, Wang J, Zhou H, Wang D. Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler. Animals (Basel) 2022; 12:ani12131661. [PMID: 35804560 PMCID: PMC9265100 DOI: 10.3390/ani12131661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of vine tea (Ampelopsis grossedentata) extract (AGE) on meat quality, gut microbiota and cecal content metabolites of Wenchang broilers. A total of 240 female Wenchang broilers aged 70 days were randomly allocated into four groups with five replicates of twelve broilers each. Broilers were fed a corn-soybean basal diet supplemented with AGE at 0 (T1), 0.2% (T2), 0.4% (T3) and 0.6% (T4) until 124 days of age. The whole feeding trial lasted 54 days. Results suggest that the content of total triglycerides and low-density lipoprotein cholesterol in serum of broilers are linearly reduced with dietary AGE supplementation (p < 0.05). The T3 and T4 groups had higher (p < 0.05) a* value in thigh and breast muscles than the T1 group. Additionally, the dietary supplementation of AGE decreased the shear force and drip loss of both thigh and breast muscles linearly (p < 0.05). Compared with the T1 group, AGE supplementation increased the levels of inosine monophosphate (IMP) significantly (p < 0.05) in both the thigh and breast muscles. Furthermore, an increase (p < 0.05) in the total unsaturated fatty acid (USFA), polyunsaturated fatty acids (PUFA) and the ratio of unsaturated fatty acids to saturated fatty acid (USFA: SFA) in both the thigh and breast muscles in the T3 group was observed. Higher abundance of Bacteroidota (p < 0.05) and lower abundance of Firmicutes (p < 0.05) were observed in the T3 group. The abundance of Faecalibacterium was significantly decreased (p < 0.05) in the T3 group compared with the T1 group. Cholesterol sulfate and p-cresol sulfate were identified as differential metabolites between the T1 and T3 groups. It suggested that 0.4% of AGE supplementation significantly downregulated the levels of p-cresol sulfate and cholesterol sulfate (p < 0.05) and the hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity compared with the control. Our present study demonstrates that dietary supplementation with AGE can improve the quality and flavor by increasing the IMP and PUFA content in the muscle of Wenchang broilers. Furthermore, dietary AGE supplementation with 0.4% can regulate the cholesterol metabolism of Wenchang broilers.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
| | - Hui Li
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (H.L.); (J.W.)
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
| | - Jian Wang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (H.L.); (J.W.)
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Correspondence: (H.Z.); (D.W.)
| | - Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
- Correspondence: (H.Z.); (D.W.)
| |
Collapse
|
8
|
Simorangkir M, Silaban S, Roza D. Anticholesterol activity of ethanol extract of Ranti Hitam (Solanum blumei Nees ex Blume) Leaves: In vivo and In silico study. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e84913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ranti Hitam known as local name of (Solanum blumei Nees ex Blume) found in the Dairi, Sumatera Utara, Indonesia. It is used by the community as traditional medicine which contains of various phytochemical constituent of steroidal alkaloids of β2-solanin, diosgenin, flavonoids, saponins and tannins. The purpose of the study was to investigate the anticholesterol activity of the ethanol extract of (Solanum blumei Nees ex Blume) by in vivo and insilico methods. A number of 15 rats were divided into 5 treatment groups as in vivo high fat diet model, otherwise insilico study was carried out to determine the activity of main compound of S. blumei in inhibiting HMG Co-A reductase. The bioactive compounds of S. blumei, diosgenin (C26H39O4) and β2-solanine (C39H63NO11) showed inhibition activity to HMG-CoA reductase by in silico and invivo test and it was indicated that 2 bioactive compounds of S. blumei had anticholesterol activity.
Collapse
|
9
|
Amir Rawa MS, Mazlan MKN, Ahmad R, Nogawa T, Wahab HA. Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer's Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:1476. [PMID: 35684249 PMCID: PMC9183156 DOI: 10.3390/plants11111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) causes progressive memory loss and cognitive dysfunction. It is triggered by multifaceted burdens such as cholinergic toxicity, insulin resistance, neuroinflammation, and oxidative stress. Syzygium plants are ethnomedicinally used in treating inflammation, diabetes, as well as memory impairment. They are rich in antioxidant phenolic compounds, which can be multi-target neuroprotective agents against AD. This review attempts to review the pharmacological importance of the Syzygium genus in neuroprotection, focusing on anti-cholinesterase, anti-diabetic, anti-inflammatory, and antioxidant properties. Articles published in bibliographic databases within recent years relevant to neuroprotection were reviewed. About 10 species were examined for their anti-cholinesterase capacity. Most studies were conducted in the form of extracts rather than compounds. Syzygium aromaticum (particularly its essential oil and eugenol component) represents the most studied species owing to its economic significance in food and therapy. The molecular mechanisms of Syzygium species in neuroprotection include the inhibition of AChE to correct cholinergic transmission, suppression of pro-inflammatory mediators, oxidative stress markers, RIS production, enhancement of antioxidant enzymes, the restoration of brain ions homeostasis, the inhibition of microglial invasion, the modulation of ß-cell insulin release, the enhancement of lipid accumulation, glucose uptake, and adiponectin secretion via the activation of the insulin signaling pathway. Additional efforts are warranted to explore less studied species, including the Australian and Western Syzygium species. The effectiveness of the Syzygium genus in neuroprotective responses is markedly established, but further compound isolation, in silico, and clinical studies are demanded.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Mohd Khairul Nizam Mazlan
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Rosliza Ahmad
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Technology Platform Division, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
10
|
Ullah H, Sommella E, Santarcangelo C, D’Avino D, Rossi A, Dacrema M, Minno AD, Di Matteo G, Mannina L, Campiglia P, Magni P, Daglia M. Hydroethanolic Extract of Prunus domestica L.: Metabolite Profiling and In Vitro Modulation of Molecular Mechanisms Associated to Cardiometabolic Diseases. Nutrients 2022; 14:340. [PMID: 35057523 PMCID: PMC8778072 DOI: 10.3390/nu14020340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
High consumption of fruit and vegetables has an inverse association with cardiometabolic risk factors. This study aimed to chemically characterize the hydroethanolic extract of P. domestica subsp. syriaca fruit pulp and evaluate its inhibitory activity against metabolic enzymes and production of proinflammatory mediators. Ultra-high-performance liquid chromatography high-resolution mass spectrometry(UHPLC-HRMS) analysis showed the presence of hydroxycinnamic acids, flavanols, and glycoside flavonols, while nuclear magnetic resonance(NMR) analysis showed, among saccharides, an abundant presence of glucose. P. domestica fruit extract inhibited α-amylase, α-glucosidase, pancreatic lipase, and HMG CoA reductase enzyme activities, with IC50 values of 7.01 mg/mL, 6.4 mg/mL, 6.0 mg/mL, and 2.5 mg/mL, respectively. P. domestica fruit extract inhibited lipopolysaccharide-induced production of nitrite, interleukin-1 β and PGE2 in activated J774 macrophages. The findings of the present study indicate that P. domestica fruit extracts positively modulate in vitro a series of molecular mechanisms involved in the pathophysiology of cardiometabolic diseases. Further research is necessary to better characterize these properties and their potential application for human health.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; (E.S.); (P.C.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Danilo D’Avino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Antonietta Rossi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, RM, Italy; (G.D.M.); (L.M.)
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, RM, Italy; (G.D.M.); (L.M.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; (E.S.); (P.C.)
- European Biomedical Research Institute of Salerno, Via De Renzi 50, 84125 Salerno, SA, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, MI, Italy
- IRCCS MultiMedica, Sesto San Giovanni, 20099 Milan, MI, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, NA, Italy; (H.U.); (C.S.); (D.D.); (A.R.); (M.D.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Ahmad A, Abdullah SRS, Hasan HA, Othman AR, Ismail N'I. Potential of local plant leaves as natural coagulant for turbidity removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2579-2587. [PMID: 34374006 DOI: 10.1007/s11356-021-15541-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The performance of local plants was tested using synthetic turbid water resembling real wastewater by measuring their ability to remove turbidity. The selected plants were A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta, P. sarmentosum, and M. malabathricum which can easily be found locally. The experiment was run based on coagulant dosages varied from 0 to 10 g/L for each plant with a rapid mixing speed at 180 rpm for 3 min, slow mixing speed at 10 rpm for 20 min, and settling time for 30 min. The results demonstrated that each plant has been capable of reducing turbidity by different amounts, with an increase in the coagulant dosage. The optimum coagulant dosages achieved for A. indica, S. palustris, S. polyanthum, and D. linearis were 10 g/L with turbidity removal at 26.9%, 24.9%, 24.9%, and 17.5%, respectively. P. sarmentosum and M. esculenta attained optimum coagulant dosages at 5 g/L with turbidity removal at 24.2% and 22.2%, and lastly M. malabathricum at 0.1 g/L (12.2%). P. sarmentosum was suggested to the best natural coagulant which achieved the highest removal of turbidity with a low dosage used.
Collapse
Affiliation(s)
- Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100, Putrajaya, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
Gesto DS, Pereira CMS, Cerqueira NMFS, Sousa SF. An Atomic-Level Perspective of HMG-CoA-Reductase: The Target Enzyme to Treat Hypercholesterolemia. Molecules 2020; 25:molecules25173891. [PMID: 32859023 PMCID: PMC7503714 DOI: 10.3390/molecules25173891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
This review provides an updated atomic-level perspective regarding the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), linking the more recent data on this enzyme with a structure/function interpretation. This enzyme catalyzes one of the most important steps in cholesterol biosynthesis and is regarded as one of the most important drug targets in the treatment of hypercholesterolemia. Taking this into consideration, we review in the present article several aspects of this enzyme, including its structure and biochemistry, its catalytic mechanism and different reported and proposed approaches for inhibiting this enzyme, including the commercially available statins or the possibility of using dimerization inhibitors.
Collapse
Affiliation(s)
- Diana S. Gesto
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Carlos M. S. Pereira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
| | - Nuno M. F. S. Cerqueira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.M.S.P.); (N.M.F.S.C.)
- Correspondence:
| |
Collapse
|