1
|
Khalatbary M, Sayadi MH, Hajiani M, Nowrouzi M, Homaeigohar S. Green, Sustainable Synthesis of γ-Fe 2O 3/MWCNT/Ag Nano-Composites Using the Viscum album Leaf Extract and Waste Car Tire for Removal of Sulfamethazine and Bacteria from Wastewater Streams. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162798. [PMID: 36014663 PMCID: PMC9412352 DOI: 10.3390/nano12162798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/02/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) decorated with Ag nanoparticles (NPs) are bifunctional adsorbent nanomaterials with antibacterial activity. They can be magnetically recovered from wastewater in case of coupling with γ-Fe2O3. In this study, for the first time, an environmentally friendly technique was applied to prepare a nanocomposite (NC) material composed of γ-Fe2O3/MWCNT/Ag by using Bridgestone disposable tires and Viscum album leaves extract. γ-Fe2O3/MWCNTs/Ag NC was employed for the removal of sulfamethazine (SMT) from aqueous solutions. Under the optimized conditions determined via the Taguchi method, the highest SMT adsorption capacity of the γ-Fe2O3/MWCNT/Ag NC was measured to be 47.6 mg/g. The experimental data fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm. The thermodynamic parameters implied that the adsorption process was endothermic. In addition to adsorption of the drug pollutant, the NC demonstrated a superior antibacterial activity against Gram-positive bacteria. The reusability test also showed that over 79% SMT can be removed using γ-Fe2O3/MWCNTs/Ag NC even after four adsorption cycles. Taken together, γ-Fe2O3/MWCNTs/Ag NC was proven to be a promising antibacterial nano-adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Mansooreh Khalatbary
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand P.O. Box 97175/615, Iran
| | - Mohammad Hossein Sayadi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand P.O. Box 97175/615, Iran
| | - Mahmood Hajiani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand P.O. Box 97175/615, Iran
| | - Mohsen Nowrouzi
- Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169-13798, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
2
|
Yan W, Zhang D, Liu X, Chen X, Yang C, Kang Z. Guar Gum/Ethyl Cellulose-Polyvinyl Pyrrolidone Composite-Based Quartz Crystal Microbalance Humidity Sensor for Human Respiration Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31343-31353. [PMID: 35786849 DOI: 10.1021/acsami.2c08434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, the guar gum (GG) and the electrospinned ethyl cellulose-polyvinyl pyrrolidone (EC-PVP) nanofibers were used as humidity-sensitive materials for fabricating a quartz crystal microbalance (QCM) sensor. Fourier transform infrared spectroscopy, scanning electron microscopy, water contact angle test, and X-ray photoelectron spectra were used to characterize the synthesized GG/EC-PVP composite material, confirming its successful preparation and good hydrophilicity. The humidity sensitivity experiments were performed at room temperature. The GG/EC-PVP-coated QCM sensor has high sensitivity (55.72 Hz/%RH) and low hysteresis (2.8% RH) in a wide relative humidity range (0-97% RH), short response/recovery time (26/2 s), excellent selectivity, good repeatability, and stability. The combined action of hydrophilic groups and porous structure enhances the humidity sensitivity. The GG/EC-PVP sensor can be used to capture and measure typical breathing patterns in different human basic emotions due to its good performance. Furthermore, a lie-detector system was also designed for judging the lying through detecting the emotional breathing pattern of the subjects.
Collapse
Affiliation(s)
- Weiyu Yan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaohua Liu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhanjia Kang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Egbosiuba TC, Abdulkareem AS, Kovo AS, Afolabi EA, Tijani JO, Bankole MT, Bo S, Roos WD. Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process. Sci Rep 2021; 11:75. [PMID: 33420137 PMCID: PMC7794394 DOI: 10.1038/s41598-020-79857-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
The efficient removal of toxic metals ions from chemical industry wastewater is considered problematic due to the existence of pollutants as mixtures in the aqueous matrix, thus development of advanced and effective treatment method has been identified as a panacea to the lingering problems of heavy metal pollution. In this study, KIAgNPs decorated MWCNTs nano adsorbent was developed using combination of green chemistry protocol and chemical vapor deposition techniques and subsequently characterized using UV-Vis, HRTEM, HRSEM, XRD, FTIR and XPS. The adsorptive efficiency of MWCNTs-KIAgNPs for the removal of Cr(VI), Ni(II), Fe(II), Cd(II) and physico-chemical parameters like pH, TDS, COD, BOD, nitrates, sulphates, chlorides and phosphates from chemical industrial wastewater was examined in both batch and fixed bed systems. The result exhibited successful deposition of KIAgNPs on the surface of MWCNTs as confirmed by the microstructures, morphology, crystalline nature, functional groups and elemental characteristics of the MWCNTs-KIAgNPs. Optimum batch adsorption parameters include; pH (3 for Cr(VI) and 6 for Ni(II), Fe(II) and Cd(II) ions), contact time (60 min), adsorbent dosage (40 mg) and temperature (318 K). The binding capacities were obtained as follows; Cr6+ (229.540 mg/g), Ni2+ (174.784 mg/g), Fe2+ (149.552) and Cd2+ (121.026 mg/g), respectively. Langmuir isotherm and pseudo-second order kinetic model best described the experimental data in batch adsorption, while the thermodynamic parameters validated the chemisorption and endothermic nature of the adsorption process. In continuous adsorption, the metal ions were effectively removed at low metal influent concentration, low flow rate and high bed depth, whereby the experimental data were designated by Thomas model. The high physico-chemical parameters in the wastewater were successfully treated in both batch and fixed bed systems to fall within WHO permissible concentrations. The adsorption/desorption study illustrated over 80% metal removal by MWCNTs-KIAgNPs even after 8th adsorption cycle. This study demonstrated excellent performance of MWCNTs-KIAgNPs for chemical industry wastewater treatment.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria.
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra, Nigeria.
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria.
| | - Ambali Saka Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Abdulsalami Sanni Kovo
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Eyitayo Amos Afolabi
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Mercy Temitope Bankole
- Department of Chemistry, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Shufeng Bo
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Wiets Daniel Roos
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|