1
|
Mo W, Vaiana CA, Myers CJ. The need for adaptability in detection, characterization, and attribution of biosecurity threats. Nat Commun 2024; 15:10699. [PMID: 39702312 PMCID: PMC11659417 DOI: 10.1038/s41467-024-55436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Modern biotechnology necessitates robust biosecurity protocols to address the risk of engineered biological threats. Current efforts focus on screening DNA and rejecting the synthesis of dangerous elements but face technical and logistical barriers. Screening should integrate into a broader strategy that addresses threats at multiple stages of development and deployment. The success of this approach hinges upon reliable detection, characterization, and attribution of engineered DNA. Recent advances notably aid the potential to both develop threats and analyze them. However, further work is needed to translate developments into biosecurity applications. This work reviews cutting-edge methods for DNA analysis and recommends avenues to improve biosecurity in an adaptable manner.
Collapse
Affiliation(s)
- William Mo
- Draper Scholar, The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA, USA
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO, USA
| | - Christopher A Vaiana
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA, USA
| | - Chris J Myers
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO, USA.
| |
Collapse
|
2
|
Israeli O, Guedj-Dana Y, Shifman O, Lazar S, Cohen-Gihon I, Amit S, Ben-Ami R, Paran N, Schuster O, Weiss S, Zvi A, Beth-Din A. Rapid Amplicon Nanopore Sequencing (RANS) for the Differential Diagnosis of Monkeypox Virus and Other Vesicle-Forming Pathogens. Viruses 2022; 14:1817. [PMID: 36016439 PMCID: PMC9416277 DOI: 10.3390/v14081817] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
As of July 2022, more than 16,000 laboratory-confirmed monkeypox (MPX) cases have been reported worldwide. Until recently, MPX was a rare viral disease seldom detected outside Africa. MPX virus (MPXV) belongs to the Orthopoxvirus (OPV) genus and is a genetically close relative of the Variola virus (the causative agent of smallpox). Following the eradication of smallpox, there was a significant decrease in smallpox-related morbidity and the population's immunity to other OPV-related diseases such as MPX. In parallel, there was a need for differential diagnosis between the different OPVs' clinical manifestations and diseases with similar symptoms (i.e., chickenpox, herpes simplex). The current study aimed to provide a rapid genetic-based diagnostic tool for accurate and specific identification of MPXV and additional related vesicle-forming pathogens. We initially assembled a list of 14 relevant viral pathogens, causing infectious diseases associated with vesicles, prone to be misdiagnosed as MPX. Next, we developed an approach that we termed rapid amplicon nanopore sequencing (RANS). The RANS approach uses diagnostic regions that harbor high homology in their boundaries and internal diagnostic SNPs that, when sequenced, aid the discrimination of each pathogen within a group. During a multiplex PCR amplification, a dA tail and a 5'-phosphonate were simultaneously added, thus making the PCR product ligation ready for nanopore sequencing. Following rapid sequencing (a few minutes), the reads were compared to a reference database and the nearest strain was identified. We first tested our approach using samples of known viruses cultured in cell lines. All the samples were identified correctly and swiftly. Next, we examined a variety of clinical samples from the 2022 MPX outbreak. Our RANS approach identified correctly all the PCR-positive MPXV samples and mapped them to strains that were sequenced during the 2022 outbreak. For the subset of samples that were negative for MPXV by PCR, we obtained definite results, identifying other vesicle-forming viruses: Human herpesvirus 3, Human herpesvirus 2, and Molluscum contagiosum virus. This work was a proof-of-concept study, demonstrating the potential of the RANS approach for rapid and discriminatory identification of a panel of closely related pathogens. The simplicity and affordability of our approach makes it straightforward to implement in any genetics lab. Moreover, other differential diagnostics panels might benefit from the implementation of the RANS approach into their diagnostics pipelines.
Collapse
Affiliation(s)
- Ofir Israeli
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Yehoudit Guedj-Dana
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Ohad Shifman
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Shirley Lazar
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Inbar Cohen-Gihon
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Ronen Ben-Ami
- Infectious Diseases Unit Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv P.O. Box 39040, Israel
| | - Nir Paran
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Ofir Schuster
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Shay Weiss
- Departments of Infectious Diseases, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Anat Zvi
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| | - Adi Beth-Din
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research (IIBR), Ness Ziona 74100, Israel
| |
Collapse
|
3
|
Rotem S, Steinberger-Levy I, Israeli O, Zahavy E, Aloni-Grinstein R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms 2021; 9:1535. [PMID: 34361970 PMCID: PMC8304332 DOI: 10.3390/microorganisms9071535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
A bioterror event using an infectious bacterium may lead to catastrophic outcomes involving morbidity and mortality as well as social and psychological stress. Moreover, a bioterror event using an antibiotic resistance engineered bacterial agent may raise additional concerns. Thus, preparedness is essential to preclude and control the dissemination of the bacterial agent as well as to appropriately and promptly treat potentially exposed individuals or patients. Rates of morbidity, death, and social anxiety can be drastically reduced if the rapid delivery of antimicrobial agents for post-exposure prophylaxis and treatment is initiated as soon as possible. Availability of rapid antibiotic susceptibility tests that may provide key recommendations to targeted antibiotic treatment is mandatory, yet, such tests are only at the development stage. In this review, we describe the recently published rapid antibiotic susceptibility tests implemented on bioterror bacterial agents and discuss their assimilation in clinical and environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (S.R.); (I.S.-L.); (O.I.); (E.Z.)
| |
Collapse
|
4
|
Aloni-Grinstein R, Shifman O, Gur D, Aftalion M, Rotem S. MAPt: A Rapid Antibiotic Susceptibility Testing for Bacteria in Environmental Samples as a Means for Bioterror Preparedness. Front Microbiol 2020; 11:592194. [PMID: 33224128 PMCID: PMC7674193 DOI: 10.3389/fmicb.2020.592194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance of bio-threat agents holds major concerns especially in light of advances in methods for engineering pathogens with antibiotic resistance. Preparedness means for rapid identification and prompt proper medical treatment are of need to contain the event and prevent morbidity and spreading of the disease by properly treating exposed individuals before symptoms appearance. Herein, we describe a novel, rapid, simple, specific, and sensitive method named Micro-Agar-PCR-test (MAPt), which determines antibiotic susceptibility of bio-terror pathogens, directly from environmental samples, with no need for any prior isolation, quantification, or enrichment steps. As proof of concept, we have used this approach to obtain correct therapeutic antibiotic minimal inhibitory concentration (MIC) values for the Tier-1 select agents, Bacillus anthracis, Yersinia pestis, and Francisella tularensis, spiked in various environmental samples recapitulating potential bioterror scenarios. The method demonstrated efficiency for a broad dynamic range of bacterial concentrations, both for fast-growing as well as slow-growing bacteria and most importantly significantly shortening the time for accurate results from days to a few hours. The MAPt allows us to address bioterror agents-contaminated environmental samples, offering rational targeted prophylactic treatment, before the onset of morbidity in exposed individuals. Hence, MAPt is expected to provide data for decision-making personal for treatment regimens before the onset of symptoms in infected individuals.
Collapse
Affiliation(s)
- Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
5
|
Israeli O, Makdasi E, Cohen-Gihon I, Zvi A, Lazar S, Shifman O, Levy H, Gur D, Laskar O, Beth-Din A. A rapid high-throughput sequencing-based approach for the identification of unknown bacterial pathogens in whole blood. Future Sci OA 2020; 6:FSO476. [PMID: 32670604 PMCID: PMC7351085 DOI: 10.2144/fsoa-2020-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 01/26/2023] Open
Abstract
High-throughput DNA sequencing (HTS) of pathogens in whole blood samples is hampered by the high host/pathogen nucleic acids ratio. We describe a novel and rapid bacterial enrichment procedure whose implementation is exemplified in simulated bacteremic human blood samples. The procedure involves depletion of the host DNA, rapid HTS and bioinformatic analyses. Following this procedure, Y. pestis, F. tularensis and B. anthracis spiked-in samples displayed an improved host/pathogen DNA ratio of 2.5-5.9 orders of magnitude, in samples with bacteria spiked-in at 103-105 CFU/ml. The procedure described in this study enables rapid and detailed metagenomic profiling of pathogens within 8-9 h, circumventing the challenges imposed by the high background present in the bacteremic blood and by the unknown nature of the sample.
Collapse
Affiliation(s)
- Ofir Israeli
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Efi Makdasi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Inbar Cohen-Gihon
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shirley Lazar
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ohad Shifman
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Gur
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Orly Laskar
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
6
|
Rapid and Sensitive Multiplex Assay for the Detection of B. anthracis Spores from Environmental Samples. Pathogens 2020; 9:pathogens9030164. [PMID: 32120986 PMCID: PMC7157734 DOI: 10.3390/pathogens9030164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Prompt and accurate detection of Bacillus anthracis spores is crucial in the event of intentional spore dissemination in order to reduce the number of expected casualties. Specific identification of these spores from environmental samples is both challenging and time-consuming. This is due to the high homology with other Bacillus species as well as the complex composition of environmental samples, which further impedes assay sensitivity. Previously, we showed that a short incubation of B.anthracis spores in a defined growth medium results in rapid germination, bacterial growth, and secretion of toxins, including protective antigen. In this work, we tested whether coupling the incubation process to a newly developed immune-assay will enable the detection of secreted toxins as markers for the presence of spores in environmental samples. The new immune assay is a flow cytometry-based multiplex that simultaneously detects a protective antigen, lethal factor, and edema factor. Our combined assay detects 1 × 103–1 × 104/mL spores after a 2 h incubation followed by the ~80 min immune-multiplex detection. Extending the incubation step to 5 h increased assay sensitivity to 1 × 102/mL spore. The protocol was validated in various environmental samples using attenuated or fully virulent B. anthracis spores. There was no substantial influence of contaminants derived from real environmental samples on the performance of the assay compared to clean samples, which allow the unequivocal detection of 3 × 103/mL and 3 × 102/mL spores following 2 and 5 hour’s incubation, respectively. Overall, we propose this method as a rapid, sensitive, and specific procedure for the identification of B. anthracis spores in environmental samples.
Collapse
|