1
|
Maideen NMP, Balasubramanian R, Shanmugam A, Gobinath M, Hussain MHJ. A Review of Potentials of Carica Papaya Leaves in Dengue Viral Infection - Insights of Clinical and Preclinical Studies. Drug Res (Stuttg) 2025; 75:49-59. [PMID: 39842450 DOI: 10.1055/a-2509-8644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
One of the most widespread arboviral diseases in the world, dengue virus disease (DVD) is primarily found in tropical and subtropical regions, affecting 129 countries. The main way that the dengue virus (DENV) spreads is through the bite of a female Aedes aegypti mosquito. Symptomatic therapy and supportive care are the primary methods of managing patients with DENV infection as there is currently no approved antiviral medication for this condition. Since the guidelines from the AYUSH Ministry, Government of India, recommend 10 ml of carica papaya leaf extract (CPLE) twice daily for seven days, to treat dengue fever clinically, we plan to review the potential of carica papaya in managing DENV infection.Using terms like dengue, dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and carica papaya, the literature was searched in databases like Medline/PubMed Central/PubMed, Google Scholar, Science Direct, EBSCO, Scopus, Web of Science, EMBASE, Directory of open access journals (DOAJ), and reference lists to find articles relevant to the clinical, in-vivo, in-vitro, and in-silico studies evaluating the efficacy of carica papaya in the management of dengue viral infection. This review included English-language publications that supported the use of carica papaya in the treatment of dengue fever, but it excluded publications that were duplicates.Numerous preclinical and clinical investigations, such as in-vitro, in-vivo, and in-silico studies, have identified carica papaya's anti-dengue potential. The pleiotropic effects of carica papaya, including its anti-thrombocytopenic activity, immunomodulatory effects, and larvicidal property against the Aedes aegypti mosquito species, have also been confirmed by numerous in-vitro and in-vivo studies. These effects can help patients with dengue fever by elevating their platelet count and alleviating other symptoms.To hasten recovery and reduce hospital stays, patients with DENV infection may take carica papaya leaf extract (CPLE) in addition to supportive care and symptomatic treatment. Additional randomized controlled clinical trials would be necessary to confirm the safety and effectiveness of CPLE in patients with DENV infection.
Collapse
Affiliation(s)
| | | | - Arun Shanmugam
- Department of Pharmacy Practice, J.K.K. Nattraja College of Pharmacy, Komarapalayam, Tamilnadu, India
| | | | | |
Collapse
|
2
|
Petkov V, Tsibranska S, Manoylov I, Kechidzhieva L, Ilieva K, Bradyanova S, Ralchev N, Mihaylova N, Denkov N, Tchorbanov A, Tcholakova S. ISCOM-type matrix from beta-escin and glycyrrhizin saponins. Heliyon 2025; 11:e41935. [PMID: 39897917 PMCID: PMC11786834 DOI: 10.1016/j.heliyon.2025.e41935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Background and aims Nanotechnology provides the opportunity for construction of modern transport devices such as nanoparticles for a variety of applications in the field of medicine. A novel experimental protocol for the formation of saponin-cholesterol-phospholipid nanoparticles of vesicular structure has been developed and applied to prepare stable nanoparticles using escin or glycyrrhizin as saponins. Methods The methods for nanoparticle construction include a sonication at 90 °C of the initial mixture of components, followed by an additional sonication on the next day for incorporation of an additional amount of cholesterol, thus forming stable unilamellar vesicles. Tests and assays for cell viability, erythrocyte hemolysis, flow cytometry, and fluorescent microscopy analyses have been performed. Results By selecting appropriate component ratios, stable and safe particles were formulated with respect to the tested bio-cells. The prepared nanoparticles have mean diameter between 70 and 130 nm, depending on their composition. The versatility of these nanoparticles allows for the encapsulation of various molecules, either within the vesicle interior for water-soluble components or within the vesicle walls for hydrophobic components. The saponin particles formed after cholesterol post-addition (E3-M2) are stable and 100 % of the cells remain viable even after 10-times dilution of the initial particle suspension. These particles are successful included into isolated mouse macrophages. Conclusions Among the variety of generated nanoparticles, the E3-M2 particles demonstrated properties of safe and efficient devices for future vaccine design and antigen targeting to immune system.
Collapse
Affiliation(s)
- V. Petkov
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - S. Tsibranska
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - I. Manoylov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - L. Kechidzhieva
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - K. Ilieva
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Bradyanova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Ralchev
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Mihaylova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Denkov
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| | - A. Tchorbanov
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Tcholakova
- Department of Chemical Engineering, Sofia University, Sofia, Bulgaria
| |
Collapse
|
3
|
Saeed Z, Alkheraije KA. Botanicals: A promising approach for controlling cecal coccidiosis in poultry. Front Vet Sci 2023; 10:1157633. [PMID: 37180056 PMCID: PMC10168295 DOI: 10.3389/fvets.2023.1157633] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/15/2023] Open
Abstract
Avian species have long struggled with the problem of coccidiosis, a disease that affects various parts of the intestine, including the anterior gut, midgut, and hindgut. Among different types of coccidiosis, cecal coccidiosis is particularly dangerous to avian species. Chickens and turkeys are commercial flocks; thus, their parasites have remained critical due to their economic importance. High rates of mortality and morbidity are observed in both chickens and turkeys due to cecal coccidiosis. Coccidiostats and coccidiocidal chemicals have traditionally been added to feed and water to control coccidiosis. However, after the EU banned their use because of issues of resistance and public health, alternative methods are being explored. Vaccines are also being used, but their efficacy and cost-effectiveness remain as challenges. Researchers are attempting to find alternatives, and among the alternatives, botanicals are a promising choice. Botanicals contain multiple active compounds such as phenolics, saponins, terpenes, sulfur compounds, etc., which can kill sporozoites and oocysts and stop the replication of Eimeria. These botanicals are primarily used as anticoccidials due to their antioxidant and immunomodulatory activities. Because of the medicinal properties of botanicals, some commercial products have also been developed. However, further research is needed to confirm their pharmacological effects, mechanisms of action, and methods of concentrated preparation. In this review, an attempt has been made to summarize the plants that have the potential to act as anticoccidials and to explain the mode of action of different compounds found within them.
Collapse
Affiliation(s)
- Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
4
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
5
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
6
|
Sarker MMR, Khan F, Mohamed IN. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Front Pharmacol 2021; 12:610912. [PMID: 33981215 PMCID: PMC8109180 DOI: 10.3389/fphar.2021.610912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue, a very widespread mosquito-borne infectious disease caused by Aedes aegypti virus, has been occurring during the monsoons every year. The prevalence and incidence of dengue fever and death due to its complications have been increased drastically in these recent years in Bangladesh, Philippines, Thailand, Brazil, and India. Recently, dengue had spread in an epidemic form in Bangladesh, Thailand, and Philippines. Although the infection affected a large number of people around the world, there is no established specific and effective treatment by synthetic medicines. In this subcontinent, Malaysia could effectively control its incidences and death of patients using alternative medication treatment mainly prepared from Carica papaya L. leaves along with proper care and hospitalization. Papaya leaves, their juice or extract, as well as their different forms of preparation have long been used traditionally for treating dengue fever and its complications to save patients’ lives. Although it is recommended by traditional healers, and the general public use Papaya leaves juice or their other preparations in dengue fever, this treatment option is strictly denied by the physicians offering treatment in hospitals in Bangladesh as they do not believe in the effectiveness of papaya leaves, thus suggesting to patients that they should not use them. In Bangladesh, 1,01,354 dengue patients have been hospitalized, with 179 deaths in the year 2019 according to information from the Institute of Epidemiology, Disease Control, and Research as well as the Directorate General of Health Services of Bangladesh. Most of the patients died because of the falling down of platelets to dangerous levels and hemorrhage or serious bleeding. Therefore, this paper aims to critically review the scientific basis and effectiveness of Carica papaya L. leaves in treating dengue fever based on preclinical and clinical reports. Thrombocytopenia is one of the major conditions that is typical in cases of dengue infection. Besides, the infection and impairment of immunity are concerned with dengue patients. This review summarizes all the scientific reports on Carica papaya L. for its ability on three aspects of dengue: antiviral activities, prevention of thrombocytopenia and improvement of immunity during dengue fever.
Collapse
Affiliation(s)
- Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Farzana Khan
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Cheras, Malaysia
| |
Collapse
|
7
|
Evaluation of the Effect of Hydroethanolic Root Extract and Solvent Fractions of Cyphostemma adenocaule (Steud. ex A. Rich) Descoings ex Wild & Drummond on Cell-Mediated Immune Response and Blood Cell Count in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1838903. [PMID: 33628296 PMCID: PMC7889392 DOI: 10.1155/2021/1838903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/05/2022]
Abstract
Introduction Cyphostemma adenocaule (Steud. ex A. Rich) Descoings ex wild & Drummond (Vitaceae) has been used in traditional medicine for the management of various immunological and hematological disorders in different areas of Ethiopia and the rest of the world. In Ethiopia, the plant is used for the management of enlarged spleen, rabies virus, helminthic infection, snake bite, and various types of tumors. Objective To evaluate the effect of hydroethanolic root extract and solvent fractions of Cyphostemma adenocaule on cell-mediated immunity (delayed-type hypersensitivity), organ index (spleen and liver), and blood cell count in Swiss albino mice. Materials and Methods Acute oral toxicity test was conducted using nulliparous and nonpregnant Swiss albino mice following OECD 425 limit test method. Delayed-type hypersensitivity model was used to evaluate the effect on cell-mediated immunity. The experimental animals were divided into twelve groups which were sensitized and challenged with sheep red blood cells on day 0 and day 7, respectively. Levamisole 50 mg/kg was used as stimulant control, whereas cyclophosphamide 30 mg/kg was used as suppressant control. Hydroethanolic root extract (100 mg/kg, 200 mg/kg, and 400 mg/kg), aqueous fraction (100 mg/kg, 200 mg/kg, and 400 mg/kg), and n-butanol fraction (100 mg/kg, 200 mg/kg, and 400 mg/kg) were administered for seven days. The paw volume was measured using a digital plethysmometer before challenge and 24 hours after challenge. Blood was collected, and organs (spleen and liver) were isolated from each challenged mouse to determine blood cell count and organ index, respectively. Results No mortality and noticeable behavioral changes were observed among all mice receiving hydroethanolic root extract and solvent fractions at a dose of 2000 mg/kg. Hydroethanolic root extract and solvent fractions of Cyphostemma adenocaule showed enhancement of delayed-type hypersensitivity, organ index, and blood cell count. Hydroethanolic root extract at a dose of 400 mg/kg showed the highest and statistically significant stimulation of delayed-type hypersensitivity (0.123 ± 0.010) and blood cell count compared to the vehicle. Conclusion Hydroethanolic root extract and solvent fractions of Cyphostemma adenocaule showed a stimulatory effect on cell-mediated immunity and hematopoiesis.
Collapse
|
8
|
Sugiharto S, Widiastuti E, Isroli I, Wahyuni HI, Yudiarti T. Effect of a Fermented Mixture of Papaya Leaf and Seed Meal on Production Traits and Intestinal Ecology of the Indonesian Indigenous Crossbred Chickens. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2020. [DOI: 10.11118/actaun202068040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Abd El Fadeel MR, El-Dakhly AT, Allam AM, Farag TK, El-Kholy AAM. Preparation and efficacy of freeze-dried inactivated vaccine against bovine viral diarrhea virus genotypes 1 and 2, bovine herpes virus type 1.1, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus. Clin Exp Vaccine Res 2020; 9:119-125. [PMID: 32864368 PMCID: PMC7445318 DOI: 10.7774/cevr.2020.9.2.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose Bovine respiratory disease is a worldwide health concern in the feedlot cattle causing morbidity and mortality in young with major economic losses to the producer. Programs of vaccination are integral parts of preventive health programs. We aim to prepare and evaluate lyophilized combined inactivated viruses (bovine viral diarrhea virus [BVDV] genotypes 1 and 2, bovine herpes virus type 1.1 [BoHV-1.1], bovine parainfluenza-3 virus [BPI-3V], and bovine respiratory syncytial virus [BRSV]) vaccine using saponin as a solvent and adjuvant in cattle. Materials and Methods Lyophilized Pneumo-5 vaccine was formulated to include the inactivated BVDV genotypes 1 and 2, BoHV-1.1, BPI-3V, and BRSV. The saponin solution was used as an adjuvant and solvent. The prepared vaccines were adjusted to contain 1- and 1.5-mg saponin/dose. It was evaluated for its sterility, safety, and potency in mice and calves. The antibody titers in vaccinated calves were measured by virus neutralization test and enzyme-linked immunosorbent assay (ELISA). Results The Pneumo-5 vaccine was found to be free from any contaminants and safe in mice. Meanwhile, the vaccine showed safety in calves which inoculated intramuscularly with the double dose of the vaccines. The overall immune response reached its peak in the 2nd-month post-vaccination. The vaccine contained saponin 1.5 mg/dose reached its antibodies peak in the 4th-week post-vaccination. All groups of vaccinated calves with both concentrations of the saponin did not show statistical significance in antibody titers measured by serum neutralization test and/or ELISA. Conclusion The prepared vaccine, namely Pneumo-5, and adjuvanted with either 1 or 1.5 mg/dose saponin was proved safe and potent for effectual protection of calves against BVDV genotypes 1 and 2, BoHV-1.1, BPI-3V, and BRSV.
Collapse
Affiliation(s)
- Maha Raafat Abd El Fadeel
- Department of Rinder Pest like Diseases, Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Ashraf Taha El-Dakhly
- Department of Lyophilization. Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Ahmad Mohammad Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Tarek Korany Farag
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | | |
Collapse
|