1
|
Yang PH, Wei YN, Xiao BJ, Li SY, Li XL, Yang LJ, Pan HF, Chen GX. Curcumin for gastric cancer: Mechanism prediction via network pharmacology, docking, and in vitro experiments. World J Gastrointest Oncol 2024; 16:3635-3650. [PMID: 39171177 PMCID: PMC11334046 DOI: 10.4251/wjgo.v16.i8.3635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Curcumin originates from the natural herb turmeric, and its antitumor effects have been known about for a long time. However, the mechanism by which curcumin affects gastric cancer (GC) has not been elucidated. AIM To elucidate the potential mechanisms of curcumin in the treatment of GC. METHODS Network pharmacological approaches were used to perform network analysis of Curcumin. We first analyzed Lipinski's Rule of Five for the use of Curcumin. Curcumin latent targets were predicted using the PharmMapper, SwissTargetPrediction and DrugBank network databases. GC disease targets were mined through the GeneCard, OMIM, DrugBank and TTD network databases. Then, GO enrichment, KEGG enrichment, protein-protein interaction (PPI), and overall survival analyses were performed. The results were further verified through molecular docking, differential expression analysis and cell experiments. RESULTS We identified a total of 48 curcumin-related genes with 31 overlapping GC-related targets. The intersection targets between curcumin and GC have been enriched in 81 GO biological processes and 22 significant pathways. Following PPI analysis, 6 hub targets were identified, namely, estrogen receptor 1 (ESR1), epidermal growth factor receptor (EGFR), cytochrome P450 family 3 subfamily A member 4 (CYP3A4), mitogen-activated protein kinase 14 (MAPK14), cytochrome P450 family 1 subfamily A member 2 (CYP1A2), and cytochrome p450 family 2 subfamily B member 6 (CYP2B6). These factors are correlated with decreased survival rates among patients diagnosed with GC. Molecular docking analysis further substantiated the strong binding interactions between Curcumin and the hub target genes. The experimental findings demonstrated that curcumin not only effectively inhibits the growth of BGC-823 cells but also suppresses their proliferation. mRNA levels of hub targets CYP3A4, MAPK14, CYP1A2, and CYP2B6 in BGC-823 cells were significantly increased in each dose group. CONCLUSION Curcumin can play an anti-GC role through a variety of targets, pathways and biological processes.
Collapse
Affiliation(s)
- Peng-Hui Yang
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Ya-Nan Wei
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Bi-Juan Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Si-Yi Li
- Department of Traditional Chinese Medicine, The People's Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Long Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Liang-Jun Yang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Geng-Xin Chen
- Centre for Translational Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
2
|
Jin W, Xie X, Shen S, Zhou X, Wang S, Zhang L, Su X. Ultrasmall polyvinylpyrrolidone-modified iridium nanoparticles with antioxidant and anti-inflammatory activity for acute pancreatitis alleviation. J Biomed Mater Res A 2024; 112:988-1003. [PMID: 38318924 DOI: 10.1002/jbm.a.37679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Acute pancreatitis (AP) is a common and serious acute inflammatory disease with high severity rate and mortality. Inflammation and oxidative stress play an extremely important role in the development of AP disease. Polyvinylpyrrolidone-modified iridium nanoparticles (IrNP-PVP) have multienzyme mimetic activity, and the aim of this article is to discuss the therapeutic alleviative effects of the ultrasmall nanozymes IrNP-PVP on AP through their antioxidant and anti-inflammatory effects. IrNP-PVP were proved to inhibit inflammation and scavenge reactive oxygen species (ROS) at the cellular level. The synthetic IrNP-PVP exhibit remarkable antioxidant and anti-inflammatory activities in the prevention and treatment of AP mice by establishing murine AP model, which can reduce the oxidative stress and inflammatory response. The results of this article indicated that the ultrasmall nanozymes IrNP-PVP effectively alleviate AP via scavenging ROS as well as suppressing inflammation both in vivo and in vitro, which might provide enormous promise for the AP management.
Collapse
Affiliation(s)
- Wenzhang Jin
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xueting Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shuqi Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xingjian Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shunfu Wang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lijiang Zhang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiang Su
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Mores MG, Fikry EM, El-Gendy AO, Mohamed WR, Badary OA. Probiotics mixture and taurine attenuate L-arginine-induced acute pancreatitis in rats: Impact on transient receptor potential vanilloid-1 (TRPV-1)/IL-33/NF-κB signaling and apoptosis. Tissue Cell 2023; 85:102234. [PMID: 37844391 DOI: 10.1016/j.tice.2023.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Acute pancreatitis (AP) is an inflammatory disorder of acinar cells. It may develop into severe chronic pancreatitis with a significant mortality rate. The current study aimed to assess the therapeutic effect of a Lactobacillus (LAB) mixture against rat AP. Six groups were created including control, taurine (300 mg/kg; i.p.) for 7 days, LAB mixture for 7 days, L-arginine (2.5 g/kg; i.p.) 2 doses with 1 h interval on 1st day, L-arginine+taurine, and L-arginine+LAB. Serum amylase and lipase activities were measured. Pancreatic tissue was used for histopathological examination, oxidative stress biomarkers including malondialdehyde (MDA) and reduced glutathione (GSH), and inflammatory biomarkers including myeloperoxidase (MPO) and interleukin (IL)-33 assessment. qRT-PCR was used for transient receptor potential vanilloid-1 (TRPV-1) investigation and Western blot analysis for measuring nuclear factor kappa-B (NF-κBp65) and the apoptosis biomarker; caspase-3. Taurine and LAB reduced lipase and significantly ameliorated induced oxidative stress by normalizing MDA and GSH contents. They counteracted inflammation by reducing MPO, IL-33, NF-κBp65, and TRPV-1. In addition, taurine and LAB counteracted apoptosis as proved by reduced caspase-3 expression. Taken together, these findings indicate that taurine and the use LAB mixture can mitigate AP by L-arginine via influencing TRPV-1/IL-33/NF-κB signaling together with exhibiting potent antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Marvy G Mores
- Pharmacology Department, Egyptian Drug Authority, (previously, National Organization for Drug Control and Research), Giza, Egypt
| | - Ebtehal Mohammad Fikry
- Pharmacology Department, Egyptian Drug Authority, (previously, National Organization for Drug Control and Research), Giza, Egypt
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt; Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu Hashim II, Meshali MM. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis. Sci Rep 2023; 13:19110. [PMID: 37925581 PMCID: PMC10625596 DOI: 10.1038/s41598-023-46215-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Fisetin (FST) is a naturally occurring flavonol that has recently emerged as a bioactive phytochemical with an impressive array of biological activities. To the author knowledge, boosting the activity of FST against severe acute pancreatitis (SAP) through a nanostructured delivery system (Nanophytomedicine) has not been achieved before. Thereupon, FST-loaded lipid polymer hybrid nanoparticles (FST-loaded LPHNPs) were prepared through conjoined ultrasonication and double emulsion (w/o/w) techniques. Comprehensive in vitro and in vivo evaluations were conducted. The optimized nanoparticle formula displayed a high entrapment efficiency % of 61.76 ± 1.254%, high loading capacity % of 32.18 ± 0.734, low particle size of 125.39 ± 0.924 nm, low particle size distribution of 0.357 ± 0.012, high zeta potential of + 30.16 ± 1.416 mV, and high mucoadhesive strength of 35.64 ± 0.548%. In addition, it exhibited a sustained in vitro release pattern of FST. In the in vivo study, oral pre-treatment of FST-loaded LPHNPs protected against L-arginine induced SAP and multiple organ injuries in rats compared to both FST alone and plain LPHNPs, as well as the untreated group, proven by both biochemical studies, that included both amylase and lipase activities, and histochemical studies of pancreas, liver, kidney and lungs. Therefore, the study could conclude the potential efficacy of the novel phytopharmaceutical delivery system of FST as a prophylactic regimen for SAP and consequently, associated multiple organ injuries.
Collapse
Affiliation(s)
- Randa Hanie Awadeen
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
5
|
Chegini M, Sadeghi A, Zaeri F, Zamani M, Hekmatdoost A. Nano-curcumin supplementation in patients with mild and moderate acute pancreatitis: A randomized, placebo-controlled trial. Phytother Res 2023; 37:5279-5288. [PMID: 37490939 DOI: 10.1002/ptr.7958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
We aimed to investigate whether nano-curcumin as an anti-inflammatory agent is effective in patients with mild and moderate AP. This study was a double-blind, parallel-arm randomized controlled trial conducted at Taleghani hospital, Tehran, Iran. Eligible subjects with a diagnosis of mild and moderate AP were randomly assigned to receive either two doses of nano-curcumin (40 mg) or placebo (control) daily for 2 weeks. The primary endpoint was gastrointestinal (GI) ward length of stay (LOS). A total of 42 patients were randomly assigned to receive either nano-curcumin (n = 21) or placebo (n = 21). Compared with placebo, nano-curcumin supplementation decreased hospital LOS (RR = 0.67, 95% CI: 0.502-0.894; p = 0.006), reduced the need for analgesics over time (OR = 0.576, 95% CI: 0.421-0.790; p = 0.001), and increased overall appetite score over the study period (β = 0.104, SE: 0.053; p = 0.049). No adverse effects or mortality were reported and there was no withdrawal during the study period. The results indicate that nano-curcumin as an adjuvant therapy is safe and may reduce GI ward LOS, analgesics requirement, and improve the overall appetite in patients with mild and moderate AP. Future multi-center trials with larger sample sizes are required to verify these findings. Clinical trial registration: www.ClinicalTrials.gov NCT04989166.
Collapse
Affiliation(s)
- Maedeh Chegini
- Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, School of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Zaeri
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Zamani
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition, National Nutrition and Food Technology Research Institute, School of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Omayone TP, Ijomone OM, Oloyede SB, Okunola ST, Aigoro ZO, Esukpa VU, Dinakin SO. Modulatory action of Moringa oleifera Lam. on L-arginine induced acute pancreatitis. J Basic Clin Physiol Pharmacol 2023; 34:707-715. [PMID: 34606706 DOI: 10.1515/jbcpp-2021-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Acute pancreatitis (AP) is an inflammatory disease of the pancreas with high morbidity and mortality. This study investigates the effect of Moring oleifera (MO) on L-arginine-induced AP in Wistar rats. METHODS Male Wistar rats were randomly divided into seven groups. Control, AP, Magnesium groups, all fed with standard rat diet, MO leaf groups (5% MLF and 15% MLF), and MO seed groups (5% MSD and 15% MSD) were fed with five or 15% MO leaf or seed supplemented diet for four weeks prior to induction of AP. AP was induced by administration of double doses of L-arginine (320 mg/100 g i.p.) at 1 h interval. All animals were sacrificed 72 h thereafter. RESULTS Weekly mean feed consumption and body weight were significantly higher in MO groups compared to the control. Amylase level, MDA, MPO, and NO were significantly higher in the AP group than in the control but decreased in Mg and MO groups. While CAT, SOD, GSH, and SH-group were significantly depleted in AP groups, which was attenuated in MO groups. Rats in AP groups showed severe inflammation, necrosis, and edema. These effects were significantly improved in MO groups resulting in lower histological scores compared to the AP group. CONCLUSIONS Pretreatment with MO could attenuate AP via its antioxidant and anti-inflammatory action.
Collapse
Affiliation(s)
- Tosan Peter Omayone
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Omamuyovwi Meashack Ijomone
- Department of Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Solomon Babatunde Oloyede
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Salihaat Toyin Okunola
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Zainab Oluwabukola Aigoro
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Victory Uwuma Esukpa
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Samuel Oluwaseun Dinakin
- Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
7
|
Tang Y, Sun M, Liu Z. Phytochemicals with protective effects against acute pancreatitis: a review of recent literature. PHARMACEUTICAL BIOLOGY 2022; 60:479-490. [PMID: 35180016 PMCID: PMC8865097 DOI: 10.1080/13880209.2022.2039723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Acute pancreatitis (AP) is an acute abdominal inflammatory disease with episodes ranging from mild to fulminant symptoms which could include necrosis, systemic inflammation and multiple organ dysfunction. Increasing experimental evidence demonstrates that specific bioactive ingredients from natural plants have a favourable therapeutic effect on AP. OBJECTIVE The objective of this review is to summarize the protective effects and potential mechanisms of action of phytochemicals on the attenuation of AP. METHODS Experimental studies in vivo or in vitro between January 2016 and June 2021 were sought in PubMed and Web of Science using the following search terms: ('phytochemicals' OR 'medicinal plant' OR 'traditional medicine') AND ('pancreatitis' OR 'pancreatic damage' OR 'pancreatic injury'). Data concerning the basic characteristics of phytochemicals, therapeutic dose and potential molecular mechanisms related to AP were extracted in this study. RESULTS A total of 30 phytochemicals with potential therapeutic effects were reviewed and summarized systematically. According to their molecular pathways in AP, the underlying mechanisms of the phytochemicals were illustrated in detail. DISCUSSION AND CONCLUSIONS The phytochemicals with anti-inflammatory and antioxidant abilities may be efficient candidate drugs for AP treatment. Importantly, more preclinical investigations are needed to illustrate the efficacy of future phytochemicals.
Collapse
Affiliation(s)
- Yao Tang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- CONTACT Zhenning Liu Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, China
| |
Collapse
|
8
|
Siriviriyakul P, Sriko J, Somanawat K, Chayanupatkul M, Klaikeaw N, Werawatganon D. Genistein attenuated oxidative stress, inflammation, and apoptosis in L-arginine induced acute pancreatitis in mice. BMC Complement Med Ther 2022; 22:208. [PMID: 35927726 PMCID: PMC9351145 DOI: 10.1186/s12906-022-03689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Aim Acute pancreatitis is a common and potentially serious condition. However, a specific treatment for this condition is still lacking. Genistein, with its anti-oxidant and anti-inflammatory effects, could possibly be used to tackle the underlying pathophysiology of acute pancreatitis. Therefore, the aim of this study was to investigate the effects of genistein on oxidative stress, inflammation, and apoptosis in acute pancreatitis induced by L-arginine in mice. Methods Twenty-four male ICR mice were equally divided into 4 groups: Control (Con); Acute pancreatitis (AP) group: Two doses of i.p. 350 mg/100 g body weight (BW) of L-arginine were administered 1 h apart; AP and low-dose genistein (LG) group: mice were given i.p. injection of 10 mg/kg genistein 2 h prior to L-arginine injection followed by once-daily dosing for 3 days; and AP and high-dose genistein (HG) group: mice were given 100 mg/kg genistein with the similar protocol as the LG group. Pancreatic tissue was evaluated for histopathological changes and acinar cell apoptosis, malondialdehyde (MDA) levels, immunohistochemical staining for myeloperoxidase (MPO), nuclear factor-kappa beta (NF-kB), and 4-hydroxynonenal (4-HNE). Serum levels of amylase (AMY), c-reactive protein (CRP), and interleukin (IL)-6 were measured. Results Significant increases in the degree of acinar cell apoptosis, pancreatic MDA, serum IL-6 and amylase, MPO, NF-kB and 4-HNE positivity were observed in the AP group. All these parameters declined after low- and high-dose genistein treatment. Severe pancreatic inflammation, edema, and acinar cell necrosis were observed in the AP group. Significant improvement of histopathological changes was seen in both low- and high-dose genistein groups. There were no significant differences in any parameters between low and high doses of genistein. Conclusion Genistein could attenuate the severity of histopathological changes in acute pancreatitis through its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03689-9.
Collapse
|
9
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Firsova TI, Alekhin SA, Nazarenko DP, Danilenko LM, Chub AG, Malyutina ES, Lazareva TY, Druzhikin LV. Combined anti-mediator therapy for severe destructive forms of acute necrotizing pancreatitis in rats. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.79939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Inflammatory mediators play a major role in pathogenesis of acute pancreatitis with TNF (tumor necrosis factor) as the most important one. Development of effective combined therapy could help to decrease tissue damage, improve results and, finally, diminish the mortality rate in this severe pathology.
Materials and methods: All the studies were performed on 120 female white Wistar rats, weighing 250±25g. Acute pancreatitis reproduced by an intracanalicular injection of bile salts compound.
Results and discussion: The data obtained in the course of the study on the pronounced pancreatoprotective effect of infliximab are explained by its key role in the onset of the systemic inflammatory response, and, therefore, with the blockade of tumor necrosis factor alpha in the early stages, there is no pronounced secondary damage to the pancreas, which is reflected in a significant decrease in edema from 4.87±0.03 in the model up to 2.75±0.04, and as a consequence, an improvement in the blood supply of the acinar tissue from 182.38±15.92 PU up to 287.92±14.64 PU, which is expressed in a decrease in the zones of necrosis and in a decrease in mortality and, finally, efficiency coefficient from 13480.000 to 4283.348. A selective blocker of cysteinyl leukotrienes has a less pronounced protective reaction against damage to pancreatocytes, but to a much greater extent than octreotide. That is expressed by changes in the efficiency coefficient to the level of 8621.18 in montelukast group and 12767.30 in octreotide group, respectively. On the other hand, the effect of the use of infliximab does not surpass that of montelukast, and their combined use has a pronounced additive effect, which is proved by the efficiency coefficient at the level of 2390.33. This reaction is explained by the fact that TNF alpha-mediated pathway of activation of leukotriene biosynthesis is the main, but not the only one.
Conclusion: The combined anti-mediator therapy provides a great opportunity to improve the standard therapy of acute pancreatitis.
Collapse
|
11
|
Fawzy HA, Mohammed AA, Fawzy HM, Fikry EM. Reorienting of pramipexole as a promising therapy for acute pancreatitis in a rat model by suppressing TLR-4\NF-κB p65\NLRP3 inflammasome signaling. Can J Physiol Pharmacol 2022; 100:542-552. [PMID: 35413206 DOI: 10.1139/cjpp-2021-0664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Acute pancreatitis (AP), a disorder of global importance, has a growing incidence and prevalence, particularly in the western world. Its complications include pseudo-cysts and chronic pancreatitis. Pramipexole (PMX), a D2/3 receptor selecting agonist used in Parkinsonism, has reported anti-inflammatory effects lately. PURPOSE Exploring the potential curative role of PMX in an l-arginine-induced acute pancreatitis rat model besides a possible mechanistic pathway. METHODS Rats were divided randomly into three groups: control, l-arginine, and "l-arginine + PMX". 7 days after AP induction, rats decapitated and estimated for serum amylase, lipase, glucose, pancreatic inflammatory mediators "toll-like receptor-4, nuclear factor- kappa B p65 ,serum tumor necrosis factor-α, NLRP3 inflammasome, caspase-1, interleukin-1 beta, oxidative biomarkers "malondialdehyde, myeloperoxidase, nitrite/nitrate, reduced glutathione, and the apoptotic marker "caspase-3", with pancreatic histopathological changes. RESULTS L-arginine mediated AP proved by elevated serum lipase and amylase, pancreatic inflammatory, oxidative and apoptotic markers with infiltration of inflammatory cells using hematoxylin and eosin stain. PMX improved all these adverse signs of AP greatly. CONCLUSION PMX might be considered as an innovative therapy for AP due to its remarkable antioxidant, anti-apoptotic, and anti-inflammatory effects, which are attributed to the suppression of the NLRP3 inflammasome and its downstream inflammatory cytokines.
Collapse
Affiliation(s)
| | - Asmaa A Mohammed
- Al-Azhar University, 68820, Department of Pharmacology and Toxicology, Cairo, Egypt;
| | - Hala M Fawzy
- NODCAR, 204596, Department of Pharmacology, Giza, Egypt;
| | | |
Collapse
|
12
|
Mohamed MZ, Mohammed HH, Khalaf HM. Therapeutic effect of rupatadine against l-arginine-induced acute pancreatitis in rats: role of inflammation. Can J Physiol Pharmacol 2022; 100:176-183. [PMID: 35050802 DOI: 10.1139/cjpp-2021-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute pancreatitis (AP) is an abrupt inflammatory disorder causing high morbidity and mortality. As AP is an insidious medical emergency, a curative modality is required instead of a preventive measure. Thus, we investigated the possible curative effect of rupatadine on a rat model of AP. Rupatadine is a potent histamine receptor 1 (H1R) and platelet-activating factor (PAF) blocker. We used four groups of six Wistar rats as follows: the control group received vehicle; the rupatadine control group received rupatadine as 6 mg/kg orally; the AP group received l-arginine intraperitoneally, and the treatment group received rupatadine at 1, 6, and 24 h after l-arginine injection. The levels of serum amylase, pancreatic oxidative parameters, and pancreatic cytokines were measured. PAF, histamine, and myeloperoxidase levels were determined in the pancreas. Histopathological and immunohistochemical examinations were performed to determine nuclear factor kappa-B (NF-κB) and caspase 3 expressions. Oxidative damage and severe inflammation were detected in the pancreas of the AP group. Rupatadine reduced the oxidative damage and the levels of proinflammatory cytokines, PAF, histamine, myeloperoxidase, NF-κB, and caspase 3 expressions. It restored the pancreatic acini to almost normal condition. Rupatadine induced important anti-inflammatory and antiapoptotic effects against l-arginine-induced AP.
Collapse
Affiliation(s)
- Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Hanaa H Mohammed
- Department of Histology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Hanaa M Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
13
|
XU X, SONG Y, JIANG M, LIU M, ZHANG X, WANG D, PAN Y, REN S, LIU X. An assessment of the potential of defatted walnut powder extract against hyperlipidemia-intensified L-arginine-induced acute pancreatitis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.19722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiajing XU
- Shenyang Pharmaceutical University, China
| | | | - Man JIANG
- Shenyang Pharmaceutical University, China
| | - Meihan LIU
- Shenyang Pharmaceutical University, China
| | | | | | - Yingni PAN
- Shenyang Pharmaceutical University, China
| | | | | |
Collapse
|
14
|
Wang H, Zhang K, Liu J, Yang J, Tian Y, Yang C, Li Y, Shao M, Su W, Song N. Curcumin Regulates Cancer Progression: Focus on ncRNAs and Molecular Signaling Pathways. Front Oncol 2021; 11:660712. [PMID: 33912467 PMCID: PMC8072122 DOI: 10.3389/fonc.2021.660712] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Curcumin [(1E,6E) ‑1,7‑bis(4‑hydroxy‑3‑methoxyphenyl) hepta‑1,6‑diene‑3,5‑ dione] is a natural polyphenol derived from the rhizome of the turmeric plant Curcuma longa. Accumulated evidences have presented curcumin’s function in terms of anti-inflammatory, antioxidant properties, and especially anti-tumor activities. Studies demonstrated that curcumin could exert anti-tumor activity via multiple biological signaling pathways, such as PI3K/Akt, JAK/STAT, MAPK, Wnt/β-catenin, p53, NF-ĸB and apoptosis related signaling pathways. Moreover, Curcumin can inhibit tumor proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), invasion and metastasis by regulating tumor related non-coding RNA (ncRNA) expression. In this review, we summarized the roles of curcumin in regulating signaling pathways and ncRNAs in different kinds of cancers. We also discussed the regulatory effect of curcumin through inhibiting carcinogenic miRNA and up regulating tumor suppressive miRNA. Furthermore, we aim to illustrate the cross regulatory relationship between ncRNA and signaling pathways, further to get a better understanding of the anti-tumor mechanism of curcumin, thus lay a theoretical foundation for the clinical application of curcumin in the future.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Pathology, Key Laboratory of Clinical Molecular Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yidan Tian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chen Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- Department of Mental Health, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Department of Pathology, Key Laboratory of Clinical Molecular Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
16
|
Mohammadi E, Behnam B, Mohammadinejad R, Guest PC, Simental-Mendía LE, Sahebkar A. Antidiabetic Properties of Curcumin: Insights on New Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:151-164. [PMID: 34331689 DOI: 10.1007/978-3-030-56153-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plant extracts have been used to treat a wide range of human diseases. Curcumin, a bioactive polyphenol derived from Curcuma longa L., exhibits therapeutic effects against diabetes while only negligible adverse effects have been observed. Antioxidant and anti-inflammatory properties of curcumin are the main and well-recognized pharmacological effects that might explain its antidiabetic effects. Additionally, curcumin may regulate novel signaling molecules and enzymes involved in the pathophysiology of diabetes, including glucagon-like peptide-1, dipeptidyl peptidase-4, glucose transporters, alpha-glycosidase, alpha-amylase, and peroxisome proliferator-activated receptor gamma (PPARγ). Recent findings from in vitro and in vivo studies on novel signaling pathways involved in the potential beneficial effects of curcumin for the treatment of diabetes are discussed in this review.
Collapse
Affiliation(s)
- Elahe Mohammadi
- Student Research Committee, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Behnam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Mohammadinejad
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
- Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
17
|
Xie X, Zhao J, Gao W, Chen J, Hu B, Cai X, Zheng Y. Prussian blue nanozyme-mediated nanoscavenger ameliorates acute pancreatitis via inhibiting TLRs/NF-κB signaling pathway. Theranostics 2021; 11:3213-3228. [PMID: 33537083 PMCID: PMC7847676 DOI: 10.7150/thno.52010] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Acute pancreatitis (AP) is a serious acute condition affecting the abdomen and shows high morbidity and mortality rates. Its global incidence has increased in recent years. Inflammation and oxidative stress are potential therapeutic targets for AP. This study was conducted to investigate the intrinsic anti-oxidative and anti-inflammatory effects of Prussian blue nanozyme (PBzyme) on AP, along with its underlying mechanism. Methods: Prussian blue nanozymes were prepared by polyvinylpyrrolidone modification method. The effect of PBzyme on inhibiting inflammation and scavenging reactive oxygen species was verified at the cellular level. The efficacy and mechanism of PBzyme for prophylactically treating AP were evaluated using the following methods: serum testing in vivo, histological scoring following hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling fluorescence staining, polymerase chain reaction array, Kyoto Encyclopedia of Genes and Genomes analysis and Western blotting analysis. Results: The synthetic PBzyme showed potent anti-oxidative and anti-inflammatory effects in reducing oxidative stress and alleviating inflammation both in vitro and in vivo in the prophylactic treatment of AP. The prophylactic therapeutic efficacy of PBzyme on AP may involve inhibition of the toll-like receptor/nuclear factor-κB signaling pathway and reactive oxygen species scavenging. Conclusion: The single-component, gram-level mass production, stable intrinsic biological activity, biosafety, and good therapeutic efficacy suggest the potential of PBzyme in the preventive treatment of AP. This study provides a foundation for the clinical application of PBzyme.
Collapse
Affiliation(s)
- Xue Xie
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University. Chongqing 400010, P. R. China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P. R. China
| | - Wei Gao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Jie Chen
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Bing Hu
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| |
Collapse
|
18
|
Moustafa EM, Moawed FSM, Abdel-Hamid GR. Icariin Promote Stem Cells Regeneration and Repair Acinar Cells in L-arginine / Radiation -Inducing Chronic Pancreatitis in Rats. Dose Response 2020; 18:1559325820970810. [PMID: 33192204 PMCID: PMC7607780 DOI: 10.1177/1559325820970810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Chronic Pancreatitis (CP) is a multifactorial disease. It was characterized by severe inflammation and acinar cell destruction. Thus, the present study was initiated to evaluating the ability of bone marrow-based mesenchymal stem cell (MSCs) combined with Icariin to restore and regenerate acinar cells in the pancreas of rats suffering chronic pancreatitis. Methods: Chronic pancreatitis was induced in rats via both L-arginine plus radiation, repeated L-arginine injection (2.5g/Kg body-weight, 1, 4,7,10,13,16,19 days), then, on day 21, rats were exposed to a single dose of gamma-radiation (6 Gy), which exacerbate injury of pancreatic acinar cells. One day after irradiation, rats were treated with either MSCs (1 × 107 /rat, once, tail vein injection) labeled PKH26 fluorescent linker dye and/or Icariin (100 mg/Kg, daily, orally) for 8 weeks. Results: Icariin promotes MSCs proliferation boosting its productivity in vitro. MSCs, and/or icariin treatments has regulated molecular factors TGF-β/PDGF and promoted the regeneration of pancreatic tissues by releasing PDX-1 and MafA involved in the recruitment of stem/progenitor cell in the tissue, and confirmed by histopathological examination. Moreover, a significant decrease in IL-8 and TNF-α cytokines with significant amelioration of myeloperoxidase activity were noted. As well as, reduction in MCP-1 and collagen type-1 levels along with Hedgehog signaling down-regulating expression in such cells, Patched-1, Smoothened, and GLi-1. Conclusion: The potent bioactive therapeutic Icariin combined with MSCs induces a significantly greater improvement, compared to each therapy alone.
Collapse
Affiliation(s)
| | - Fatma S M Moawed
- Department of Health Radiation Research, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | | |
Collapse
|
19
|
Jiang X, Zheng YW, Bao S, Zhang H, Chen R, Yao Q, Kou L. Drug discovery and formulation development for acute pancreatitis. Drug Deliv 2020; 27:1562-1580. [PMID: 33118404 PMCID: PMC7598990 DOI: 10.1080/10717544.2020.1840665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis is a sudden inflammation and only last for a short time, but might lead to a life-threatening emergency. Traditional drug therapy is an essential supportive method for acute pancreatitis treatment, yet, failed to achieve satisfactory therapeutic outcomes. To date, it is still challenging to develop therapeutic medicine to redress the intricate microenvironment promptly in the inflamed pancreas, and more importantly, avoid multi-organ failure. The understanding of the acute pancreatitis, including the causes, mechanism, and severity judgment, could help the scientists bring up more effective intervention and treatment strategies. New formulation approaches have been investigated to precisely deliver therapeutics to inflammatory lesions in the pancreas, and some even could directly attenuate the pancreatic damages. In this review, we will briefly introduce the involved pathogenesis and underlying mechanisms of acute pancreatitis, as well as the traditional Chinese medicine and the new drug option. Most of all, we will summarize the drug delivery strategies to reduce inflammation and potentially prevent the further development of pancreatitis, with an emphasis on the bifunctional nanoparticles that act as both drug delivery carriers and therapeutics.
Collapse
Affiliation(s)
- Xue Jiang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Wen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shihui Bao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Municipal Key Laboratory of Paediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|