1
|
Zhang J, Zhou H, Cai Y, Yoshida S, Li Y, Zhou Y. Melatonin: Unveiling the functions and implications in ocular health. Pharmacol Res 2024; 205:107253. [PMID: 38862072 DOI: 10.1016/j.phrs.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Piekarska K, Bonowicz K, Grzanka A, Jaworski ŁM, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K, Gagat M. Melatonin and TGF-β-Mediated Release of Extracellular Vesicles. Metabolites 2023; 13:metabo13040575. [PMID: 37110233 PMCID: PMC10142249 DOI: 10.3390/metabo13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response. Among the well-known cytokines allowing for the development and proper functioning of the immune system by mediating cell survival and cell-death-inducing signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are noteworthy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti- and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress capabilities of TGF-β known from the literature. Together with the chemokines, the immune system response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular communication shows the relationship between the TGF-β signaling pathway and the extracellular vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on melatonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication leading to secretion of the different EV populations.
Collapse
Affiliation(s)
- Klaudia Piekarska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Łukasz M Jaworski
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| |
Collapse
|
3
|
Iacobelli P. Circadian dysregulation and Alzheimer’s disease: A comprehensive review. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD), the foremost variant of dementia, has been associated with a menagerie of risk factors, many of which are considered to be modifiable. Among these modifiable risk factors is circadian rhythm, the chronobiological system that regulates sleep‐wake cycles, food consumption timing, hydration timing, and immune responses amongst many other necessary physiological processes. Circadian rhythm at the level of the suprachiasmatic nucleus (SCN), is tightly regulated in the human body by a host of biomolecular substances, principally the hormones melatonin, cortisol, and serotonin. In addition, photic information projected along afferent pathways to the SCN and peripheral oscillators regulates the synthesis of these hormones and mediates the manner in which they act on the SCN and its substructures. Dysregulation of this cycle, whether induced by environmental changes involving irregular exposure to light, or through endogenous pathology, will have a negative impact on immune system optimization and will heighten the deposition of Aβ and the hyperphosphorylation of the tau protein. Given these correlations, it appears that there is a physiologic association between circadian rhythm dysregulation and AD. This review will explore the physiology of circadian dysregulation in the AD brain, and will propose a basic model for its role in AD‐typical pathology, derived from the literature compiled and referenced throughout.
Collapse
Affiliation(s)
- Peter Iacobelli
- Department of Arts and Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
4
|
Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022; 10:999322. [PMID: 36299487 PMCID: PMC9589221 DOI: 10.3389/fcell.2022.999322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non–myelinating, phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re–growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system. Schwann cells react to changes in the external circadian clock clues and to the Zeitgeber hormone melatonin by altering their plasticity. This raises the question of whether melatonin regulates Schwann cell activity during neurorepair and if circadian control and rhythmicity of Schwann cell functions are vital aspects of neuroregeneration. Here, we have focused on different schools of thought and emerging concepts of melatonin–mediated signalling in Schwann cells underlying peripheral nerve regeneration and discuss circadian rhythmicity as a possible component of neurorepair.
Collapse
|
5
|
Palego L, Giannaccini G, Betti L. Neuroendocrine Response to Psychosocial Stressors, Inflammation Mediators and Brain-periphery Pathways of Adaptation. Cent Nerv Syst Agents Med Chem 2020; 21:2-19. [PMID: 33319677 DOI: 10.2174/1871524920999201214231243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
Threats, challenging events, adverse experiences, predictable or unpredictable, namely stressors, characterize life, being unavoidable for humans. The hypothalamus-pituitary-adrenal axis (HPA) and the sympathetic nervous system (SNS) are well-known to underlie adaptation to psychosocial stress in the context of other interacting systems, signals and mediators. However, much more effort is necessary to elucidate these modulatory cues for a better understanding of how and why the "brain-body axis" acts for resilience or, on the contrary, cannot cope with stress from a biochemical and biological point of view. Indeed, failure to adapt increases the risk of developing and/or relapsing mental illnesses such as burnout, post-traumatic stress disorder (PTSD), and at least some types of depression, even favoring/worsening neurodegenerative and somatic comorbidities, especially in the elderly. We will review here the current knowledge on this area, focusing on works presenting the main brain centers responsible for stressor interpretation and processing, together with those underscoring the physiology/biochemistry of endogenous stress responses. Autonomic and HPA patterns, inflammatory cascades and energy/redox metabolic arrays will be presented as allostasis promoters, leading towards adaptation to psychosocial stress and homeostasis, but also as possible vulnerability factors for allostatic overload and non-adaptive reactions. Besides, the existence of allostasis buffering systems will be treated. Finally, we will suggest promising lines of future research, particularly the use of animal and cell culture models together with human studies by means of high-throughput multi-omics technologies, which could entangle the biochemical signature of resilience or stress-related illness, a considerably helpful facet for improving patients' treatment and monitoring.
Collapse
Affiliation(s)
- Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Betti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|