1
|
Gimonneau G, Hounyèmè RE, Quartey M, Barry I, Ravel S, Boulangé A. Application of biomolecular techniques on tsetse fly puparia for species identification at larvipostion sites. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-7. [PMID: 38444230 DOI: 10.1017/s0007485324000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Puparia are commonly found in tsetse fly larviposition sites during studies on larval ecology. This chitinous shell is representative of past or ongoing exploitation of these sites by tsetse flies. The morphological characteristics of the puparium are not sufficiently distinctive to allow identification of the species. This study explores the applicability of biomolecular techniques on empty puparia for tsetse fly species identification. Five techniques were compared for DNA extraction from tsetse fly puparia, 1/Chelex® 100 Resin, 2/CTAB, 3/Livak's protocol, 4/DEB + proteinase K and 5/QIAamp® DNA Mini kit, using two homogenisation methods (manual and automated). Using a combination of two primer pairs, Chelex, CTAB, and DEB + K proved the most efficient on fresh puparia with 90, 85, and 70% samples identified, respectively. Shifting from fresh to one- to nine-month-old puparia, the Chelex method gave the best result allowing species identification on puparia up to seven months old. The subsequent testing of the Chelex extraction protocol identified 152 (60%) of 252 field-collected puparia samples at species level. The results show that reliable genetic identification of tsetse flies species can be performed from empty puparia, what can prove of great interest for future ecological studies on larviposition sites. The Chelex technique was the most efficient for DNA extraction, though the age-limit of the samples stood at seven months, beyond which DNA degradation probably compromises the genetic analysis.
Collapse
Affiliation(s)
- Geoffrey Gimonneau
- Unité de Recherche sur les Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- CIRAD, UMR INTERTRYP, Bobo-Dioulasso 01, Burkina Faso
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Robert Eustache Hounyèmè
- Unité de Recherche sur les Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- CIRAD, UMR INTERTRYP, Bobo-Dioulasso 01, Burkina Faso
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Myra Quartey
- Unité de Recherche sur les Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Issiaka Barry
- Unité de Recherche sur les Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Sophie Ravel
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Alain Boulangé
- Unité de Recherche sur les Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- CIRAD, UMR INTERTRYP, Bobo-Dioulasso 01, Burkina Faso
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| |
Collapse
|
2
|
Qiu Y, Zhao H, He X, Zhu F, Zhang F, Liu B, Liu Q. Effects of fermented feed of Pennisetum giganteum on growth performance, oxidative stress, immunity and gastrointestinal microflora of Boer goats under thermal stress. Front Microbiol 2023; 13:1030262. [PMID: 36713179 PMCID: PMC9879058 DOI: 10.3389/fmicb.2022.1030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction This study was conducted to evaluate the effects of fermented feed of Pennisetum giganteum (P. giganteum) on growth performance, oxidative stress, immunity and gastrointestinal microflora of Boer goats under thermal stress. Methods The study was conducted during 45 days using twenty 2 months Boer goats. The goats were randomly allocated into two groups: NPG (n = 10; normal P. giganteum) and FPG (n = 10; fermented feed of P. giganteum), and the ratio of concentrates to roughage was 3:2. Both groups of animals were kept in sheds and exposed to summer thermal stress from 10:00 h to 18:00 h (temperature and humidity index, THI > 78). At the end of the study, the animals were slaughtered and assessed for various characteristics. Results The findings from the study revealed that FPG-feeding significantly increased (p < 0.05) average daily gain (ADG, 48.18 g) and carcass weight (4.38 kg), while decreased (p < 0.01) average daily feed intake (ADFI, 0.74 kg/d; p < 0.01) and the feed:gain (F/G, 15.36) ratio. The CAT, GSH-Px activities and GSH in serum, liver and spleen, and the levels of IgA, IgG, IgM, IL-2, IL-4 and IL-1β in serum of FPG-fed goats were significantly higher (p < 0.05) than those of NPG-feeding goats. Further, we found that FPG feed is rich in nutrients with Lactobacillus (65.83%) and Weissella (17.80%). Results for gastrointestinal microbiota composition showed that FPG-feeding significantly enhanced the abundance of Lactobacillus and unidentified Clostridiales, and reduced Anaerovibrio and Methanobrevibacter. Meanwhile, Spearman's correlation analysis showed that these microbiotas were closely related to the improvement of oxidative stress and immune indexes of goats. Discussion These results demonstrated that FPG-feeding not only reduces oxidative stress and improves ROS clearance to enhance antioxidant defense system, but also improves gastrointestinal microbiota to enhance immune function by overcoming the adverse effects of heat stress, and further improve growth performance of goats.
Collapse
Affiliation(s)
- Yuyang Qiu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyu He
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Furong Zhu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fengli Zhang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China,College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China,*Correspondence: Bin Liu, ; Qinghua Liu,
| | - Qinghua Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China,*Correspondence: Bin Liu, ; Qinghua Liu,
| |
Collapse
|
3
|
Comparison and Validation of Ichthyoplankton DNA Extraction Methods. Methods Protoc 2021; 4:mps4040087. [PMID: 34940398 PMCID: PMC8708074 DOI: 10.3390/mps4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Ichthyoplankton is the cluster of planktonic organisms that consists of fish eggs and larvae. These planktonic stages belong to the temporary zooplankton, representing future exploitable stocks. The study of the early ontogenesis of fish plays a key role in the understanding and evaluation of these populations through the study of their abundance and their spatio-temporal distribution. To better understand and protect these fisheries resources, it is essential to identify the different stages of fish embryonic development. This identification is usually performed using the classical method, based on morphological criteria under a binocular magnifying glass; however, this methodology is not always sufficient and is time consuming and, therefore, it is necessary to rely increasingly on molecular tools. The major problem with these tools is the yield and quality of the nucleic acids extracted from ichthyoplankton, especially in the case of eggs, which are small. Several methods have been used for DNA extraction from ichthyoplankton, either automated or manual, but very often from larvae or adults. In the present work, five fish egg DNA extraction protocols were compared based on their DNA yield and extraction quality, verified by agarose gel electrophoresis and quantitative PCR amplification. The results showed that extraction by our heat-protocol for direct PCR (Hp-dPCR) presents the simplest and cheapest protocol of all the kits used in this study, providing a sufficient quantity and quality of nucleic acids to be used for PCR amplification, and being within the reach of third world laboratories that often do not have sufficiently large budgets to obtain automated kits.
Collapse
|
4
|
Akello JO, Leib SL, Engler O, Beuret C. Evaluation of Viral RNA Recovery Methods in Vectors by Metagenomic Sequencing. Viruses 2020; 12:v12050562. [PMID: 32438629 PMCID: PMC7290855 DOI: 10.3390/v12050562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent on sample processing. We evaluated the quantitative effect of six different extraction methods in recovering viral RNA in vectors using negative tick homogenates spiked with serial dilutions of tick-borne encephalitis virus (TBEV) and surrogate Langat virus (LGTV). Evaluation was performed using qPCR and mNGS. Sensitivity and proof of concept of optimal method was tested using naturally positive TBEV tick homogenates and positive dengue, chikungunya, and Zika virus mosquito homogenates. The amount of observed viral genome copies, percentage of mapped reads, and genome coverage varied among different extractions methods. The developed Method 5 gave a 120.8-, 46-, 2.5-, 22.4-, and 9.9-fold increase in the number of viral reads mapping to the expected pathogen in comparison to Method 1, 2, 3, 4, and 6, respectively. Our developed Method 5 termed ROVIV (Recovery of Viruses in Vectors) greatly improved viral RNA recovery and identification in vectors using mNGS. Therefore, it may be a more sensitive method for use in arbovirus surveillance.
Collapse
Affiliation(s)
- Joyce Odeke Akello
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Austrasse, CH-3700 Spiez, Switzerland;
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
- Correspondence: (J.O.A.); (C.B.); Tel.: +41-316328646 (J.O.A.); +41-584681664 (C.B.)
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland;
| | - Olivier Engler
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Austrasse, CH-3700 Spiez, Switzerland;
| | - Christian Beuret
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Austrasse, CH-3700 Spiez, Switzerland;
- Correspondence: (J.O.A.); (C.B.); Tel.: +41-316328646 (J.O.A.); +41-584681664 (C.B.)
| |
Collapse
|