1
|
Crosby T, Stadler LB. Plasmid Backbone Impacts Conjugation Rate, Transconjugant Fitness, and Community Assembly of Genetically Bioaugmented Soil Microbes for PAH Bioremediation. ACS ENVIRONMENTAL AU 2025; 5:241-252. [PMID: 40125281 PMCID: PMC11926752 DOI: 10.1021/acsenvironau.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 03/25/2025]
Abstract
Many polycyclic aromatic hydrocarbons (PAHs) in the environment resulting from crude oil spills and the incomplete combustion of organic matter are highly toxic, mutagenic, or carcinogenic to microorganisms and humans. Bioremediation of PAHs using microorganisms that encode biodegradative genes is a promising approach for environmental PAH cleanup. However, the viability of exogenous microorganisms is often limited due to competition with the native microbial community. Instead of relying on the survival of one or a few species of bacteria, genetic bioaugmentation harnesses conjugative plasmids that spread functional genes to native microbes. In this study, two plasmid backbones that differ in copy number regulation, replication, and mobilization genes were engineered to contain a PAH dioxygenase gene (bphC) and conjugated to soil bacteria including Bacillus subtilis, Pseudomonas putida, and Acinetobacter sp., as well as a synthetic community assembled from these bacteria. Fitness effects of the plasmids in transconjugants significantly impacted the rates of conjugative transfer and biotransformation rates of a model PAH (2,3-dihydroxybiphenyl). A synergistic effect was observed in which synthetic communities bioaugmented with bphC had significantly higher PAH degradation rates than bacteria grown in monocultures. Finally, conjugation rates were significantly associated with the relative abundances of bacteria in synthetic communities, underscoring how fitness impacts of plasmids can shape the microbial community structure and function.
Collapse
Affiliation(s)
- Tessa
M. Crosby
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| |
Collapse
|
2
|
Almutairi HH. Microbial communities in petroleum refinery effluents and their complex functions. Saudi J Biol Sci 2024; 31:104008. [PMID: 38766506 PMCID: PMC11097069 DOI: 10.1016/j.sjbs.2024.104008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Petroleum refinery effluents (PRE) are a significant cause of pollution. It contains toxic compounds such as total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs), as well as heavy metals. They show a huge threat facing the aquaculture habitats, human health, and the environment if they are not treated before discharging into the environment. Physical and chemical procedures are used to treat hydrocarbon pollution in PRE, but these techniques often result in the formation of hazardous by-products during the remediation process. However, PRE contains various microbial communities, including bacteria, yeast, microalgae, and fungi. The bioremediation and biodegradation of oil contaminants are the primary functions of these microbial communities. However, these microorganisms can perform various additional functions including but not limited to heavy metals removal, production of biosurfactants, and nitrogen fixation. This review contributes to the comprehension of natural microbial communities and their complex functions in petroleum refinery effluents. Understanding microbial communities would facilitate the advancement of innovative biotechnology aimed at treating PRE, improving bioremediation processes, and potentially transforming PRE into valuable bio-products. Moreover, it assists in determining the most effective bioaugmentation strategy to enhance biodegradation and bioremediation in PRE. The review highlights the potential for sustainable green approaches using microbial communities to replace toxic chemical therapies and expensive physical treatments in the future.
Collapse
Affiliation(s)
- Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Li J, Peng W, Yin X, Wang X, Liu Z, Liu Q, Deng Z, Lin S, Liang R. Identification of an efficient phenanthrene-degrading Pseudarthrobacter sp. L1SW and characterization of its metabolites and catabolic pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133138. [PMID: 38086304 DOI: 10.1016/j.jhazmat.2023.133138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Phenanthrene, a typical chemical of polycyclic aromatic hydrocarbons (PAHs) pollutants, severely threatens health of wild life and human being. Microbial degradation is effective and environment-friendly for PAH removal, while the phenanthrene-degrading mechanism in Gram-positive bacteria is unclear. In this work, one Gram-positive strain of plant growth-promoting rhizobacteria (PGPR), Pseudarthrobacter sp. L1SW, was isolated and identified with high phenanthrene-degrading efficiency and great stress tolerance. It degraded 96.3% of 500 mg/L phenanthrene in 72 h and kept stable degradation performance with heavy metals (65 mg/L of Zn2+, 5.56 mg/L of Ni2+, and 5.20 mg/L of Cr3+) and surfactant (10 CMC of Tween 80). Strain L1SW degraded phenanthrene mainly through phthalic acid pathway, generating intermediate metabolites including cis-3,4-dihydrophenanthrene-3,4-diol, 1-hydroxy-2-naphthoic acid, and phthalic acid. A novel metabolite (m/z 419.0939) was successfully separated and identified as an end-product of phenanthrene, suggesting a unique metabolic pathway. With the whole genome sequence alignment and comparative genomic analysis, 19 putative genes associated with phenanthrene metabolism in strain L1SW were identified to be distributed in three gene clusters and induced by phenanthrene and its metabolites. These findings advance the phenanthrene-degrading study in Gram-positive bacteria and promote the practical use of PGPR strains in the bioremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Junlan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianqi Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhixiang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qinchen Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Su Y, Zhu M, Zhang H, Chen H, Wang J, Zhao C, Liu Q, Gu Y. Application of bacterial agent YH for remediation of pyrene-heavy metal co-pollution system: Efficiency, mechanism, and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119841. [PMID: 38109828 DOI: 10.1016/j.jenvman.2023.119841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
The combination of organic and heavy metal pollutants can be effectively and sustainably remediated using bioremediation, which is acknowledged as an environmentally friendly and economical approach. In this study, bacterial agent YH was used as the research object to explore its potential and mechanism for bioremediation of pyrene-heavy metal co-contaminated system. Under the optimal conditions (pH 7.0, temperature 35°C), it was observed that pyrene (PYR), Pb(II), and Cu(II) were effectively eliminated in liquid medium, with removal rates of 43.46%, 97.73% and 81.60%, respectively. The microscopic characterization (SEM/TEM-EDS, XPS, XRD and FTIR) results showed that Pb(II) and Cu(II) were eliminated by extracellular adsorption and intracellular accumulation of YH. Furthermore, the presence of resistance gene clusters (cop, pco, cus and pbr) plays an important role in the detoxification of Pb(II) and Cu(II) by strains YH. The degradation rate of PYR reached 72.51% in composite contaminated soil, which was 4.33 times that of the control group, suggesting that YH promoted the dissipation of pyrene. Simultaneously, the content of Cu, Pb and Cr in the form of F4 (residual state) increased by 25.17%, 6.34% and 36.88%, respectively, indicating a decrease in the bioavailability of heavy metals. Furthermore, YH reorganized the microbial community structure and enriched the abundance of hydrocarbon degradation pathways and enzyme-related functions. This study would provide an effective microbial agent and new insights for the remediation of soil and water contaminated with organic pollutants and heavy metals.
Collapse
Affiliation(s)
- Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiguo Wang
- Toroivd Technology Company Limited, Shanghai, 200439, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| |
Collapse
|
5
|
Goveas LC, Selvaraj R, Vinayagam R, Sajankila SP, Pugazhendhi A. Biodegradation of benzo(a)pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: Degradation, inhibition kinetics and metabolic pathway. CHEMOSPHERE 2023; 321:138066. [PMID: 36781003 DOI: 10.1016/j.chemosphere.2023.138066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Benzo(a)pyrene, a five-ring polyaromatic hydrocarbon, originating from coal tar, crude oil, tobacco, grilled foods, car exhaust etc, is highly persistent in the environment. It has been classified as a Group I carcinogen, as on its ingestion in human body, diol epoxide metabolites are generated, which bind to DNA causing mutations and eventual cancer. Among various removal methods, bioremediation is most preferred as it is a sustainable approach resulting in complete mineralization of benzo(a)pyrene. Therefore, in this study, biodegradation of benzo(a)pyrene was performed by two strains of Pseudomonas, i. e WDE11 and WD23, isolated from refinery effluent. Maximum benzo(a)pyrene tolerance was 250 mg/L and 225 mg/L against Pseudomonas sp. WD23 and Pseudomonas sp. WDE11 correspondingly. Degradation rate constants varied between 0.0468 and 0.0513/day at 50 mg/L with half-life values between 13.5 and 14.3 days as per first order kinetics, while for 100 mg/L, the respective values varied between 0.006 and 0.007 L/mg. day and 15.28-16.67 days, as per second order kinetics. The maximum specific growth rate of strains WDE11 and WD23 was 0.3512/day and 0.38/day accordingly, while concentrations over 75 mg/L had an inhibitory effect on growth. Major degradation metabolites were identified as dihydroxy-pyrene, naphthalene-1,2-dicarboxylic acid, salicylic acid, and oxalic acid, indicating benzo(a)pyrene was degraded via pyrene intermediates by salicylate pathway through catechol meta-cleavage. The substantial activity of the catechol 2,3 dioxygenase enzyme was noted during the benzo(a)pyrene metabolism by both strains with minimal catechol 1,2 dioxygenase activity. This study demonstrates the exceptional potential of indigenous Pseudomonas strains in complete metabolism of benzo(a)pyrene.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology, Nitte - 574110, Karnataka, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shyama Prasad Sajankila
- Nitte (Deemed to be University), Department of Biotechnology Engineering, NMAM Institute of Technology, Nitte - 574110, Karnataka, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
6
|
Su Y, Sun S, Liu Q, Zhao C, Li L, Chen S, Chen H, Wang Y, Tang F. Characterization of the simultaneous degradation of pyrene and removal of Cr(VI) by a bacteria consortium YH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158388. [PMID: 36049693 DOI: 10.1016/j.scitotenv.2022.158388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms that can simultaneously remediate organic pollutants and heavy metal contamination are great significance in bioremediation. Nevertheless, reports of such microorganisms are still scarce. Here, Pseudomonas sp. YH-1 and Rhodococcus sp. YH-3 were isolated and identified, and they showed greater tolerance to hexavalent (VI) (750 and 800 mg·L-1). The constructed bacteria consortium YH (YH-1:YH-3 = 1:1) could simultaneously degrade 41.69% of pyrene (50 mg·L-1) and remove 76.67% of Cr(VI) (30 mg·L-1) within 5 days. The potential mechanism of Cr(VI) tolerance of YH was further explored by genomic and microscopic analysis. The results showed that YH responded to Cr(VI) stress mainly through efflux of Cr(VI) by chrA and copZ, chromate reduction, DNA-repaired proteases reduces ROS damage, and biosorption by carboxyl, hydroxyl, amino functional groups. Strains YH-1 and YH-3 also contained a variety of genes associated with resistance to other heavy metals, such as cadmium (czcBD), mercury (merAPTR), manganese (mntABC) and copper (copAC, cusABRF and pcoBD). Based on GC-MS and genomic analysis, pyrene was degraded via salicylic acid and phthalic acid pathways. Moreover, a great number of genes related to aromatic hydrocarbon catabolism were identified in the genomes of YH-1 and YH-3. These results confirmed the potential application of the bacteria consortium YH in the bioremediation of water and soil co-contaminated with PAHs-heavy metals.
Collapse
Affiliation(s)
- Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| |
Collapse
|
7
|
Zhang T, Zhang H. Electrochemical analysis for the rapid screening of copper-tolerant bacteria. Bioelectrochemistry 2022; 148:108276. [DOI: 10.1016/j.bioelechem.2022.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
|
8
|
Lu YT, Zhang Y, Xiang XX, Zhang SC, Yao H. Combined pollution of heavy metals and polycyclic aromatic hydrocarbons in the soil in Shenfu Region, China: a case of three different cities. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:167. [PMID: 36449123 DOI: 10.1007/s10661-022-10747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
It is a challenging issue to investigate the combined pollution of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in urban soils. The purpose of this study was to determine the concentrations of these two pollutants in soils in Shenyang, Fushun, and Fushun New District, to analyze their distribution, their interaction, and co-contamination levels. The concentrations of heavy metals were measured by inductively coupled plasma mass spectrometry (ICP-MS), while the concentrations of 21 kinds of PAH were analyzed by gas chromatography-mass spectrometry (GC-MS). Based on the analysis of pollution concentrations and distribution patterns, the intrinsic links between heavy metals and PAHs in three different cities were assessed using a variety of multivariate analysis methods. Compared to Shenfu New District, the concentration of pollutants in Shenyang and Fushun shows a higher level. Moreover, the results of redundancy analysis (RDA) of samples may quantify the possibility of combined pollution of different heavy metal elements and PAHs. This study also affirms the important role of multivariate analysis in being used to reveal the complex interactions and spatial distribution of different pollutants.
Collapse
Affiliation(s)
- Yin-Tao Lu
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, 100044, China
| | - Yue Zhang
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, 100044, China
| | - Xin-Xin Xiang
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, 100044, China
- China Banknote Printing and Minting Corporation, Beijing, 100044, China
| | - Shi-Chao Zhang
- Energy Saving & Environmental Protection &, Occupational Safety and Health Research Institute, Beijing, 100081, China
| | - Hong Yao
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China.
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing, 100044, China.
| |
Collapse
|
9
|
Goveas LC, Selvaraj R, Kumar PS, Vinayagam R, Sajankila SP. Biodegradation kinetics and metabolism of Benzo(a)fluorene by Pseudomonas strains isolated from refinery effluent. CHEMOSPHERE 2022; 307:136041. [PMID: 35981623 DOI: 10.1016/j.chemosphere.2022.136041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The final sinkers of polyaromatic hydrocarbons are water sources, where they undergo bioaccumulation and biomagnification, leading to adverse mutagenic, carcinogenic, and teratogenic effects on exposure in flora, fauna, and humans. Two indigenous strains, Pseudomonas sp. WDE11 and Pseudomonas sp. WD23, isolated from refinery effluent, degraded over 97.5% of benzo(a)fluorene (10 mg/L) in 7 days. On growth at concentration dependent amounts (50 mg/L and 100 mg/L), the degradation reduced to approximately 90% and 80% respectively in 56 days. Degradation kinetics was concentration dependent, as degradation followed first-order and second-order kinetics for 50 mg/L and 100 mg/L respectively. The half-life for degradation of benzo(a)fluorene ranged between 11.64 - 12.26 days and 13.11-14.5 days for strains WDE11 and WD23 respectively. The values of Andrew-Haldane kinetic parameters i.e. μmax, Ks, and Ki were 0.306 day-1, 11.11 mg/L, and 120.41 mg/L for strain WDE11 respectively, while for strain WD23, the respective values were 0.312 day-1, 9.97 mg/L, and 152 mg/L. Degradation metabolites were identified by their MS patterns as 3,4-dihydroxy fluorene, 2-(1-oxo-2,3-dihydro-1H-inden-2-yl) acetic acid, 3,4-dihydrocoumarin, salicylic acid, catechol, and oxalic acid. Metabolic pathway of degradation constructed, revealed that benzo(a)fluorene was metabolized via the formation of fluorene, further metabolized by salicylate pathway forming catechol. The catechol formed was degraded into simpler metabolites by meta-cleavage pathway, which was validated by catechol 2,3 dioxygenase enzyme activity.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shyama Prasad Sajankila
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| |
Collapse
|
10
|
Martinez-Varela A, Casas G, Berrojalbiz N, Piña B, Dachs J, Vila-Costa M. Polycyclic Aromatic Hydrocarbon Degradation in the Sea-Surface Microlayer at Coastal Antarctica. Front Microbiol 2022; 13:907265. [PMID: 35910648 PMCID: PMC9329070 DOI: 10.3389/fmicb.2022.907265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
11
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Mukherjee A, Zaveri P, Patel R, Shah MT, Munshi NS. Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113546. [PMID: 34435573 DOI: 10.1016/j.jenvman.2021.113546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Microbial Fuel Cell (MFC) is an innovative bio-electrochemical approach which converts biochemical energy inherent in wastewater into electrical energy, thus contributing to circular economy. Five electrogenic bacteria, Kocuria rosea (GTPAS76), two strains of Bacillus circulans (GTPO28 and GTPAS54), and two strains of Corynebacterium vitaeruminis (GTPO38 and GTPO42) were isolated from a common effluent treatment plant (CETP) and were used individually as well as in consortium form to run double chambered "H" type microbial fuel cell. Individually they could produce voltage in the range of 0.4-0.7 V in the MFC systems. Consortium developed using GTPO28, GTPO38, GTPAS54 and GTPAS76 were capable of producing voltage output of 0.8 V with 81.81 % and 64 % COD and BOD reduction, respectively. The EPS production capacity and electricity generation by the isolated bacteria correlated significantly (r = 0.72). Various parameters like, effect of preformed biofilm, length of salt bridge and its reuse, aeration, substrate concentration and external resistance were studied in detail. The study emphasizes on improving the commercialization aspect of MFC with repeated use of salt bridge and improving wastewater treatment potential after optimization of MFC system. Polarization curve and power density trends were studied in optimized MFC. A maximum power density and current density achieved were 18.15 mW/m2 and 370.37 mA/m2, respectively using 5 mM sodium benzoate. This study reports the use of sodium benzoate as a substrate along with reusing of the salt bridge in MFC study with promising results for BOD and COD reduction, proving it to be futuristic technology for bio-based circular ecosystem development.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Purvi Zaveri
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India; Biocare Research India Pvt. Ltd., Ahmedabad, 380006, Gujarat, India
| | - Rushika Patel
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India; School of Sciences, Rai University, Ahmedabad, 382260, Gujarat, India
| | - Manisha T Shah
- Department of Electrical Engineering, Institute of Technology, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Nasreen S Munshi
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
13
|
Ray M, Kumar V, Banerjee C, Gupta P, Singh S, Singh A. Investigation of biosurfactants produced by three indigenous bacterial strains, their growth kinetics and their anthracene and fluorene tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111621. [PMID: 33396141 DOI: 10.1016/j.ecoenv.2020.111621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The study explored the polycyclic aromatic hydrocarbon tolerance of indigenous biosurfactant producing microorganisms. Three bacterial species were isolated from crude oil contaminated sites of Haldia, West Bengal. The three species were screened for biosurfactant production and identified by 16S rRNA sequencing as Brevundimonas sp. IITISM 11, Pseudomonas sp. IITISM 19 and Pseudomonas sp. IITISM 24. The strains showed emulsification activities of 51%, 57% and 63%, respectively. The purified biosurfactants were characterised using FT-IR, GC-MS and NMR spectroscopy and found to have structural similarities to glycolipopeptides, cyclic lipopeptides and glycolipids. The biosurfactants produced were found to be stable under a wide range of temperature (0-100 °C), pH (4-12) and salinity (up to 20% NaCl). Moreover, the strains displayed tolerance to high concentrations (275 mg/L) of anthracene and fluorene and showed a good amount of cell surface hydrophobicity with different hydrocarbons. The study reports the production and characterisation of biosurfactant by Brevundimonas sp. for the first time. Additionally, the kinetic parameters of the bacterial strains grown on up to 300 mg/L concentration of anthracene and fluorene, ranged between 0.0131 and 0.0156 µmax (h-1), while the Ks(mg/L) ranged between 59.28 and 102.66 for Monod's Model. For Haldane-Andrew's model, µmax (h-1) varied between 0.0168 and 0.0198. The inhibition constant was highest for Pseudomonas sp. IITISM 19 on anthracene and Brevundimonas sp. IITISM 11 on fluorene. The findings of the study suggest that indigenous biosurfactant producing strains have tolerance to high PAH concentrations and can be exploited for bioremediation purposes.
Collapse
Affiliation(s)
- Madhurya Ray
- Labortaory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Vipin Kumar
- Labortaory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India.
| | - Chiranjib Banerjee
- Laboratory of Bio-energy, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Pratishtha Gupta
- Labortaory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Shalini Singh
- Labortaory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Ankur Singh
- Labortaory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
14
|
Lukhele T, Nyoni H, Mamba BB, Msagati TAM. Unraveling bacterial diversity in oil refinery effluents. Arch Microbiol 2020; 203:1231-1240. [PMID: 33079208 DOI: 10.1007/s00203-020-02062-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Oil refinery effluents are among stressful environments, and they are characterized by alkaline pH, high concentrations of dissolved solids, electrical conductivity, and metals (mainly Fe, Al, B, Sr, Mn, Cu, Ni). In this study, bacterial diversity in these habitats was inferred from full-length 16S rRNA gene sequences obtained from the PacBio® sequencing platform. The results have shown low bacterial diversity in both raw and treated effluents, with sequences representing only two phyla: Firmicutes and Proteobacteria. Sequences from the raw effluents represent four major genera: Bacillus, Wenzhouxiangella, Rhodabaculum, and Halomonas. Whilst bacterial communities from the treated effluents are relatively more diverse as sequences represent five dominant genera: Pseudoxanthomonas, Brevundimonas, Pseudomonas, Rhodobaculum and Rhizobium. Most of the genera represented in the dataset are halophilic or halotolerant microbes known to have the competency to catabolize a broad spectrum of organic and inorganic pollutants. Hypothetically, these bacteria may be relevant for biotechnological and industrial applications, particularly for the remediation of saline industrial wastes.
Collapse
Affiliation(s)
- Thabile Lukhele
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa
| | - Hlengilizwe Nyoni
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa
| | - Bhekie Brilliance Mamba
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa.,State Key Laboratory of Separation and Membranes, Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus Alfred Makudali Msagati
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa. .,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Tengeru, P O Box 447, Arusha, United Republic of Tanzania.
| |
Collapse
|
15
|
Yin C, Xiong W, Qiu H, Peng W, Deng Z, Lin S, Liang R. Characterization of the Phenanthrene-Degrading Sphingobium yanoikuyae SJTF8 in Heavy Metal Co-Existing Liquid Medium and Analysis of Its Metabolic Pathway. Microorganisms 2020; 8:E946. [PMID: 32586023 PMCID: PMC7355620 DOI: 10.3390/microorganisms8060946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/27/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants with great carcinogenic threaten, and metal/PAH-contaminated environments represent one of the most difficult remedial challenges. In this work, Sphingobium yanoikuyae SJTF8 was isolated and identified with great and stable PAH-degrading efficiency even under stress conditions. It could utilize typical PAHs (naphthalene, phenanthrene, and anthracene) and heterocyclic and halogenated aromatic compounds (dibenzothiophene and 9-bromophenanthrene) as the sole carbon source. It could degrade over 98% of 500 mg/L phenanthrene in 4 days, and the cis-3,4-dihydrophenanthrene-3,4-diol was the first-step intermediate. Notably, strain SJTF8 showed great tolerance to heavy metals and acidic pH. Supplements of 0.30 mM of Cu2+, 1.15 mM of Zn2+, and 0.01 mM of Cd2+ had little effect on its cell growth and phenanthrene degradation; phenanthrene of 250 mg/L could still be degraded completely in 48 h. Further, the whole genome sequence of S. yanoikuyae SJTF8 was obtained, and three plasmids were found. The potential genes participating in stress-tolerance and PAH-degradation were annotated and were found mostly distributed in plasmids 1 and 2. Elimination of plasmid 2 resulted in the loss of the PAH-degradation ability. On the basis of genome mining results, the possible degrading pathway and the metabolites of S. yanoikuyae SJTF8 to phenanthrene were predicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.Y.); (W.X.); (H.Q.); (W.P.); (Z.D.); (S.L.)
| |
Collapse
|