1
|
Sha Y, Yan W, Liu X, Chai H, Chen J, Li H, Wang M, Jiang S, Wang S, Ren Y, Li H, Liu Y, Stoeger T, Wajid A, Dodovski A, Gao C, Mingala CN, Andreychuk DB, Yin R. The first report and biological characterization of Avian Orthoavulavirus 16 in wild migratory waterfowl and domestic poultry in China reveal a potential threat to birds. Avian Pathol 2025; 54:40-49. [PMID: 38922304 DOI: 10.1080/03079457.2024.2373366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS First confirmation of AOAV-16 in domestic and wild birds in China.AOAV-16 are low virulent viruses for chickens.Co-circulation/co-infection of AOAV-16 and H9N2 subtype AIV enhanced pathogenicity.Different intergenic sequences and recombination events exist within AOAV-16.
Collapse
Affiliation(s)
- Yuxin Sha
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Weiwen Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xinxin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Haoran Chai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, People's Republic of China
| | - Hongjin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Mengjun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Shanshan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Sijie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yongning Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hongli Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Yifei Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Aleksandar Dodovski
- Department for Avian Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Chao Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Claro N Mingala
- Livestock Biotechnology Center, Philippine Carabao Center, Science City of Muñoz, Nueva Ecija, Philippines
| | - Dmitry B Andreychuk
- Reference Laboratory for Avian Viral Diseases, FGBI "Federal Centre for Animal Health" (FGBI "ARRIAH"), Vladimir, Russia
| | - Renfu Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
2
|
Inuwa B, Atuman YJ, Meseko CA, Shittu I. Sero-detection of antibodies to Avian metaavulavirus 2 in peri-domestic birds, Nigeria. J Immunoassay Immunochem 2022; 43:526-533. [PMID: 34996333 DOI: 10.1080/15321819.2021.2022690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Avian metaavulavirus 2 (AMAV-2) previously known as the avian paramyxovirus-2 causes mild to severe respiratory disease, reduced hatchability and infertility of eggs, including increase in white-shelled eggs in chickens and Turkey breeders. When exacerbated by secondary pathogens and environmental stresses, infection is more severe leading to significant economic losses. This study was conducted to determine, if any, the presence of antibodies to Avian metaavulavirus 2 (AMAV-2) in peri-domestic birds in Bauchi State, Nigeria. In all, one hundred sera samples from pigeons (n = 10) and doves (n = 90 were collected in Bauchi, Nigeria. Based on hemagglutination-inhibition (HI) test, overall seroprevalence of 27.0% (27/100) was recorded. In pigeon, the seroprevalence was 80.0% while 21.1% was recorded for dove with HI antibody titers ranging from 3log2 to 8log2. There was statistical significance obtained between dove and pigeon sera tested (p < .05). Until now and to the best of our knowledge, there are no reports on AMAV-2 in poultry or wild birds in Nigeria. This study, thus, provides preliminary information on AMAV-2 seroprevalence in Nigerian peri-domestic birds. The need to conduct further studies in other avian species and wild birds in Nigeria is highlighted.
Collapse
Affiliation(s)
- Bitrus Inuwa
- Regional Laboratory for Animal Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, Pulawy, Nigeria
| | - Yakubu Joel Atuman
- Bauchi Outstation Investigation Laboratory, National Veterinary Research Institute, Bauchi, Nigeria
| | - Clement Adebajo Meseko
- Regional Laboratory for Animal Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, Pulawy, Nigeria
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, Pulawy, Nigeria
| |
Collapse
|
3
|
Novel avian orthoavulavirus 13 in wild migratory waterfowl: biological and genetic considerations. Vet Res Commun 2021; 46:159-168. [PMID: 34580815 DOI: 10.1007/s11259-021-09839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Avian orthoavulavirus 13 (AOAV-13), formerly known as Avian paramyxovirus 13 (APMV-13), is found scatteredly in wild birds around the world. Although four complete genome sequences of AOAV-13 had been identified since the first discovery in Japan in 2003, the information available on the genetic variation and biological characteristics of AOAV-13 is still limited. In the present study, we isolated six AOAV-13 strains from fecal samples of wild migratory waterfowls during annual (2014-2018) viral surveillance of wild bird populations from wetland and domestic poultry of live bird markets (LBMs) in China. The phylogenetic analyses based on the HN and F genes showed that they had very close relationship and the molecular clock estimations showed a low evolutionary rate of AOAV-13. However, Bean goose/Hubei/V97-1/2015 is 1953 nt in size (ORF, 1, 776 nt), which is a unique size and longer than other reported AOAV-13 strains. Additionally, four repeats of conserved sequences "AAAAAT" was presented in the 5'-end trailer region of Swan goose/Hubei/VI49-1/2016, which is unprecedented in the AOAV-13. These findings highlight the importance of continuous monitoring the specific species of APMVs.
Collapse
|
4
|
Coding-Complete Genome Sequence of Avian orthoavulavirus 16, Isolated from Emperor Goose (Anser canagicus) Feces, Alaska, USA. Microbiol Resour Announc 2021; 10:10/1/e01275-20. [PMID: 33414353 PMCID: PMC8407729 DOI: 10.1128/mra.01275-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sequenced the coding-complete genome of an avian orthoavulavirus serotype 16 (AOAV-16) isolate recovered from emperor goose (Anser canagicus) feces collected in Alaska. The detection of AOAV-16 in North America and genomic sequencing of the resultant isolate confirms that the geographic distribution of this virus extends beyond Asia. We sequenced the coding-complete genome of an avian orthoavulavirus serotype 16 (AOAV-16) isolate recovered from emperor goose (Anser canagicus) feces collected in Alaska. The detection of AOAV-16 in North America and genomic sequencing of the resultant isolate confirms that the geographic distribution of this virus extends beyond Asia.
Collapse
|
5
|
Wajid A, Mayahi V, Yin R, Ain Q, Mohiuddin A, Khalid F, Rehim A, Manan A, Baksh M. Genomic and biological characteristics of Avian Orthoavulavirus-1 strains isolated from multiple wild birds and backyard chickens in Pakistan. Trop Anim Health Prod 2021; 53:90. [PMID: 33415381 DOI: 10.1007/s11250-020-02497-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Circulation of the dominant sub-genotype VII.2 of Avian Orthoavulavirus-1 (AOAV-1) is affecting multiple poultry and non-poultry avian species and causing significant economic losses to the poultry industry worldwide. In countries where ND is endemic, continuous monitoring and characterization of field strains are necessary. In this study, genetic characteristics of eleven AOAV-1 strains were analyzed isolated from wild birds including parakeets (n = 3), lovebird parrot (n = 1), pheasant (n = 1), peacock (n = 1), and backyard chickens (n = 5) during 2015-2016. Genetic characterization (genome size [15,192 nucleotides], the presence of typical cleavage site [112-RRQKRF-117]) and biological assessment (HA log 27 to 29 and intracerebral pathogenicity index [ICPI] value ranging from 1.50 to 1.86) showed virulent AOAV-1. Phylogenetic analysis showed that the studied isolates belonged to sub-genotype VII.2 and genetically very closely related (> 98.9%) to viruses repeatedly isolated (2011-2018) from commercial poultry. These findings provide evidence for the existence of epidemiological links between poultry and wild bird species in the region where the disease is prevalent. The deduced amino acid analysis revealed several substitutions in critical domains of fusion and hemagglutinin-neuraminidase genes. The pathogenesis and transmission potential of wild bird-origin AOAV-1 strain (AW-Pht/2015) was evaluated in 21-day-old chickens that showed the strain was highly virulent causing clinical signs and killed all chickens. High viral loads were detected in different organs of the infected chickens correlating with the severity of lesions developed. The continuous monitoring of AOAV-1 isolates in different species of birds will improve our knowledge of the evolution of these viruses, thereby preventing possible panzootic.
Collapse
Affiliation(s)
- Abdul Wajid
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan.
| | - Vafa Mayahi
- Central Laboratory Department, Razi Vaccine and Serum Research Institute Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Road 5333, Changchun, Xi'an, 130062, Jilin, China
| | - Quratul Ain
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Ayesha Mohiuddin
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Farah Khalid
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Asif Rehim
- Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan, Pakistan
| | - Abdul Manan
- Center for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Muqadas Baksh
- Departmeny of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| |
Collapse
|