1
|
Li X, Long H, Peng R, Zou X, Zuo S, Yang Y, Chen M, Yuan H, Liu Z, Wang T, Zhao Q, Guo B, Liu L. A novel role of peroxiredoxin 2 in diabetic kidney disease progression by activating the classically activated macrophages. Sci Rep 2024; 14:28258. [PMID: 39550424 PMCID: PMC11569199 DOI: 10.1038/s41598-024-79678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of deaths due to diabetes mellitus (DM). Due to the complexity of its onset, it is difficult to achieve accurate prevention and treatment. The classically activated macrophage (M1) polarization is a crucial proinflammatory mechanism of DKD, while the interaction and cascade effects of oxidative stress and inflammatory response remain to be elucidated. A urine proteomic analysis of patients with DM indicated that peroxiredoxin 2 (PRDX2) had the higher abundance in DKD. We recently found that PRDX of parasitic protozoa Entamoeba histolytica, which was similar to human PRDX2 in amino acid sequence and spatial structure, could activate the inflammatory response of macrophages through toll-like receptor 4 (TLR4). Hence, our study was designed to explore the role of PRDX2 in chronic inflammation during DKD. Combined with in vivo and in vitro experiments, results showed that the PRDX2 was positively correlated with DKD progression and upregulated by high glucose or recombinant tumor necrosis factor-α in renal tubular epithelial cells; Besides, recombinant PRDX2 could promote M1 polarization of macrophages, and enhance the migration as well as phagocytic ability of macrophages through TLR4. In summary, our study has explored the novel role of PRDX2 in DKD to provide a basis for further research on the diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Xia Li
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
| | - Hehua Long
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Rui Peng
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Xue Zou
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siyang Zuo
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yuan Yang
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Min Chen
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Huixiong Yuan
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Zeying Liu
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Teng Wang
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Qingqing Zhao
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China.
- Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, China.
| | - Lirong Liu
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
- Key Laboratory of Pathogenesis Research on Kidney Disease and Transformation Application, Guizhou Medical University, Guiyang, China.
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Shen Y, Yuan Y, Dong W. The Mechanism of Hyperoxia-Induced Neonatal Renal Injury and the Possible Protective Effect of Resveratrol. Am J Perinatol 2024; 41:1126-1133. [PMID: 35381611 DOI: 10.1055/a-1817-5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
With recent advances in neonatal intensive care, preterm infants are surviving into adulthood. Nonetheless, epidemiological data on the health status of these preterm infants have begun to reveal a worrying theme; prematurity and the supplemental oxygen therapy these infants receive after birth appear to be risk factors for kidney disease in adulthood, affecting their quality of life. As the incidence of chronic kidney disease and the survival time of preterm infants both increase, the management of the hyperoxia-induced renal disease is becoming increasingly relevant to neonatologists. The mechanism of this increased risk is currently unknown, but prematurity itself and hyperoxia exposure after birth may predispose to disease by altering the normal trajectory of kidney maturation. This article reviews altered renal reactivity due to hyperoxia, the possible mechanisms of renal injury due to hyperoxia, and the role of resveratrol in renal injury. KEY POINTS: · Premature infants commonly receive supplementary oxygen.. · Hyperoxia can cause kidney damage via signal pathways.. · We should reduce the occurrence of late sequelae..
Collapse
Affiliation(s)
- Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yuan
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Misiakiewicz-Has K, Maciejewska-Markiewicz D, Szypulska-Koziarska D, Kolasa A, Wiszniewska B. The Influence of Soy Isoflavones and Soy Isoflavones with Inulin on Kidney Morphology, Fatty Acids, and Associated Parameters in Rats with and without Induced Diabetes Type 2. Int J Mol Sci 2024; 25:5418. [PMID: 38791455 PMCID: PMC11121859 DOI: 10.3390/ijms25105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetes mellitus resulting from hyperglycemia stands as the primary cause of diabetic kidney disease. Emerging evidence suggests that plasma concentrations of soy isoflavones, substances with well-established antidiabetic properties, rise following supplemental inulin administration. The investigation encompassed 36 male Sprague-Dawley (SD) rats segregated into two cohorts: non-diabetic and diabetic, induced with type 2 diabetes (high-fat diet + two intraperitoneal streptozotocin injections). Each cohort was further divided into three subgroups (n = 6): control, isoflavone-treated, and isoflavone plus inulin-treated rats. Tail blood glucose and ketone levels were gauged. Upon termination, blood samples were drawn directly from the heart for urea, creatinine, and HbA1c/HbF analyses. One kidney per rat underwent histological (H-E) and immunohistochemical assessments (anti-AQP1, anti-AQP2, anti-AVPR2, anti-SLC22A2, anti-ACC-alpha, anti-SREBP-1). The remaining kidney underwent fatty acid methyl ester analysis. Results unveiled notable alterations in water intake, body and kidney mass, kidney morphology, fatty acids, AQP2, AVPR2, AcetylCoA, SREBP-1, blood urea, creatinine, and glucose levels in control rats with induced type 2 diabetes. Isoflavone supplementation exhibited favorable effects on plasma urea, plasma urea/creatinine ratio, glycemia, water intake, and kidney mass, morphology, and function in type 2 diabetic rats. Additional inulin supplementation frequently modulated the action of soy isoflavones.
Collapse
Affiliation(s)
- Kamila Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | | | - Dagmara Szypulska-Koziarska
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| |
Collapse
|
4
|
Wang L, Sun W, Ma X, Griffin N, Liu H. Perfluorooctanoic acid (PFOA) exposure induces renal filtration and reabsorption disorders via down-regulation of aquaporins. Toxicol Lett 2024; 392:22-35. [PMID: 38123106 DOI: 10.1016/j.toxlet.2023.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Perfluorooctanoic acid (PFOA) exposure is associated with kidney dysfunction, however the exact mechanisms by which PFOA induces nephrotoxicity and the specific involvement of aquaporins (AQPs) in kidney tissue remains unclear. In this study, adult male Sprague-Dawley (SD) rats were exposed to PFOA by oral gavage for 28 days and compared with controls. Body weight, water intake and urine volume were recorded daily. At the end of the experiment, blood and kidney samples were collected, and serum urea, creatine and uric acid levels were assessed. The renal expression levels of water channel proteins AQP1, AQP3, AQP2 and p-AQP2 (Ser256) were observed by immunohistochemical staining, and the corresponding transcription levels were detected by Western blot and qRT-PCR. The results showed that PFOA exposure inhibited weight gain and increased water intake, urine volume, kidney weight and renal visceral index. PASM staining and transmission electron microscopy revealed pathological thickening of the glomerular capsule and basement membrane. Serum urea levels were increased, while serum creatine levels were decreased compared to controls. Additionally, the expression levels of AQP1, AQP3, AQP2 and p-AQP2 in kidney tissues were decreased, and the phosphorylation of AQP2 at Ser256 was inhibited. In conclusion, we demonstrate that PFOA exposure can damage the renal filtration barrier and reduce the expression level of AQPs in renal tissues, leading to renal filtration and reabsorption disorders.
Collapse
Affiliation(s)
- Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Weiqiang Sun
- Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu 233030, PR China
| | - Xinzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Hui Liu
- Bengbu Medical College, Bengbu 233030, PR China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu 233030, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu 233030, PR China.
| |
Collapse
|
5
|
Hassan HM, El-Gamal R, Hamed WHE, Habotta OA, Samy M, Elmowafy R, ElNashar EM, Alghamdi MA, Aldahhan RA, Al-Khater KM, Alshehri MA, Ahmed ME. Potential role for vitamin D vs. intermittent fasting in controlling aquaporin-1 and aquaporin-3 expression in HFD-induced urinary bladder alterations in rats. Front Mol Biosci 2024; 10:1306523. [PMID: 38357327 PMCID: PMC10866000 DOI: 10.3389/fmolb.2023.1306523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Background: High-fat diet-induced obesity is linked to suppression of aquaporins (AQPs) expression in different tissues. Both vitamin D and intermittent fasting were identified to enhance AQPs expression. In the urinary bladder, AQP-1 and AQP-3 mRNA transcripts were identified. Vitamin D has an impact on a variety of genes that encode proteins that control cell proliferation, differentiation, and death. Aim: To assess potential benefits of vitamin D and intermittent fasting (IF) and to explore alterations to the urinary bladder triggered by high-fat diet (HFD) in a rat model of obesity. Methods: Each of the 4 groups contained six adult male albino rats; control: a standard rodent chew for 12 weeks, HFD: HFD and fructose were administered orally via gastric gavage for 12 weeks, and vitamin D: HFD and fructose were administered orally for 8 weeks, then 4 weeks of intraperitoneal injection of vitamin D (5 microns/Kg/2 days) and IF group: Received intraperitoneal injections of vitamin D (5 microns/Kg/2 days) for 4 weeks after consumption of HFD and fructose orally for 8 weeks. The serum lipid profile was conducted at end of the experiment. In the bladder homogenates, the levels of oxidative stress indicators were assessed. Quantitative real-time PCR was performed on recently collected bladder samples. AQP-1 and AQP-3 immunohistochemistry was done. Results: When compared to the HFD group, the vitamin D and IF groups both demonstrated a substantial improvement in histopathological, immunohistochemical, biochemical, and molecular markers. Conclusion: In all examined parameters, IF exceeded vitamin D as a preventive factor for the urinary bladder deterioration.
Collapse
Affiliation(s)
- Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Human Anatomy and Embryology, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Experimental Research Centre (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa. H. E. Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University and New Mansoura University, Mansoura, Egypt
| | - Ola Ali Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mervat Samy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Elmowafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamed ElNashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rashid A. Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed A. Alshehri
- Nephrology Section, Internal Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Magda E. Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Pechlivanidou M, Xenou K, Tzanetakos D, Koutsos E, Stergiou C, Andreadou E, Voumvourakis K, Giannopoulos S, Kilidireas C, Tüzün E, Tsivgoulis G, Tzartos S, Tzartos J. Potential Role of Antibodies against Aquaporin-1 in Patients with Central Nervous System Demyelination. Int J Mol Sci 2023; 24:12982. [PMID: 37629163 PMCID: PMC10455752 DOI: 10.3390/ijms241612982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Aquaporins (AQPs; AQP0-AQP12) are water channels expressed in many and diverse cell types, participating in various functions of cells, tissues, and systems, including the central nervous system (CNS). AQP dysfunction and autoimmunity to AQPs are implicated in several diseases. The best-known example of autoimmunity against AQPs concerns the antibodies to AQP4 which are involved in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD), an autoimmune astrocytopathy, causing also CNS demyelination. The present review focuses on the discovery and the potential role of antibodies against AQP1 in the CNS, and their potential involvement in the pathophysiology of NMOSD. We describe (a) the several techniques developed for the detection of the AQP1-antibodies, with emphasis on methods that specifically identify antibodies targeting the extracellular domain of AQP1, i.e., those of potential pathogenic role, and (b) the available evidence supporting the pathogenic relevance of AQP1-antibodies in the NMOSD phenotype.
Collapse
Affiliation(s)
- Maria Pechlivanidou
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Konstantina Xenou
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Dimitrios Tzanetakos
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Emmanuel Koutsos
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Christos Stergiou
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
| | - Elisabeth Andreadou
- First Department of Neurology, ‘’Aiginiteion’’ University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (C.K.)
| | - Konstantinos Voumvourakis
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Sotirios Giannopoulos
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Constantinos Kilidireas
- First Department of Neurology, ‘’Aiginiteion’’ University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (C.K.)
- Second Department of Neurology, Henry Dunant Hospital Center, 11526 Athens, Greece
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey;
| | - Georgios Tsivgoulis
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, 11523 Athens, Greece; (M.P.); (K.X.); (E.K.); (C.S.); (S.T.)
- Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - John Tzartos
- Second Department of Neurology ‘’Attikon’’ University Hospital, School of Medicine, National & Kapodistrian University of Athens, 12462 Athens, Greece; (D.T.); (K.V.); (S.G.); (G.T.)
| |
Collapse
|
7
|
Zahran F, Nabil A, Nassr A, Barakat N. Amelioration of exosome and mesenchymal stem cells in rats infected with diabetic nephropathy by attenuating early markers and aquaporin-1 expression. BRAZ J BIOL 2023; 83:e271731. [PMID: 37466513 DOI: 10.1590/1519-6984.271731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/21/2023] [Indexed: 07/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent diabetic microvascular condition. It is the leading cause of kidney disease in the advanced stages. There is no currently effective treatment available. This research aimed to investigate the curative potentials of exosomes isolated from mesenchymal stem cells affecting DN. This study was performed on 70 male adult albino rats. Adult rats were randomized into seven groups: Group I: Negative control group, Group II: DN group, Group III: Balanites treated group, Group IV: MSCs treated group, Group V: Exosome treated group, Group VI: Balanites + MSCs treated group and Group VII: Balanites + exosome treated group. Following the trial period, blood and renal tissues were subjected to biochemical, gene expression analyses, and histopathological examinations. Results showed that MDA was substantially increased, whereas TAC was significantly decreased in the kidney in the DN group compared to normal health rats. Undesired elevated values of MDA levels and a decrease in TAC were substantially ameliorated in groups co-administered Balanites aegyptiacae with MSCs or exosomes compared to the DN group. A substantial elevation in TNF-α and substantially diminished concentration of IGF-1 were noticed in DN rats compared to normal health rats. Compared to the DN group, the co-administration of Balanites aegyptiacae with MSCs or exosomes substantially improved the undesirable elevated values of TNF-α and IGF-1. Furthermore, in the DN group, the mRNA expression of Vanin-1, Nephrin, and collagen IV was significantly higher than in normal healthy rats. Compared with DN rats, Vanin-1, Nephrin, and collagen IV Upregulation were substantially reduced in groups co-administered Balanites aegyptiacae with MSCs or exosomes. In DN rats, AQP1 expression was significantly lower than in normal healthy rats. Furthermore, the groups co-administered Balanites aegyptiacae with MSCs or exosomes demonstrated a substantial increase in AQP1 mRNA expression compared to DN rats.
Collapse
Affiliation(s)
- F Zahran
- Zagazig University, Faculty of Science, Chemistry Department, Biochemistry Division, Zagazig, Egypt
| | - A Nabil
- Beni-Suef University, Faculty of Postgraduate Studies for Advanced Sciences - PSAS, Biotechnology and Life Sciences Department, Beni-Suef, Egypt
| | - A Nassr
- Zagazig University, Faculty of Science, Chemistry Department, Biochemistry Division, Zagazig, Egypt
| | - N Barakat
- Mansoura University, Urology and Nephrology Center, Mansoura, Egypt
| |
Collapse
|
8
|
Qiu Z, Jiang T, Li Y, Wang W, Yang B. Aquaporins in Urinary System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:155-177. [PMID: 36717493 DOI: 10.1007/978-981-19-7415-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are at least eight aquaporins (AQPs) expressed in the kidney. Including AQP1 expressed in proximal tubules, thin descending limb of Henle and vasa recta; AQP2, AQP3, AQP4, AQP5, and AQP6 expressed in collecting ducts; AQP7 expressed in proximal tubules; AQP8 expressed in proximal tubules and collecting ducts; and AQP11 expressed in the endoplasmic reticulum of proximal tubular epithelial cells. Over years, researchers have constructed different AQP knockout mice and explored the effect of AQP knockout on kidney function. Thus, the roles of AQPs in renal physiology are revealed, providing very useful information for addressing fundamental questions about transepithelial water transport and the mechanism of near isoosmolar fluid reabsorption. This chapter introduces the localization and function of AQPs in the kidney and their roles in different kidney diseases to reveal the prospects of AQPs in further basic and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Jiang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Mansouri E, Orazizadeh M, Mard SA, Gorji AV, Rashno M, Fakhredini F. Therapeutic Effect of Kidney Tubular Cells-Derived Conditioned Medium on the Expression of MicroRNA-377, MicroRNA-29a, Aquapurin-1, Biochemical, and Histopathological Parameters Following Diabetic Nephropathy Injury in Rats. Adv Biomed Res 2022; 11:119. [PMID: 36798914 PMCID: PMC9926036 DOI: 10.4103/abr.abr_375_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a critical complication of diabetes mellitus. This study evaluates whether administration of conditioned medium from kidney tubular cells (KTCs-CM) has the ability to be efficacious as an alternative to cell-based therapy for DN. Materials and Methods CM of rabbit kidney tubular cells (RK13; KTCs) has been collected and after centrifugation, filtered with 0.2 filters. Four groups of rats have been utilized, including control, DN, DN treated with CM, and sham group. After diabetes induction by streptozotocin (50 mg/kg body weight) in rats, 0.8 ml of the CM was injected to each rat three times per day for 3 consecutive days. Then, 24-h urine protein, blood urea nitrogen (BUN), and serum creatinine (Scr) have been measured through detection kits. The histopathological effects of CM on kidneys were evaluated by periodic acid-Schiff staining and the expression of microRNAs (miRNAs) 29a and 377 by using the real-time polymerase chain reaction. The expression of aquapurin-1 (AQP1) protein was also examined by Western blotting. Results Intravenous injections of KTCs-CM significantly reduced the urine volume, protein 24-h, BUN, and Scr, decreased the miRNA-377, and increased miRNA-29a and AQP1 in DN treated with CM rats. Conclusion KTCs-CM may have the potential to prevent kidney injury from diabetes by regulating the microRNAs related to DN and improving the expression of AQP1.
Collapse
Affiliation(s)
- Esrafil Mansouri
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Research Institute for Infectious Diseases of Digestive System, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh Gorji
- Bone Marrow Transplantation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Immunology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtesadat Fakhredini
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Address for correspondence: Dr. Fereshtesadat Fakhredini, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail:
| |
Collapse
|
10
|
El-Agawy MSED, Badawy AMM, Rabei MR, Elshaer MMA, El Nashar EM, Alghamdi MA, Alshehri MA, Elsayed HRH. Methotrexate-Induced Alteration of Renal Aquaporins 1 and 2, Oxidative Stress and Tubular Apoptosis Can Be Attenuated by Omega-3 Fatty Acids Supplementation. Int J Mol Sci 2022; 23:12794. [PMID: 36361584 PMCID: PMC9653681 DOI: 10.3390/ijms232112794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 09/10/2023] Open
Abstract
Methotrexate (MTX) is a potent anti-cancer drug, commonly associated with nephrotoxicity via the induction of oxidative stress and apoptosis with alteration of renal water channel proteins, namely aquaporins (AQPs). Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) have shown cytoprotective effects through their anti-oxidant and antiapoptotic activities. The present study aims for the first time to explore the role of LC-PUFA against MTX-induced nephrotoxicity. Rats were divided into the following groups: saline control, LC-PUFA control, MTX, MTX + LC-PUFA (150 mg/kg), or MTX + LC-PUFA (300 mg/kg). Then, H&E staining and immunohistochemical staining for the anti-apoptosis marker B-cell lymphoma 2 (BCL-2), the apoptosis marker BCL2-Associated X Protein (BAX), the proinflammatory marker Nuclear factor kappa B (NF-kB), AQPs 1 and 2 were performed in kidney sections with an assessment of renal oxidative stress. The MTX caused a renal histopathological alteration, upregulated renal BAX and NF-kB, downregulated Bcl-2 and AQP1, altered the distribution of AQP2, and caused oxidative stress. The LC-PUFA attenuated the pathological changes and decreased renal BAX and NF-kB, increased BCL-2 and AQP1, restored the normal distribution of AQP2, and decreased the oxidative stress. Therefore, LC-PUFA is a good adjuvant to MTX to prevent its adverse effects on kidneys through its antiapoptotic, antioxidant, and anti-inflammatory effect and its role in the restoration of the expression of AQPs 1 and 2.
Collapse
Affiliation(s)
- Mosaab Salah El-din El-Agawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Faculty of Medicine, New Mansoura University, New Mansoura 35712, Egypt
| | | | - Mohammed R. Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Physiology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Mohamed Mahmoud Abdelraheem Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammed A. Alshehri
- Nephrology Section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Faculty of Medicine, New Mansoura University, New Mansoura 35712, Egypt
| |
Collapse
|