1
|
Yüksek G, Taş DO, Ubay-Cokgor E, Jones JP, Gosselin M, Cabana H. Effects of potential inducers to enhance laccase production and evaluating concomitant enzyme immobilisation. ENVIRONMENTAL TECHNOLOGY 2024; 45:3517-3532. [PMID: 37259795 DOI: 10.1080/09593330.2023.2219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
This work investigated non-polar solvent hexane and polar solvents methanol and ethanol as inducers besides a well-known inducer, copper, for laccase production with and without mesoporous silica-covered plastic packing under sterilised and unsterilised conditions. The potential of waste-hexane water, which is generated during the mesoporous silica production process, was also investigated as a laccase inducer. During the study, the free and immobilised laccase activity on the packing was measured. The results showed that the highest total laccase activity, approximately 10,000 Units, was obtained under sterilised conditions with 0.5 mM copper concentration. However, no immobilised laccase activity was detected except in the copper and ethanol sets under unsterilised conditions. The maximum immobilised laccase activity of the sets that used waste hexane as an inducer was 1.25 U/mg packing. According to its significant performance, waste hexane can be an alternative inducer under sterilised conditions. Concomitant immobilised packing showed satisfactory laccase activities and could be a promising method to reduce operation costs and improve the cost-efficiency of enzymatic processes in wastewater treatment plants.
Collapse
Affiliation(s)
- Gülten Yüksek
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Didem Okutman Taş
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emine Ubay-Cokgor
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - J Peter Jones
- Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Hubert Cabana
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
2
|
Mutanda I, Zahoor, Sethupathy S, Xu Q, Zhu B, Shah SWA, Zhuang Z, Zhu D. Optimization of heterologous production of Bacillus ligniniphilus L1 laccase in Escherichia coli through statistical design of experiments. Microbiol Res 2023; 274:127416. [PMID: 37290170 DOI: 10.1016/j.micres.2023.127416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Laccases are powerful multi-copper oxidoreductases that have wide applicability as "green" biocatalysts in biotechnological, bioremediation, and industrial applications. Sustainable production of large amounts of functional laccases from original sources is limited by low yields, difficulties in purification, slow growth of the organisms, and high cost of production. Harnessing the full potential of these versatile biocatalysts will require the development of efficient heterologous systems that allow high-yield, scalable, and cost-effective production. We previously cloned a temperature- and pH-stable laccase from Bacillus ligniniphilus L1 (L1-lacc) that demonstrated remarkable activity in the oxidation of lignin and delignification for bioethanol production. However, L1-lacc is limited by low enzyme yields in both the source organism and heterologous systems. Here, to improve production yields and lower the cost of production, we optimized the recombinant E. coli BL21 strain for high-level production of L1-lacc. Several culture medium components and fermentation parameters were optimized using one-factor-at-a-time (OFAT) and Plackett-Burman design (PBD) to screen for important factors that were then optimized using response surface methodology (RSM) and an orthogonal design. The optimized medium composition had compound nitrogen (15.6 g/L), glucose (21.5 g/L), K2HPO4 (0.15 g/L), MgSO4 (1 g/L), and NaCl (7.5 g/L), which allowed a 3.3-fold yield improvement while subsequent optimization of eight fermentation parameters achieved further improvements to a final volumetric activity titer of 5.94 U/mL in 24 h. This represents a 7-fold yield increase compared to the initial medium and fermentation conditions. This work presents statistically guided optimization strategies for improving heterologous production of a bacterial laccase that resulted in a high-yielding, cost-efficient production system for an enzyme with promising applications in lignin valorization, biomass processing, and generation of novel composite thermoplastics.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sayed Waqas Ali Shah
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhipeng Zhuang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Biedermann AM, Gengaro IR, Rodriguez-Aponte SA, Love KR, Love JC. Modular development enables rapid design of media for alternative hosts. Biotechnol Bioeng 2021; 119:59-71. [PMID: 34596238 PMCID: PMC9298315 DOI: 10.1002/bit.27947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
Developing media to sustain cell growth and production is an essential and ongoing activity in bioprocess development. Modifications to media can often address host or product‐specific challenges, such as low productivity or poor product quality. For other applications, systematic design of new media can facilitate the adoption of new industrially relevant alternative hosts. Despite manifold existing methods, common approaches for optimization often remain time and labor‐intensive. We present here a novel approach to conventional media blending that leverages stable, simple, concentrated stock solutions to enable rapid improvement of measurable phenotypes of interest. We applied this modular methodology to generate high‐performing media for two phenotypes of interest: biomass accumulation and heterologous protein production, using high‐throughput, milliliter‐scale batch fermentations of Pichia pastoris as a model system. In addition to these examples, we also created a flexible open‐source package for modular blending automation on a low‐cost liquid handling system to facilitate wide use of this method. Our modular blending method enables rapid, flexible media development, requiring minimal labor investment and prior knowledge of the host organism, and should enable developing improved media for other hosts and phenotypes of interest.
Collapse
Affiliation(s)
- Andrew M Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
5
|
Ardila-Leal LD, Poutou-Piñales RA, Morales-Álvarez ED, Rivera-Hoyos CM, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE, Pérez-Flórez A. Methanol addition after glucose depletion improves rPOXA 1B production under the pGap in P. pastoris X33: breaking the habit. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractThe purpose of this study was to demonstrate that methanol addition after glucose depletion has a positive effect on improving rPOXA 1B production under the control of pGap in P. pastoris. Four different culture media (A, B, C and D) were used to culture P. pastoris X33/pGapZαA-LaccPost-Stop (clone 1), containing a previously optimized POXA 1B synthetic gene coding for P. ostreatus laccase, which after glucose depletion was supplemented or not with methanol. Enzyme activity in culture media without methanol (A, B, C and D) was influenced by media components, presenting activity of 1254.30 ± 182.44, 1373.70 ± 182.44, 1343.50 ± 40.30 and 8771.61 ± 218.79 U L−1, respectively. In contrast, the same culture media (A, B, C and D) with methanol addition 24 h after glucose depletion attained activity of 4280.43 ± 148.82, 3339.02 ± 64.36, 3569.39 ± 68.38 and 14,868.06 ± 461.58 U L−1 at 192 h, respectively, representing an increase of approximately 3.9-, 2.4-, 3.3- and 1.6-fold compared with culture media without methanol. Methanol supplementation had a greater impact on volumetric enzyme activity in comparison with biomass production. We demonstrated what was theoretically and biochemically expected: recombinant protein production under pGap control by methanol supplementation after glucose depletion was successful, as a feasible laboratory production strategy of sequential carbon source addition, breaking the habit of utilizing pGap with glucose.
Collapse
|