1
|
Rao D, Li D, Li L, Xue J, Tu S, Shen EZ. Argonaute CSR-1A promotes H3K9me3 maintenance to protect somatic development in offspring. Nucleic Acids Res 2025; 53:gkaf127. [PMID: 40036504 PMCID: PMC11878544 DOI: 10.1093/nar/gkaf127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Parental stress can be encoded into altered epigenetic information to influence their offspring. Concurrently, it is vital for the preservation of a parent's epigenetic information, despite environmental challenges, to ensure accurate inheritance by the next generation. Nevertheless, the complexities of this process and the specific molecular mechanisms involved are not yet fully understood. Here we report that Argonaute CSR-1A potentiates the recovery of histone H3 lysine 9 trimethylation (H3K9me3) in spermatocyte to secure the developmental competence of male offspring. CSR-1A employs its repetitive RG motif to engage with putative histone 3 lysine 9 (H3K9) methyltransferases SET-25 and -32, and helps to restore repressive H3K9me3 chromatin marks following heat-stress, protecting the late development of somatic cells in the progeny. Finally, among the genes regulated by CSR-1A, we identified dim-1, at which decreased H3K9me3 persists in the progeny, and RNAi of dim-1 mitigates the somatic defects associated with csr-1a loss under stress. Thus, CSR-1A coordinates a paternal epigenetic program that shields development from the influences of the paternal environment. We speculate that, driven by both natural environmental stressors and the unique characteristics of spermatogenic chromatin, the emergence of multiple RG motif-featured and spermatogenesis-specific CSR-1A and small RNA serves as a protective strategy to safeguard against variability in the orchestration of inherited developmental programs from the paternal lineage.
Collapse
Affiliation(s)
- Di Rao
- Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Dengfeng Li
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Seppälä K, Reigada I, Matilainen O, Rantamäki T, Hanski L. Anesthetic-like effects of ketamine in C. elegans. Neuroscience 2025; 564:79-82. [PMID: 39561954 DOI: 10.1016/j.neuroscience.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Transparency of Caenorhabditis elegans enables microscopic in vivo imaging of cellular processes, but immobilization is required due to high locomotor activity. Here, anesthetic-like effects of dissociate anesthetic ketamine in adult C. elegans are presented using video recordings and infrared-based automated activity tracking. Ketamine caused a reversible blockade of locomotion at a similar concentration (20-50 mM) at which conventionally used immobilizing agent sodium azide (NaN3) produces paralysis. The levels of immobilization at 20 mM ketamine enabled fluorescent and brightfield imaging. The worms' locomotory activity recovered fully after ketamine exposure and no acute toxicity was observed. However, a marked chemosensation deficiency was noted immediately after 20 mM ketamine exposure. Short-term ketamine treatment did not show signs of SKN-1 (skinhead-1) activation, a marker of the stress response associated with NaN3. In sum, our results show ketamine's potential as a non-toxic nematode immobilizing agent and rationalize C. elegans as a model organism to understand its pharmacology.
Collapse
Affiliation(s)
- Katariina Seppälä
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland; Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Finland.
| | - Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
3
|
Kwon Y, Kim J, Son YB, Lee SA, Choi SS, Cho Y. Advanced Neural Functional Imaging in C. elegans Using Lab-on-a-Chip Technology. MICROMACHINES 2024; 15:1027. [PMID: 39203678 PMCID: PMC11356251 DOI: 10.3390/mi15081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
The ability to perceive and adapt to environmental changes is crucial for the survival of all organisms. Neural functional imaging, particularly in model organisms, such as Caenorhabditis elegans, provides valuable insights into how animals sense and process external cues through their nervous systems. Because of its fully mapped neural anatomy, transparent body, and genetic tractability, C. elegans serves as an ideal model for these studies. This review focuses on advanced methods for neural functional imaging in C. elegans, highlighting calcium imaging techniques, lab-on-a-chip technologies, and their applications in the study of various sensory modalities, including chemosensation, mechanosensation, thermosensation, photosensation, and magnetosensation. We discuss the benefits of these methods in terms of precision, reproducibility, and ability to study dynamic neural processes in real time, ultimately advancing our understanding of the fundamental principles of neural activity and connectivity.
Collapse
Affiliation(s)
- Youngeun Kwon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Jihye Kim
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Ye Bin Son
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
| | - Sol Ah Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Shin Sik Choi
- Department of Bio-Pharmaceutical Sciences, Myongji University, Yongin 17058, Republic of Korea;
- The Natural Science Research Institute, Department of Food and Nutrition, Myongji University, Yongin 17058, Republic of Korea
- elegslab Inc., Seoul 06083, Republic of Korea
| | - Yongmin Cho
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (J.K.); (Y.B.S.)
- elegslab Inc., Seoul 06083, Republic of Korea
| |
Collapse
|
4
|
Morton KS, Wahl AK, Meyer JN. The effect of common paralytic agents used for fluorescence imaging on redox tone and ATP levels in Caenorhabditis elegans. PLoS One 2024; 19:e0292415. [PMID: 38669260 PMCID: PMC11051652 DOI: 10.1371/journal.pone.0292415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.
Collapse
Affiliation(s)
- Katherine S. Morton
- Nicholas School of Environment, Duke University, Durham, North Carolina, United States of America
| | - Ashlyn K. Wahl
- Nicholas School of Environment, Duke University, Durham, North Carolina, United States of America
| | - Joel N. Meyer
- Nicholas School of Environment, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Shi Y, Cui C, Chen S, Chen S, Wang Y, Xu Q, Yang L, Ye J, Hong Z, Hu H. Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening. MICROMACHINES 2024; 15:484. [PMID: 38675295 PMCID: PMC11052135 DOI: 10.3390/mi15040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Early cancer diagnosis increases therapy efficiency and saves huge medical costs. Traditional blood-based cancer markers and endoscopy procedures demonstrate limited capability in the diagnosis. Reliable, non-invasive, and cost-effective methods are in high demand across the world. Worm-based diagnosis, utilizing the chemosensory neuronal system of C. elegans, emerges as a non-invasive approach for early cancer diagnosis with high sensitivity. It facilitates effectiveness in large-scale cancer screening for the foreseeable future. Here, we review the progress of a unique route of early cancer diagnosis based on the chemosensory neuronal system of C. elegans. We first introduce the basic procedures of the chemotaxis assay of C. elegans: synchronization, behavior assay, immobilization, and counting. Then, we review the progress of each procedure and the various cancer types for which this method has achieved early diagnosis. For each procedure, we list examples of microfluidics technologies that have improved the automation, throughput, and efficiency of each step or module. Finally, we envision that microfluidics technologies combined with the chemotaxis assay of C. elegans can lead to an automated, cost-effective, non-invasive early cancer screening technology, with the development of more mature microfluidic modules as well as systematic integration of functional modules.
Collapse
Affiliation(s)
- Yutao Shi
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Chen Cui
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Shengzhi Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Siyu Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Yiheng Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Qingyang Xu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Lan Yang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Jiayi Ye
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| | - Zhi Hong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| |
Collapse
|
6
|
Thakar SP, Dabhi RC, Rathod SL, Patel UP, Rana A, Shrivastav PS, George LB, Highland H. In situ chlorpyrifos (CPF) degradation by Acrobeloides maximus: Insights from chromatographic analysis. J Chromatogr A 2024; 1714:464555. [PMID: 38091714 DOI: 10.1016/j.chroma.2023.464555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
The objective of this study was to evaluate the efficiency of nematodes in zooremediation of chlorpyrifos (CPF), an organophosphate pesticide. The nematode population Acrobeloides maximus (A. maximus) was employed for bioremediation, converting CPF into non-toxic residues. Optimal growth conditions for mass production of A. maximus were achieved by maintaining a temperature of 25 °C, pH 8, and supplementing the culture medium with plant nutrients. The nematodes were then immobilized within sodium alginate beads. The efficacy of the degradation process was assessed using various analytical techniques, including UV-Visible spectroscopy, HPTLC, FTIR, and LC-MS, confirming the successful breakdown of CPF. The bioreactor demonstrated a complete degradation efficiency of CPF exceeding 99%. Additionally, LC-MS analysis was conducted to elucidate the degradation pathway based on the formation of intermediates. These results underscore the potential of A. maximus as a sustainable organism for addressing environmental contamination arising from CPF pesticide.
Collapse
Affiliation(s)
- Shweta P Thakar
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India.
| | - Ranjitsinh C Dabhi
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Suryajit L Rathod
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Unnati P Patel
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Aasha Rana
- Department of Zoology, Faculty of Basic and Applied Sciences, Madhav University, Pindwara, Sirohi, Rajasthan 307026, India
| | - Pranav S Shrivastav
- Department of Chemistry, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and Wildlife Conservation and Biology, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
7
|
Manzato C, Larini L, Oss Pegorar C, Dello Stritto MR, Jurikova K, Jantsch V, Cusanelli E. TERRA expression is regulated by the telomere-binding proteins POT-1 and POT-2 in Caenorhabditis elegans. Nucleic Acids Res 2023; 51:10681-10699. [PMID: 37713629 PMCID: PMC10602879 DOI: 10.1093/nar/gkad742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Several aspects of telomere biology are regulated by the telomeric repeat-containing RNA TERRA. While TERRA expression is conserved through evolution, species-specific mechanisms regulate its biogenesis and function. Here we report on the expression of TERRA in Caenorhabditis elegans. We show that C. elegans TERRA is regulated by the telomere-binding proteins POT-1 and POT-2 which repress TERRA in a telomere-specific manner. C. elegans TERRA transcripts are heterogeneous in length and form discrete nuclear foci, as detected by RNA FISH, in both postmitotic and germline cells; a fraction of TERRA foci localizes to telomeres. Interestingly, in germ cells, TERRA is expressed in all stages of meiotic prophase I, and it increases during pachytene, a stage in meiosis when homologous recombination is ongoing. We used the MS2-GFP system to study the spatiotemporal dynamics of single-telomere TERRA molecules. Single particle tracking revealed different types of motilities, suggesting complex dynamics of TERRA transcripts. Finally, we unveiled distinctive features of C. elegans TERRA, which is regulated by telomere shortening in a telomere-specific manner, and it is upregulated in the telomerase-deficient trt-1; pot-2 double mutant prior to activation of the alternative lengthening mechanism ALT. Interestingly, in these worms TERRA displays distinct dynamics with a higher fraction of fast-moving particles.
Collapse
Affiliation(s)
- Caterina Manzato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Luca Larini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Claudio Oss Pegorar
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter 1030, Vienna, Austria
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina 84215, Bratislava, Slovakia
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter 1030, Vienna, Austria
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| |
Collapse
|
8
|
Sepulveda NB, Chen D, Petrella LN. Moderate heat stress-induced sterility is due to motility defects and reduced mating drive in Caenorhabditis elegans males. J Exp Biol 2023; 226:jeb245546. [PMID: 37724024 DOI: 10.1242/jeb.245546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Moderate heat stress negatively impacts fertility in sexually reproducing organisms at sublethal temperatures. These moderate heat stress effects are typically more pronounced in males. In some species, sperm production, quality and motility are the primary cause of male infertility during moderate heat stress. However, this is not the case in the model nematode Caenorhabditis elegans, where changes in mating behavior are the primary cause of fertility loss. We report that heat-stressed C. elegans males are more motivated to locate and remain on food and less motivated to leave food to find and mate with hermaphrodites than their unstressed counterparts. Heat-stressed males also demonstrate a reduction in motility that likely limits their ability to mate. Collectively these changes result in a dramatic reduction in reproductive success. The reduction in mate-searching behavior may be partially due to increased expression of the chemoreceptor odr-10 in the AWA sensory neurons, which is a marker for starvation in males. These results demonstrate that moderate heat stress may have profound and previously underappreciated effects on reproductive behaviors. As climate change continues to raise global temperatures, it will be imperative to understand how moderate heat stress affects behavioral and motility elements critical to reproduction.
Collapse
Affiliation(s)
- Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Donald Chen
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, 1428 W Clybourn St., Milwaukee, WI 53217, USA
| |
Collapse
|
9
|
Morton KS, Wahl AK, Meyer JN. The effect of common paralytic agents used for fluorescence imaging on redox tone and ATP levels in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558750. [PMID: 37790339 PMCID: PMC10543010 DOI: 10.1101/2023.09.21.558750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, though 100 mM 2,3-Butadione monoxime appears to be the least problematic. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.
Collapse
Affiliation(s)
| | | | - Joel N Meyer
- Duke University Nicholas School of the Environment
| |
Collapse
|
10
|
Stover MA, Tinoco-Bravo B, Shults CA, Marouk S, Deole R, Manjarrez JR. Probiotic effects of Lactococcus lactis and Leuconostoc mesenteroides on stress and longevity in Caenorhabditis elegans. Front Physiol 2023; 14:1207705. [PMID: 37772058 PMCID: PMC10522913 DOI: 10.3389/fphys.2023.1207705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The short lifespan of Caenorhabditis elegans enables the efficient investigation of probiotic interventions affecting stress and longevity involving the potential therapeutic value of Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil. The lactic acid bacteria were cultured from the produce collected from a local grocery store in Tulsa, Oklahoma, and then identified through 16S rDNA sequencing and biochemical tests. To dive deep into this analysis for potential probiotic therapy, we used fluorescent reporters that allow us to assess the differential induction of multiple stress pathways such as oxidative stress and the cytoplasmic, endoplasmic reticulum, and the mitochondrial unfolded protein response. This is combined with the classic health span measurements of survival, development, and fecundity, allowing a wide range of organismal observations of the different communities of microbes supported by probiotic supplementation with Lactococcus lactis and Leuconostoc mesenteroides. These strains were initially assessed in relation to the Escherichia coli feeding strain OP50 and the C. elegans microbiome. The supplementation showed a reduction in the median lifespan of the worms colonized within the microbiome. This was unsurprising, as negative results are common when probiotics are introduced into healthy microbiomes. To further assess the supplementation potential of these strains on an unhealthy (undifferentiated) microbiome, the typical axenic C. elegans diet, OP50, was used to simulate this single-species biome. The addition of lactic acid bacteria to OP50 led to a significant improvement in the median and overall survival in simulated biomes, indicating their potential in probiotic therapy. The study analyzed the supplemented cultures in terms of C. elegans' morphology, locomotor behavior, reproduction, and stress responses, revealing unique characteristics and stress response patterns for each group. As the microbiome's influence on the health span gains interest, the study aims to understand the microbiome relationships that result in differential stress resistance and lifespans by supplementing microbiomes with Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob R. Manjarrez
- Biochemistry and Microbiology Department, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| |
Collapse
|
11
|
Tu S, Li J, Zhang K, Chen J, Yang W. Characterizing Three Azides for Their Potential Use as C. elegans Anesthetics. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000794. [PMID: 37082349 PMCID: PMC10111736 DOI: 10.17912/micropub.biology.000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Sodium azide (NaN 3 ) is widely used as an anesthetic in the C. elegans community for studying animal behavior. It is not known whether other azides can function as anesthetics. This is quite important for the C. elegans labs in which NaN 3 is not a convenient choice, such as all the labs located in China, where NaN 3 is under tight regulation, and alternative anesthetics need to be characterized. In the present study, we focused on another three azides, potassium azide (KN 3 ), trimethylsilyl azide (TMSA), and diphenyl phosphoryl azide (DPPA), which are not regulated in China. We characterized their performance in chemotactic behavioral assays and buffer-based assays. Our results suggest that KN 3 can immobilize worms as effectively as NaN 3 in the above-mentioned assays. Therefore, we recommend KN 3 as a routine anesthetic for C. elegans labs.
Collapse
Affiliation(s)
- Shasha Tu
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiangyun Li
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Wang YL, Grooms NW, Jaklitsch EL, Schulting LG, Chung SH. High-throughput submicron-resolution microscopy of Caenorhabditis elegans populations under strong immobilization by cooling cultivation plates. iScience 2023; 26:105999. [PMID: 36794150 PMCID: PMC9923163 DOI: 10.1016/j.isci.2023.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/19/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite its profound impact on biology, high-resolution in vivo microscopy largely remains low throughput because current immobilization techniques require substantial manual effort. We implement a simple cooling approach to immobilize entire populations of the nematode Caenorhabditis elegans directly on their cultivation plates. Counterintuitively, warmer temperatures immobilize animals much more effectively than the colder temperatures of prior studies and enable clear submicron-resolution fluorescence imaging, which is challenging under most immobilization techniques. We demonstrate 64× z-stack and time-lapse imaging of neurons in adults and embryos without motion blur. Compared to standard azide immobilization, cooling immobilization reduces the animal preparation and recovery time by >98%, significantly increasing experimental speed. High-throughput imaging of a fluorescent proxy in cooled animals and direct laser axotomy indicate that the transcription factor CREB underlies lesion conditioning. By obviating individual animal manipulation, our approach could empower automated imaging of large populations within standard experimental setups and workflows.
Collapse
Affiliation(s)
- Yao L. Wang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Noa W.F. Grooms
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Erik L. Jaklitsch
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | | | - Samuel H. Chung
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Smith JJ, Kenny IW, Wolff C, Cray R, Kumar A, Sherwood DR, Matus DQ. A light sheet fluorescence microscopy protocol for Caenorhabditis elegans larvae and adults. Front Cell Dev Biol 2022; 10:1012820. [PMID: 36274853 PMCID: PMC9586288 DOI: 10.3389/fcell.2022.1012820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) has become a method of choice for live imaging because of its fast acquisition and reduced photobleaching and phototoxicity. Despite the strengths and growing availability of LSFM systems, no generalized LSFM mounting protocol has been adapted for live imaging of post-embryonic stages of C. elegans. A major challenge has been to develop methods to limit animal movement using a mounting media that matches the refractive index of the optical system. Here, we describe a simple mounting and immobilization protocol using a refractive-index matched UV-curable hydrogel within fluorinated ethylene propylene (FEP) tubes for efficient and reliable imaging of larval and adult C. elegans stages.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, United States,University of Chicago Neuroscience Institute, Chicago, IL, United States,Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Isabel W. Kenny
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biology, Duke University, Durham, NC, United States
| | - Carsten Wolff
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Marine Biological Laboratory, Woods Hole, MA, United States
| | - Rachel Cray
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Abhishek Kumar
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Marine Biological Laboratory, Woods Hole, MA, United States
| | - David R. Sherwood
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biology, Duke University, Durham, NC, United States,*Correspondence: David R. Sherwood, ; David Q. Matus,
| | - David Q. Matus
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States,*Correspondence: David R. Sherwood, ; David Q. Matus,
| |
Collapse
|
14
|
Elaswad MT, Munderloh C, Watkins BM, Sharp KG, Breton E, Schisa JA. Imaging-associated stress causes divergent phase transitions of RNA-binding proteins in the Caenorhabditis elegans germ line. G3 GENES|GENOMES|GENETICS 2022; 12:6633935. [PMID: 35801939 PMCID: PMC9434235 DOI: 10.1093/g3journal/jkac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
One emerging paradigm of cellular organization of RNA and RNA-binding proteins is the formation of membraneless organelles. Examples of membraneless organelles include several types of ribonucleoprotein granules that form via phase separation. A variety of intracellular pH changes and posttranslational modifications, as well as extracellular stresses, can stimulate the condensation of proteins into granules. For example, the assembly of stress granules induced by oxidative stress, osmotic stress, and heat stress has been well characterized in a variety of somatic cell types. In the germ line, similar stress-induced condensation of proteins occurs; however, less is known about the role of phase separation during gamete production. Researchers who study phase transitions often make use of fluorescent reporters to study the dynamics of RNA-binding proteins during live cell imaging. In this report, we demonstrate that common conditions of live-imaging Caenorhabditis elegans can cause an inadvertent stress and trigger phase transitions of RNA-binding proteins. We show that this imaging-associated stress stimulates decondensation of multiple germ granule proteins and condensation of several P-body proteins. Proteins within larger ribonucleoprotein granules in meiotically arrested oocytes do not appear to be as sensitive to the stress as proteins in diakinesis oocytes of young hermaphrodites, with the exception of the germ granule protein PGL-1. Our results have important methodological implications for all researchers using live-cell imaging techniques. The data also suggest that the RNA-binding proteins within large ribonucleoprotein granules of arrested oocytes may have distinct phases, which we characterize in our companion article.
Collapse
Affiliation(s)
- Mohamed T Elaswad
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Chloe Munderloh
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Present address Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brooklynne M Watkins
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Katherine G Sharp
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Present address Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Elizabeth Breton
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Present address Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Jennifer A Schisa
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| |
Collapse
|
15
|
Matei IV, Samukange VNC, Bunu G, Toren D, Ghenea S, Tacutu R. Knock-down of odr-3 and ife-2 additively extends lifespan and healthspan in C. elegans. Aging (Albany NY) 2021; 13:21040-21065. [PMID: 34506301 PMCID: PMC8457566 DOI: 10.18632/aging.203518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Genetic manipulations can ameliorate the aging process and extend the lifespan of model organisms. The aim of this research was to identify novel genetic interventions that promote both lifespan and healthspan, by combining the effects of multiple longevity-associated gene inactivations in C. elegans. For this, the individual and combined effects of the odr-3 mutation and of ife-2 and cku-70 knock-downs were studied, both in the wild type and daf-16 mutant backgrounds. We found that besides increasing the lifespan of wild type animals, the knock-down of ife-2 (starting at L4) also extends the lifespan and healthspan of long-lived odr-3 mutants. In the daf-16 background, ife-2 and odr-3 impairment exert opposing effects individually, while the daf-16; odr-3; ife-2 deficient animals show a similar lifespan and healthspan as daf-16, suggesting that the odr-3 and ife-2 effector outcomes converge downstream of DAF-16. By contrast, cku-70 knock-down did not extend the lifespan of single or double odr-3; ife-2 inactivated animals, and was slightly deleterious to healthspan. In conclusion, we report that impairment of odr-3 and ife-2 increases lifespan and healthspan in an additive and synergistic manner, respectively, and that this result is not improved by further knocking-down cku-70.
Collapse
Affiliation(s)
- Ioan Valentin Matei
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | | - Gabriela Bunu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Dmitri Toren
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simona Ghenea
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robi Tacutu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
16
|
Mondal S, Dubey J, Awasthi A, Sure GR, Vasudevan A, Koushika SP. Tracking Mitochondrial Density and Positioning along a Growing Neuronal Process in Individual C. elegans Neuron Using a Long-Term Growth and Imaging Microfluidic Device. eNeuro 2021; 8:ENEURO.0360-20.2021. [PMID: 34035072 PMCID: PMC8260276 DOI: 10.1523/eneuro.0360-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The long cellular architecture of neurons requires regulation in part through transport and anchoring events to distribute intracellular organelles. During development, cellular and subcellular events such as organelle additions and their recruitment at specific sites on the growing axons occur over different time scales and often show interanimal variability thus making it difficult to identify specific phenomena in population averages. To measure the variability in subcellular events such as organelle positions, we developed a microfluidic device to feed and immobilize Caenorhabditis elegans for high-resolution imaging over several days. The microfluidic device enabled long-term imaging of individual animals and allowed us to investigate organelle density using mitochondria as a testbed in a growing neuronal process in vivo Subcellular imaging of an individual neuron in multiple animals, over 36 h in our microfluidic device, shows the addition of new mitochondria along the neuronal process and an increase in the accumulation of synaptic vesicles (SVs) at synapses. Long-term imaging of individual C. elegans touch receptor neurons (TRNs) shows that the addition of new mitochondria takes place along the entire neuronal process length at a rate of ∼0.6 mitochondria/h. The threshold for the addition of a new mitochondrion occurs when the average separation between the two preexisting mitochondria exceeds 24 μm. Our assay provides a new opportunity to move beyond simple observations obtained from in vitro assays to allow the discovery of genes that regulate positioning of mitochondria in neurons.
Collapse
Affiliation(s)
- Sudip Mondal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Jyoti Dubey
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anjali Awasthi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Guruprasad Reddy Sure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Sastra University, Thirumalaisamudram, Tamil Nadu 613401, India
| | - Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|