1
|
Trivadila T, Iswantini D, Rahminiwati M, Rafi M, Salsabila AP, Sianipar RNR, Indariani S, Murni A. Herbal Immunostimulants and Their Phytochemicals: Exploring Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri. PLANTS (BASEL, SWITZERLAND) 2025; 14:897. [PMID: 40265854 PMCID: PMC11945065 DOI: 10.3390/plants14060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
The rising prevalence of infectious diseases and immune-related disorders underscores the need for effective and accessible therapeutic solutions. Herbal immunostimulants derived from medicinal plants offer promising alternatives, enhancing immune responses with lower toxicity and fewer side effects than synthetic drugs. This review explores the immunostimulatory potential of Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri, focusing on their bioactive compounds, mechanisms of action, and therapeutic relevance. These plants modulate innate and adaptive immune responses by activating macrophages, dendritic cells, and lymphocytes while regulating cytokine production to maintain immune homeostasis. Their immunomodulatory effects are linked to key signaling pathways, including NF-κB, MAPK, and JAK/STAT. In vitro and in vivo studies highlight their potential to strengthen immune responses and control inflammation, making them promising candidates for managing infectious and immune-related diseases. However, further research is needed to standardize formulations, determine optimal dosages, and validate safety and efficacy in clinical settings. Addressing these gaps will support the integration of herbal immunostimulants into evidence-based healthcare as sustainable and accessible immune-enhancing strategies.
Collapse
Affiliation(s)
- Trivadila Trivadila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Dyah Iswantini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Min Rahminiwati
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, West Java, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Adisa Putri Salsabila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Rut Novalia Rahmawati Sianipar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Susi Indariani
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| |
Collapse
|
2
|
Zhong S, Li J, Wei M, Deng Z, Liu X. Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways. Foods 2023; 12:foods12091781. [PMID: 37174319 PMCID: PMC10178253 DOI: 10.3390/foods12091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Browning of fresh-cut plants is mainly attributed to the enzymatic browning of phenolic compounds induced by polyphenol oxidase (PPO), producing browning products such as anthraquinones, flavanol oxides, and glycosides, which are usually considered to be non-toxic. Could browning bring any benefits on behalf of their bioactivity? Our previous study found that browned lotus root extracts (BLREs) could reduce the cholesterol level in obese mice as fresh lotus root extracts (FLREs) did. This study aimed to compare the mechanisms of FLRE and BLRE on cholesterol metabolism and verify whether the main component's monomer regulates cholesterol metabolism like the extracts do through in vitro experiments. Extracts and monomeric compounds are applied to HepG2 cells induced by free fatty acids (FFA). Extracellular total cholesterol (TC) and triglyceride (TG) levels were also detected. In addition, RT-PCR and Western blot were used to observe cholesterol metabolism-related gene and protein expression. The in vitro results showed that BLRE and FLRE could reduce TC and TG levels in HepG2 cells. In addition, BLRE suppressed the synthesis of cholesterol. Meanwhile, FLRE promoted the synthesis of bile acid (BA) as well as the clearance and efflux of cholesterol. Furthermore, the main monomers of BLRE also decreased cholesterol synthesis, which is the same as BLRE. In addition, the main monomers of FLRE promoted the synthesis of BAs, similar to FLRE. BLRE and FLRE promote cholesterol metabolism by different pathways.
Collapse
Affiliation(s)
- Shuyuan Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jingfang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Meng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Sabbagh F, Khatir NM, Kiarostami K. Synthesis and Characterization of 𝒌-Carrageenan/PVA Nanocomposite Hydrogels in Combination with MgZnO Nanoparticles to Evaluate the Catechin Release. Polymers (Basel) 2023; 15:polym15020272. [PMID: 36679153 PMCID: PMC9864035 DOI: 10.3390/polym15020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
In the current study, nanocomposites were prepared by combining k-carrageenan, polyvinyl alcohol (PVA), and doped nanoparticles (Magnesium oxide) MgO, (Magnesium Zinc oxide) MgZnO 1%, MgZnO 3%, and MgZnO 5%. The nanoparticles were synthesized by a sol-gel method and mixed with a mixture of k-carrageenan/PVA (Ca/PVA) in various ratios. The structure of the composites was analyzed using thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The Ca/PVA mixture was then mixed with nanoparticles and loaded with active ingredient, catechin. Scanning electron microscope (SEM) and texture analysis were performed to analyze the nanocomposites. Entrapment efficiency (EE%) and drug release studies confirmed that k-carrageenan/PVA/MgZnO 5% had the highest EE% at 81.58% and a drug release of 75.21% ± 0.94. The EE% of k-carrageenan/PVA/MgO was 55.21% and its drug release was 45%. This indicates that ZnO plays an effective role in the structure and performance of Ca/PVA composites. The SEM images of MgO composites show smoother surfaces compared to MgZnO composites. This may be one of the reasons for the increased EE% and drug release of MgZnO composites. The addition of ZnO to the composite structure can lead to the appearance of pores on the surface of the composite, increasing entrapment and drug release.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Botany and Plant Science, Faculty of Biological Science, Alzahra University, Tehran 1993891176, Iran
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence: (F.S.); (K.K.)
| | - Nadia Mahmoudi Khatir
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran 1993891176, Iran
| | - Khadijeh Kiarostami
- Department of Botany and Plant Science, Faculty of Biological Science, Alzahra University, Tehran 1993891176, Iran
- Correspondence: (F.S.); (K.K.)
| |
Collapse
|
4
|
Baranwal A, Aggarwal P, Rai A, Kumar N. Pharmacological actions and underlying mechanisms of Catechin: A review. Mini Rev Med Chem 2021; 22:821-833. [PMID: 34477517 DOI: 10.2174/1389557521666210902162120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Catechin is a phytochemical and is a major component of our daily use beverages, which has shown great potential in improving general health and fighting against several medical conditions. Clinical studies have confirmed its effectiveness in conditions ranging from acute upper respiratory tract infection, neuroprotection, to cardio-protection effects. Though most studies relate their potential to anti-oxidative action and radical scavenging action, still the mechanism of action is not clearly understood. OBJECTIVE The present review article is focused on addressing various pharmacological actions and underlying mechanisms of catechin. Additionally, we will try to figure out the major adverse effect and success in trials with catechin and lead to a conclusion for its effectiveness. METHODS This review article is based on the recent/ most cited papers of PubMed and Scopus databases. DESCRIPTION Catechin can regulate Nrf2 and NFkB pathways in ways that impact oxidative stress and inflammation by influencing gene expression. Other pathways like MAPKs and COMT and receptor tyrosine kinase are also affected by catechin and EGCG that alter their action and barge the cellular activity. This review article explored the structural aspect of catechin and its different isomers and analogs. It also evaluated its various therapeutic and pharmacological arrays . CONCLUSION Catechin and its stereo-isomers have shown their effectiveness as anti-inflammatory, anti-diabetic, anti-cancer, anti-neuroprotective, bactericidal, memory enhancer, anti-arthritis, and hepato-protective mainly through its activity to alter the pathway by NF-κB, Nrf-2, TLR4/NF-κB, COMT, and MAPKs.
Collapse
Affiliation(s)
- Aadrika Baranwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnakata, India
| | - Punita Aggarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, EPIP, Industrial Area, Vaishali 844102, Bihar, India
| | - Amita Rai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnakata, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, EPIP, Industrial Area, Vaishali 844102, Bihar, India
| |
Collapse
|
5
|
El Gizawy HA, Abo-Salem HM, Ali AA, Hussein MA. Phenolic Profiling and Therapeutic Potential of Certain Isolated Compounds from Parkia roxburghii against AChE Activity as well as GABA A α5, GSK-3β, and p38α MAP-Kinase Genes. ACS OMEGA 2021; 6:20492-20511. [PMID: 34395996 PMCID: PMC8359133 DOI: 10.1021/acsomega.1c02340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 05/08/2023]
Abstract
Parkia roxburghii belongs to the family Mimosaceae; it has been used since ancient times as a cure for different health complications; such as inflammatory and gynecological diseases and hemiplegia. In this investigation, a reversed-phase-high-performance liquid chromatography (RP-HPLC) profile was carried out for P. roxburghii; also, the isolated bioactive compounds including quercetin, catechin, and biochaninA were individually and/or in combination investigated for their inhibitory effects on scopolamine-induced memory impairments in mice, implying that they have the ability to reduce the neurodegenerative effects of scopolamine and thus could be employed as a more effective therapeutic agent in the treatment of Alzheimer's disease (AD) in humans. The possible interactions of Parkia flavonoids with acetylcholinesterase (AChE), γ-aminobutyric acid A receptor, alpha5 (GABAA α5), glycogen synthase kinase-3 (GSK-3), p38 mitogen-activated protein kinase (p38MAP-kinase), signal-regulated kinase (ERK), and protein-serine/threonine kinase (Akt) were then determined using molecular docking.
Collapse
Affiliation(s)
- Heba A. El Gizawy
- Pharmacognosy
Department, Faculty of Pharmacy, October
6 University, 12585 6th of October City, Egypt
| | - Heba M. Abo-Salem
- Chemistry
and Natural Compounds Department, Pharmaceutical and Drug Industries
Research Division, National Research Center, Dokki, 12585 Giza, Egypt
| | - Ali A. Ali
- Postgraduate
Studies, October 6 University, 12585 Sixth of
October City, Egypt
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 12585 Sixth of October City, Egypt
- . Tel: 0020124832580
| |
Collapse
|
6
|
Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes (Basel) 2021. [DOI: 10.3390/pr9020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As an easily adapted culture, with overloaded production in some parts of the globe, apples and their by-products are being redirected to pharmaceutical, canning and beverages industries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioavailability of bioactive compounds found in apple, by impacting, through a high degree of changes, the product’s properties, including composition and health-promoting attributes, as well as their sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and healthy products by the consumers. Recently, contributions to human health, both in vivo and in vitro studies, of non-alcoholic fermented apple-based products have been described. This review highlighted the advances in the process optimization of apple-based products considering vinegar, cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on physical-chemical, nutritional and sensory profiles of these products are also presented. Additionally, the harmful effects of toxic compounds and strategies to limit their content in cider and apple spirits are illustrated. New trends of fermented apple-based products applicability in tangential industries are summarized.
Collapse
|