1
|
Zhong X, Ming Z, Xia Q, Wen X, Ye Z, Luo K, Hu H, Zhuling J, Lei J, Wang S, Xiao X, Yan B, Zhang M. One-tube direct detection of double stranded DNA mutations by a mismatch endonuclease I/CRISPR cas12a cascading system. SENSORS AND ACTUATORS B: CHEMICAL 2025; 426:137093. [DOI: 10.1016/j.snb.2024.137093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
2
|
Vélez Gómez S, Martínez Garro JM, Ortiz Gómez LD, Salazar Flórez JE, Monroy FP, Peláez Sánchez RG. Bioinformatic Characterization of the Functional and Structural Effect of Single Nucleotide Mutations in Patients with High-Grade Glioma. Biomedicines 2024; 12:2287. [PMID: 39457600 PMCID: PMC11505048 DOI: 10.3390/biomedicines12102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. Additionally, in clinical cases, de novo single nucleotide polymorphisms (SNP) are reported, of which their pathogenicity and their effects on the function and stability of the protein are known. Methodology: Non-synonymous SNPs were analyzed for their structural and functional effect on proteins using a set of bioinformatics tools such as SIFT, PolyPhen-2, PhD-SNP, I-Mutant 3.0, MUpro, and mutation3D. A structural comparison between normal and mutated residues for disease-associated coding SNPs was performed using TM-aling and the SWISS MODEL. Results: A total of 13 SNPs were obtained for the TP53 gene, 1 SNP for IDH1, and 1 for IDH2, which would be functionally detrimental and associated with disease. Additionally, these changes compromise the structure and function of the protein; the A161S SNP for TP53 that has not been reported in any databases was classified as detrimental. Conclusions: All non-synonymous SNPs reported for TP53 were in the region of the deoxyribonucleic acid (DNA) binding domain and had a great impact on the function and stability of the protein. In addition, the two polymorphisms detected in IDH1 and IDH2 genes compromise the structure and activity of the protein. Both genes are related to the development of high-grade gliomas. All the data obtained in this study must be validated through experimental approaches.
Collapse
Affiliation(s)
- Sara Vélez Gómez
- Faculty of Sciences and Biotechnology, CES University, Medellín 050021, Colombia;
| | | | | | - Jorge Emilio Salazar Flórez
- GEINCRO Research Group, Medicine Program, School of Health Sciences, San Martín University Foundation, Sabaneta 055457, Colombia;
| | - Fernando P. Monroy
- Department of Biological Sciences, Northerm Arizona University, Flagstaff, AZ 85721, USA;
| | | |
Collapse
|
3
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Liu Q, Zhang J, Guo C, Wang M, Wang C, Yan Y, Sun L, Wang D, Zhang L, Yu H, Hou L, Wu C, Zhu Y, Jiang G, Zhu H, Zhou Y, Fang S, Zhang T, Hu L, Li J, Liu Y, Zhang H, Zhang B, Ding L, Robles AI, Rodriguez H, Gao D, Ji H, Zhou H, Zhang P. Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies. Cell 2024; 187:184-203.e28. [PMID: 38181741 DOI: 10.1016/j.cell.2023.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/25/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.
Collapse
Affiliation(s)
- Qian Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengcheng Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Di Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Huansha Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanting Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanhua Fang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tengfei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junqiang Li
- D1 Medical Technology, Shanghai 201800, China
| | - Yansheng Liu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
5
|
Zhang Y, Hao Y, Pan H, Zheng H, Zhou J. Dissecting the genetic variations associated with response to first-line chemotherapy in patients with small cell lung cancer: a retrospective cohort study. J Thorac Dis 2023; 15:7013-7023. [PMID: 38249933 PMCID: PMC10797352 DOI: 10.21037/jtd-23-1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Background Chemotherapy has been the standard treatment for small-cell lung cancer (SCLC) for decades. Nonetheless, patients are usually responsive to initial chemotherapy but quickly suffer from relapse, resulting in a poor long-term outcome. Treating advances that greatly ameliorate survival outcomes are historically finite, and credible biomarkers for therapeutic evaluation are deficient. As the genetic biology emerges, investigating biomarkers to optimize individualized treatment for SCLC is necessary. Methods Based on following inclusion criteria: (I) patients diagnosed as SCLC by pathology; (II) patients treated with first-line etoposide/cisplatin (EP) chemotherapy; (III) patients who received long-term follow-up and signed informed consent, a total of 24 SCLC patients receiving first-line standard chemotherapy were divided into progressive disease (PD) and partial response (PR) groups. They were regularly followed every 3 months with computed tomography (CT) scan until recurrences determined by CT scan results. Next-generation sequencing (NGS) with a panel of 1,406 cancer-related genes was conducted on the tumor tissue-derived DNA of patients to compare genetic variations, including deletions (indels), single nucleotide variations (SNVs), copy number variations (CNVs), and copy number instability (CNI) between the two groups. Results For the clinical characteristics of enrolled SCLC patients, except for significant differences in sex, age, clinical stage, and limited or extensive stage, PD patients showed distinctly shorter overall survival than those with PR (6.5 vs. 14.0 months, respectively, P=0.007). Genetic variations analysis discovered several common genes with CNV mutations between the PR and PD groups, and increased epidermal growth factor receptor (EGFR) gene copy numbers gain was found in PR groups in comparing with PD patients (P=0.006). However, no significant differences in terms of SNVs, indels, genotypes associated with first-line chemotherapy, CNI of tumor tissue-derived DNA, and tumor mutational burden of tumor tissues were observed between two groups. Additionally, the relationship between EGFR gene mutation and clinicopathological features of SCLC indicated that EGFR gene mutation may be an independent indicator for SCLC patients. Conclusions Increased EGFR gene CNVs may be an independent indicator influencing the survival time and PR in SCLC patients receiving standard first-line chemotherapy.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Hao
- Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Pan
- Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | |
Collapse
|
6
|
Kumar S, Nadda N, Quadri A, Kumar R, Paul S, Tanwar P, Gamanagatti S, Dash NR, Saraya A, Shalimar, Nayak B. Assessments of TP53 and CTNNB1 gene hotspot mutations in circulating tumour DNA of hepatitis B virus-induced hepatocellular carcinoma. Front Genet 2023; 14:1235260. [PMID: 37593116 PMCID: PMC10429180 DOI: 10.3389/fgene.2023.1235260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Background: Hepatitis B virus (HBV) infection is one of the major causes of chronic liver disease, which progresses from chronic hepatitis B (CHB) to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Early detection and laboratory-based screening of hepatocellular carcinoma are still major challenges. This study was undertaken to determine whether the cancer hallmark gene signatures that are released into circulation as circulating tumour DNA (ctDNA) can be used as a liquid biopsy marker for screening, early detection, and prognosis of HCC. Methods: A total of 130 subjects, including HBV-HCC (n = 80), HBV-cirrhotic and non-cirrhotic (n = 35), and healthy (n = 15) controls, were evaluated for TP53 and beta-catenin (CTNNB1) gene hotspot mutations in ctDNA by Sanger-based cycle sequencing and droplet digital PCR (ddPCR) assays. Mutation detection frequency, percentage mutant fractions, and their association with tumour stage, mortality, and smoking habits were determined. Results: Sanger-based cycle sequencing was carried out for 32 HCC patients. Predict SNP Tools analysis indicated several pathogenic driver mutations in the ctDNA sequence, which include p.D228N, p.C229R, p.H233R, p.Y234D, p.S240T, p.G245S, and p.R249M for TP53 gene exon 7 and p.S33T for CTNNB1 gene exon 3. The TP53 c.746G>T (p.R249M) mutation was detected predominately (25% cases) by sequencing, but there was no dominant mutation at position c.747G>T (p.R249S) that was reported for HBV-HCC patients. A dual-probe ddPCR assay was developed to determine mutant and wild-type copy numbers of TP53 (p.R249M and p.R249S) and CTNNB1 (p.S45P) and their percentage mutant fraction in all 130 subjects. The TP53 R249M and CTNNB1 S45P mutations were detected in 31.25% and 26.25% of HCC patients, respectively, with a high mutant-to-wild-type fraction percentage (1.81% and 1.73%), which is significant as compared to cirrhotic and non-cirrhotic patients. Poor survival was observed in HCC patients with combined TP53 and CTNNB1 gene driver mutations. The TP53 R249M mutation was also significantly (p < 0.0001) associated with smoking habits (OR, 11.77; 95% CI, 3.219-36.20), but not the same for the TP53 R249S mutation. Conclusion: Screening of ctDNA TP53 and CTNNB1 gene mutations by ddPCR may be helpful for early detection and identifying the risk of HCC progression.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Neeti Nadda
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Afnan Quadri
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Laboratory Oncology Unit (BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Paul
- Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit (BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | | | - Nihar Ranjan Dash
- Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Jianping W, Zipeng L, Tengfei P, Song Z. A multiple detection method for distinguishing gene mutations based on melting curves of extended quenching probes. Heliyon 2022; 8:e11856. [DOI: 10.1016/j.heliyon.2022.e11856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/24/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
8
|
Kerle IA, Jägerhuber L, Secci R, Pfarr N, Blüm P, Roesch R, Götze KS, Weichert W, Bassermann F, Ruland J, Winter C. Circulating Tumor DNA Profiling of a Diffuse Large B Cell Lymphoma Patient with Secondary Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14061371. [PMID: 35326522 PMCID: PMC8946858 DOI: 10.3390/cancers14061371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/01/2023] Open
Abstract
Diffuse large B cell lymphomas (DLBCL) are the most common neoplasia of the lymphatic system. Circulating cell-free DNA released from tumor cells (ctDNA) has been studied in many tumor entities and successfully used to monitor treatment and follow up. Studies of ctDNA in DLBCL so far have mainly focused on tracking mutations in peripheral blood initially detected by next-generation sequencing (NGS) of tumor tissue from one lymphoma manifestation site. This approach, however, cannot capture the mutational heterogeneity of different tumor sites in its entirety. In this case report, we present repetitive targeted next-generation sequencing combined with digital PCR out of peripheral blood of a patient with DLBCL relapse. By combining both detection methods, we were able to detect a new dominant clone of ctDNA correlating with the development of secondary therapy-related acute myeloid leukemia (t-AML) during the course of observation. Conclusively, our case report reinforces the diagnostic importance of ctDNA in DLBCL as well as the importance of repeated ctDNA sequencing combined with focused digital PCR assays to display the dynamic mutational landscape during the clinical course.
Collapse
Affiliation(s)
- Irina A. Kerle
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
- Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany
| | - Ludwig Jägerhuber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
| | - Ramona Secci
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (N.P.); (W.W.)
| | - Philipp Blüm
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
| | - Romina Roesch
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
| | - Katharina S. Götze
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (N.P.); (W.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
9
|
Das S, Idate R, Regan DP, Fowles JS, Lana SE, Thamm DH, Gustafson DL, Duval DL. Immune pathways and TP53 missense mutations are associated with longer survival in canine osteosarcoma. Commun Biol 2021; 4:1178. [PMID: 34635775 PMCID: PMC8505454 DOI: 10.1038/s42003-021-02683-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma affects about 2.8% of dogs with cancer, with a one-year survival rate of approximately 45%. The purpose of this study was to characterize mutation and expression profiles of osteosarcoma and its association with outcome in dogs. The number of somatic variants identified across 26 samples ranged from 145 to 2,697 with top recurrent mutations observed in TP53 and SETD2. Additionally, 47 cancer genes were identified with copy number variations. Missense TP53 mutation status and low pre-treatment blood monocyte counts were associated with a longer disease-free interval (DFI). Patients with longer DFI also showed increased transcript levels of anti-tumor immune response genes. Although, T-cell and myeloid cell quantifications were not significantly associated with outcome; immune related genes, PDL-1 and CD160, were correlated with T-cell abundance. Overall, the association of gene expression and mutation profiles to outcome provides insights into pathogenesis and therapeutic interventions in osteosarcoma patients.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Rupa Idate
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jared S Fowles
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Susan E Lana
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, 80523, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
10
|
Small Cell Lung Cancer: State of the Art of the Molecular and Genetic Landscape and Novel Perspective. Cancers (Basel) 2021; 13:cancers13071723. [PMID: 33917282 PMCID: PMC8038650 DOI: 10.3390/cancers13071723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Small cell lung cancer (SCLC) continues to carry a poor prognosis with a five-year survival rate of 3.5% and a 10-year survival rate of 1.8%. The pathogenesis remains unclear, and there are no known predictive or diagnostic biomarkers. The current SCLC classification as a single entity hinders effective targeted therapies against this heterogeneous neoplasm. Despite dedicated decades of research and clinical trials, there has been no change in the SCLC treatment paradigm. This review summarizes the body of literature available on SCLC’s genomic landscape to describe SCLC’s molecular/genetic aspects, regardless of therapeutic strategy. Abstract Small cell lung cancer (SCLC) is a highly proliferative lung cancer that is not amenable to surgery in most cases due to the high metastatic potential. Precision medicine has not yet improved patients’ survival due to the lack of actionable mutations. Intra- and intertumoral heterogeneity allow the neoplasms to adapt to various microenvironments and treatments. Further studying this heterogeneous cancer might yield the discovery of actionable mutations. First-line SCLC treatment has added immunotherapy to its armamentarium. There has been renewed interest in SCLC, and numerous clinical trials are underway with novel therapeutic approaches. Understanding the molecular and genetic landscape of this heterogeneous and lethal disease will pave the way for novel drug development.
Collapse
|