1
|
Tang S, Wen C, Shen T, Zhu B, Wang X, Wang Z, Fu L, Wen Y, Han M, Kuang X, Ma W, Shen H, Yan J. The involvement of YAP-TGFβ-SMAD-mediated fibrosis in primary inferior oblique overaction. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167620. [PMID: 39662755 DOI: 10.1016/j.bbadis.2024.167620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
This study investigates the involvement of fibrosis in primary inferior oblique overaction (PIOOA), a strabismus characterized by excessive upward eye rotation. First, we identified extensive fibrotic changes in inferior oblique (IO) muscles in PIOOA patients compared to normal controls. A strong positive correlation was clinically established between the severity of PIOOA and the expression of collagen type I alpha 1 chain (COL1A1). COL1A1 levels correlate with preoperative and postoperative clinical grading of PIOOA and the degree of fundus deviation, as measured by disk-foveal angle (DFA). Moreover, immunofluorescence in IO muscle sections of PIOOA patients confirmed activation of fibro/adipogenic progenitors (FAPs) and suggested increased activation of YAP. Interestingly, the TGFβ signaling pathway also exhibited activation, with a notable increase observed in the expression of TGFβ2 in the PIOOA group. Subsequently, we first isolated FAPs from human IO muscles and validated these findings. In vitro, YAP overexpression promoted the differentiation of FAPs into myofibroblasts, exacerbating fibrotic changes. However, knockdown of YAP inhibited the activation of FAPs and fibrogenesis induced by TGFβ2. More importantly, we found TGFβ2 treatment promoted the activation of YAP simultaneously, and the overexpression or inhibition of YAP also affected TGFβ2 production and Smad phosphorylation, indicating a close connection between the two. Remarkably, verteporfin was observed to block both pathways effectively. Taken together, these findings suggest that the YAP-TGFβ-SMAD signaling cascade plays a key role in the pathophysiology of PIOOA through FAP-mediated fibrosis. Targeting these pathways may therefore provide a potential therapeutic strategy for managing PIOOA by alleviating muscle fibrosis.
Collapse
Affiliation(s)
- Shiyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Tao Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Binbin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xiangjun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zhonghao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Licheng Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yun Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Mengya Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Weixia Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
2
|
Li YJ, Lin J, Tang SQ, Zuo WM, Ding GH, Shen XY, Wang LN. CD39 activities in the treated acupoints contributed to the analgesic mechanism of acupuncture on arthritis rats. Purinergic Signal 2024:10.1007/s11302-024-10065-4. [PMID: 39542981 DOI: 10.1007/s11302-024-10065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Our previous work had identified that at the acupuncture point (acupoint), acupuncture-induced ATP release was a pivotal event in the initiation of analgesia. We aimed to further elucidate the degradation of ATP by CD39. Acupuncture was administered at Zusanli acupoint on arthritis rats, and pain thresholds of the hindpaws were determined. Pharmacological tools or adeno-associated viruses were administered at the acupoints to interfere with targeting signals. Protein expression was determined with qRT-PCR, WB, or immunofluorescent labeling. Cultured keratinocytes, HaCaT line, were subjected to hypotonic shock to simulate needling stimulation. Extracellular ATP and adenosine levels were quantified using luciferase-luciferin assay and ELISA, respectively. Acupuncture-induced prompt analgesia was impaired by inhibiting CD39 activities to prevent the degradation of ATP to AMP but was mimicked by using CD39 agonists. Acupuncture-induced ATP accumulation exhibited synchronous changes. Similarly, acupuncture analgesia was hindered by suppressing CD73 to prevent the conversion of AMP to adenosine. Furthermore, the acupuncture effect was replicated by agonism at P2Y2Rs but inhibited by antagonism at them. Acupuncture upregulated CD73 and P2Y2Rs but not CD39. Immunofluorescent labeling demonstrated that keratinocytes were a primary site for these proteins. Shallow acupuncture also demonstrated antinociception. In vitro tests showed that hypotonic shock induced HaCaT cells to release ATP and adenosine, which was impaired by suppressing CD39 and CD73, respectively. Finally, agonism at P2Y2Rs promoted ATP release and [Ca2+]i rise. CD39 at the acupoints contributes to the analgesic mechanism of acupuncture. It may facilitate adenosine signaling in conjunction with CD73 or provide an appropriate ATP milieu for P2Y2Rs. Skin tissue may be one of the scenes for these signalings.
Collapse
Affiliation(s)
- Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Lin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Qi Tang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Min Zuo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (21DZ2271800), Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| |
Collapse
|
3
|
Balayan A, DeBoutray M, Molley TG, Ruoss S, Maceda M, Sevier A, Robertson CM, Ward SR, Engler AJ. Dispase/collagenase cocktail allows for coisolation of satellite cells and fibroadipogenic progenitors from human skeletal muscle. Am J Physiol Cell Physiol 2024; 326:C1193-C1202. [PMID: 38581669 PMCID: PMC11193520 DOI: 10.1152/ajpcell.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.
Collapse
Affiliation(s)
- Alis Balayan
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
| | - Marie DeBoutray
- Department of ENT and Maxillofacial Surgery, Montpellier University, Montpellier, France
| | - Thomas G Molley
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
| | - Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Matthew Maceda
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Ashley Sevier
- California State University, Bakersfield, Bakersfield, California, United States
| | - Catherine M Robertson
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Samuel R Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
- Department of Radiology, UC San Diego, La Jolla, California, United States
| | - Adam J Engler
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, California, United States
| |
Collapse
|
4
|
Li A, Anbuchelvan M, Fathi A, Abu-Zahra M, Evseenko D, Petrigliano FA, Dar A. Distinct human skeletal muscle-derived CD90 progenitor subsets for myo-fibro-adipogenic disease modeling and treatment in multiplexed conditions. Front Cell Dev Biol 2023; 11:1173794. [PMID: 37143896 PMCID: PMC10151706 DOI: 10.3389/fcell.2023.1173794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Chronic muscle injuries, such as massive rotator cuff tears, are associated with progressive muscle wasting, fibrotic scarring, and intramuscular fat accumulation. While progenitor cell subsets are usually studied in culture conditions that drive either myogenic, fibrogenic, or adipogenic differentiation, it is still unknown how combined myo-fibro-adipogenic signals, which are expected to occur in vivo, modulate progenitor differentiation. We therefore evaluated the differentiation potential of retrospectively generated subsets of primary human muscle mesenchymal progenitors in multiplexed conditions in the presence or absence of 423F drug, a modulator of gp130 signaling. We identified a novel CD90+CD56- non-adipogenic progenitor subset that maintained a lack of adipogenic potential in single and multiplexed myo-fibro-adipogenic culture conditions. CD90-CD56- demarcated fibro-adipogenic progenitors (FAP) and CD56+CD90+ progenitors were typified as myogenic. These human muscle subsets exhibited varying degrees of intrinsically regulated differentiation in single and mixed induction cultures. Modulation of gp130 signaling via 423F drug mediated muscle progenitor differentiation in a dose-, induction-, and cell subset-dependent manner and markedly decreased fibro-adipogenesis of CD90-CD56- FAP. Conversely, 423F promoted myogenesis of CD56+CD90+ myogenic subset, indicated by increased myotube diameter and number of nuclei per myotube. 423F treatment eliminated FAP-derived mature adipocytes from mixed adipocytes-FAP cultures but did not modify the growth of non-differentiated FAP in these cultures. Collectively, these data demonstrate that capability of myogenic, fibrogenic, or adipogenic differentiation is largely dependent on the intrinsic features of cultured subsets, and that the degree of lineage differentiation varies when signals are multiplexed. Moreover, our tests performed in primary human muscle cultures reveal and confirm the potential triple-therapeutic effects of 423F drug which simultaneously attenuates degenerative fibrosis, fat accumulation and promotes myo-regeneration.
Collapse
Affiliation(s)
- Angela Li
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Madhavan Anbuchelvan
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amir Fathi
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maya Abu-Zahra
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Frank A. Petrigliano
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ayelet Dar
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Di Pietro L, Giacalone F, Ragozzino E, Saccone V, Tiberio F, De Bardi M, Picozza M, Borsellino G, Lattanzi W, Guadagni E, Bortolani S, Tasca G, Ricci E, Parolini O. Non-myogenic mesenchymal cells contribute to muscle degeneration in facioscapulohumeral muscular dystrophy patients. Cell Death Dis 2022; 13:793. [PMID: 36114172 PMCID: PMC9481542 DOI: 10.1038/s41419-022-05233-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023]
Abstract
Muscle-resident non-myogenic mesenchymal cells play key roles that drive successful tissue regeneration within the skeletal muscle stem cell niche. These cells have recently emerged as remarkable therapeutic targets for neuromuscular disorders, although to date they have been poorly investigated in facioscapulohumeral muscular dystrophy (FSHD). In this study, we characterised the non-myogenic mesenchymal stromal cell population in FSHD patients' muscles with signs of disease activity, identified by muscle magnetic resonance imaging (MRI), and compared them with those obtained from apparently normal muscles of FSHD patients and from muscles of healthy, age-matched controls. Our results showed that patient-derived cells displayed a distinctive expression pattern of mesenchymal markers, along with an impaired capacity to differentiate towards mature adipocytes in vitro, compared with control cells. We also demonstrated a significant expansion of non-myogenic mesenchymal cells (identified as CD201- or PDGFRA-expressing cells) in FSHD muscles with signs of disease activity, which correlated with the extent of intramuscular fibrosis. In addition, the accumulation of non-myogenic mesenchymal cells was higher in FSHD muscles that deteriorate more rapidly. Our results prompt a direct association between an accumulation, as well as an altered differentiation, of non-myogenic mesenchymal cells with muscle degeneration in FSHD patients. Elucidating the mechanisms and cellular interactions that are altered in the affected muscles of FSHD patients could be instrumental to clarify disease pathogenesis and identifying reliable novel therapeutic targets.
Collapse
Affiliation(s)
- Lorena Di Pietro
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Flavia Giacalone
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elvira Ragozzino
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Saccone
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Tiberio
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Bardi
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mario Picozza
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanna Borsellino
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Wanda Lattanzi
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Enrico Guadagni
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Bortolani
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| |
Collapse
|
6
|
Beaudry KM, Binet ER, Collao N, De Lisio M. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front Physiol 2022; 13:915390. [PMID: 35874517 PMCID: PMC9301335 DOI: 10.3389/fphys.2022.915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
Collapse
Affiliation(s)
| | | | - Nicolás Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Bensalah M, Muraine L, Boulinguiez A, Giordani L, Albert V, Ythier V, Dhiab J, Oliver A, Hanique V, Gidaro T, Perié S, Lacau St-Guily J, Corneau A, Butler-Browne G, Bigot A, Mouly V, Negroni E, Trollet C. A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis. J Cachexia Sarcopenia Muscle 2022; 13:1771-1784. [PMID: 35319169 PMCID: PMC9178170 DOI: 10.1002/jcsm.12974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fibrosis is defined as an excessive accumulation of extracellular matrix (ECM) components. Many organs are subjected to fibrosis including the lung, liver, heart, skin, kidney, and muscle. Muscle fibrosis occurs in response to trauma, aging, or dystrophies and impairs muscle function. Fibrosis represents a hurdle for the treatment of human muscular dystrophies. While data on the mechanisms of fibrosis have mostly been investigated in mice, dystrophic mouse models often do not recapitulate fibrosis as observed in human patients. Consequently, the cellular and molecular mechanisms that lead to fibrosis in human muscle still need to be identified. METHODS Combining mass cytometry, transcriptome profiling, in vitro co-culture experiments, and in vivo transplantation in immunodeficient mice, we investigated the role and nature of nonmyogenic cells (fibroadipogenic progenitors, FAPs) from human fibrotic muscles of healthy individuals (FibMCT ) and individuals with oculopharyngeal muscular dystrophy (OPMD; FibMOP ), as compared with nonmyogenic cells from human nonfibrotic muscle (MCT ). RESULTS We found that the proliferation rate of FAPs from fibrotic muscle is 3-4 times higher than those of FAPs from nonfibrotic muscle (population doubling per day: MCT 0.2 ± 0.1, FibMCT 0.7 ± 0.1, and FibMOP 0.8 ± 0.3). When cocultured with muscle cells, FAPs from fibrotic muscle impair the fusion index unlike MCT FAPs (myoblasts alone 57.3 ± 11.1%, coculture with MCT 43.1 ± 8.9%, with FibMCT 31.7 ± 8.2%, and with FibMOP 36.06 ± 10.29%). We also observed an increased proliferation of FAPs from fibrotic muscles in these co-cultures in differentiation conditions (FibMCT +17.4%, P < 0.01 and FibMOP +15.1%, P < 0.01). This effect is likely linked to the increased activation of the canonical TGFβ-SMAD pathway in FAPs from fibrotic muscles evidenced by pSMAD3 immunostaining (P < 0.05). In addition to the profibrogenic TGFβ pathway, we identified endothelin as a new actor implicated in the altered cross-talk between muscle cells and fibrotic FAPs, confirmed by an improvement of the fusion index in the presence of bosentan, an endothelin receptor antagonist (from 33.8 ± 10.9% to 52.9 ± 10.1%, P < 0.05). CONCLUSIONS Our data demonstrate the key role of FAPs and their cross-talk with muscle cells through a paracrine signalling pathway in fibrosis of human skeletal muscle and identify endothelin as a new druggable target to counteract human muscle fibrosis.
Collapse
Affiliation(s)
- Mona Bensalah
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Laura Muraine
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Alexis Boulinguiez
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Lorenzo Giordani
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Victorine Albert
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Victor Ythier
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jamila Dhiab
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Alison Oliver
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Valentine Hanique
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Teresa Gidaro
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Sophie Perié
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Department of Otolaryngology-Head and Neck Surgery, Tenon Hospital, Assistance Publique des Hôpitaux de Paris, Faculty Medicine Sorbonne University, Paris, France.,Department of Otolaryngology Head and Neck Surgery, Com Maillot-Hartmann Clinic, Neuilly Sur Seine, France
| | - Jean Lacau St-Guily
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Department of Otolaryngology-Head and Neck Surgery, Tenon Hospital, Assistance Publique des Hôpitaux de Paris, Faculty Medicine Sorbonne University, Paris, France.,Department of Otolaryngology-Head and Neck Surgery, Rothschild Foundation Hospital and Sorbonne University, Paris, France
| | - Aurélien Corneau
- UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière CyPS, Sorbonne Université, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
8
|
Favaretto F, Bettini S, Busetto L, Milan G, Vettor R. Adipogenic progenitors in different organs: Pathophysiological implications. Rev Endocr Metab Disord 2022; 23:71-85. [PMID: 34716543 PMCID: PMC8873140 DOI: 10.1007/s11154-021-09686-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
In physiological conditions, the adipose organ resides in well-defined areas, where it acts providing an energy supply and as an endocrine organ involved in the control of whole-body energy metabolism. Adipose tissue adipokines connect the body's nutritional status to the regulation of energy balance. When it surrounds organs, it provides also for mechanical protection. Adipose tissue has a complex and heterogenous cellular composition that includes adipocytes, adipose tissue-derived stromal and stem cells (ASCs) which are mesenchymal stromal cells, and endothelial and immune cells, which signal to each other and to other tissues to maintain homeostasis. In obesity and in other nutrition related diseases, as well as in age-related diseases, biological and functional changes of adipose tissue give rise to several complications. Obesity triggers alterations of ASCs, impairing adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance and other metabolic disorders. Adipose tissue grows by hyperplasia recruiting new ASCs and by hypertrophy, up to its expandability limit. To overcome this limitation and to store the excess of nutrients, adipose tissue develops ectopically, involving organs such as muscle, bone marrow and the heart. The origin of ectopic adipose organ is not clearly elucidated, and a possible explanation lies in the stimulation of the adipogenic differentiation of mesenchymal precursor cells which normally differentiate toward a lineage specific for the organ in which they reside. The chronic exposition of these newly-formed adipose depots to the pathological environment, will confer to them all the phenotypic characteristics of a dysfunctional adipose tissue, perpetuating the organ alterations. Visceral fat, but also ectopic fat, either in the liver, muscle or heart, can increase the risk of developing insulin resistance, type 2 diabetes, and cardiovascular diseases. Being able to prevent and to target dysfunctional adipose tissue will avoid the progression towards the complications of obesity and other nutrition-related diseases. The aim of this review is to summarize some of the knowledge regarding the presence of adipose tissue in particular tissues (where it is not usually present), describing the composition of its adipogenic precursors, and the interactions responsible for the development of organ pathologies.
Collapse
Affiliation(s)
- Francesca Favaretto
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Silvia Bettini
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Luca Busetto
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Gabriella Milan
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Roberto Vettor
- grid.5608.b0000 0004 1757 3470Department of Medicine, Internal Medicine 3, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| |
Collapse
|
9
|
Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new definitions. Skelet Muscle 2021; 11:16. [PMID: 34210364 PMCID: PMC8247239 DOI: 10.1186/s13395-021-00265-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Striated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism-all the functions needed for an individual's health and well-being. The muscle connective tissue's main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, 2052, Australia.
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fabio M V Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|