1
|
Hassan MU, Xu H, Ghorbanpour M, Yongfang Y, Yang B, Zhou Q, Khan TA, Guoqin H. Integrative application of biochar and bacteria for mitigating antimony toxicity and bio-accessibility in sorghum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177497. [PMID: 39547371 DOI: 10.1016/j.scitotenv.2024.177497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Antimony (Sb) toxicity is a serious concern due to its harmful effects on humans and plants. Biochar (BC) has become a popular amendment for remediating soils polluted with metals and metalloids. However, the exact interaction mechanism between BC, and microbes to remediate Sb-polluted soils remains unclear. To address this, a study was performed to determine the impacts of maize straw BC and a bacterial strain (Pseudomonas frederiksbergensis: PF) in mitigating the harmful effects of Sb toxicity on sorghum productivity. A pot experiment was set up with the following treatments: control, soil contaminated with Sb (1000 mg kg-1), Sb-contaminated soil + BC (2 %), Sb-contaminated soil + PF, and Sb-contaminated soil + BC (2 %) + PF. Antimony toxicity significantly reduced sorghum biomass and grain yield while increasing hydrogen peroxide (H2O2: 32.63 %), malondialdehyde (MDA: 68.96 %) reducing chlorophyll a (95.65 %) and chlorophyll b synthesis (92 %), increasing Sb accumulation in plant parts and decreasing soil NPK (24.48 %, 8.01 % and 19.24 %) availability, soil organic carbon (SOC: 16.36 %), microbial biomass carbon (MBC: 10.80 %) and soil urease (76.31 %) and catalase (130.52 %) activity. The combined application of BC and bacteria enhanced the sorghum biomass and grain production by improving chlorophyll synthesis, antioxidant activity, osmolyte production, nutrient availability, SOC, MBC, soil enzymatic activities and reducing both H2O2 and MDA production. Co-application of BC and bacteria decreased soil Sb concentration by 38.84 % while they decreased Sb concentration in sorghum root, stem, leaves and grains by 54.58 %, 34.15 %, 30.96 % and 54.58 % respectively. The decrease of Sb concentration in soil and plant parts with BC and bacteria application was attributed to increase in soil pH, SOC, MBC, enzymes activities. Additionally, BC in combination with bacteria also reduced bio-accessible Sb concentration by 83.82 %, and bio-accessibility of Sb by 36.45 % indicating their appreciable potential to produce safer sorghum production in highly polluted Sb soils. Therefore, BC and PF can be used together to improve sorghum production and develop environmentally friendly approaches in Sb-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huifang Xu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Yu Yongfang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Binjuan Yang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Quan Zhou
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Tahir Abbas Khan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huang Guoqin
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Putra B, Surachman M, Darmawan IWA, Fanindi A, Sawen D, Dianita R, Praptiwi II, Sawo K, Hambakodu M, Hariadi BT, Koten BB, Akhadiarto S, Bahar S, Sirait J, Nulik J, Simanihuruk K, Gopar RA, Suharlina. Assessing phytoremediation strategies for gold mine tailings: a bibliometric and systemic review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:12. [PMID: 39661228 DOI: 10.1007/s10653-024-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.81% and significant contributions from countries like Indonesia, Malaysia, and South Africa. Key findings emphasize the variability in phytoremediation success based on plant species, site conditions, and remediation techniques. Prominent plants identified include vetiver grass, Siam weed, and water hyacinth, which demonstrate significant potential in heavy metal uptake and soil stabilization. The study also underscores the importance of optimizing plant-microbe interactions and employing site-specific approaches to enhance remediation efficiency. Future research opportunities are identified, focusing on genetic engineering of plants, field trials, and integration of advanced monitoring technologies. Overall, this comprehensive review highlights the promising potential of phytoremediation as a sustainable and effective strategy for managing gold mine tailings, advocating for continued research and policy support to advance this green technology in environmental management.
Collapse
Affiliation(s)
- Bela Putra
- Universitas Muara Bungo, Jl. Pendidikan, Muara Bungo, Bungo, 37215, Jambi, Indonesia.
| | - M Surachman
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - I W A Darmawan
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Achmad Fanindi
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Diana Sawen
- Universitas Papua, Jl. Gunung Salju, Amban Manokwari, West Papua, 98314, Indonesia
| | - Rahmi Dianita
- Department of Animal Science, Faculty of Animal Husbandry, Universitas Jambi, Jambi, Indonesia
| | - Irine Ike Praptiwi
- Department of Animal Science, Faculty of Animal Husbandry, Universitas Musamus, Merauke, Indonesia
| | | | | | - Bambang Tj Hariadi
- Universitas Papua, Jl. Gunung Salju, Amban Manokwari, West Papua, 98314, Indonesia
| | | | - S Akhadiarto
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syamsu Bahar
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Juniar Sirait
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Jacob Nulik
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kiston Simanihuruk
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ruslan A Gopar
- Research Center for Animal Husbandry, The National Research and Innovation Agency (BRIN), Bogor, Indonesia.
| | - Suharlina
- East Kutai Agricultural College School, Sangatta, Indonesia
| |
Collapse
|
3
|
Flores-Calla SS, Villanueva-Salas JA, Diaz-Rodriguez K, Gonzales-Condori EG. Removal of Lead, Cadmium, and Mercury in Monometallic and Trimetallic Aqueous Systems Using Chenopodium album L. SCIENTIFICA 2024; 2024:6842159. [PMID: 39697621 PMCID: PMC11655145 DOI: 10.1155/sci5/6842159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/10/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
The presence of heavy metals in water represents a risk to the life of all species on the planet. Phytoremediation is an effective alternative to remove heavy metals from contaminated aqueous environments. In the present research, Chenopodium album L. was examined for the remediation of waters contaminated with Cd, Pb, and Hg. Studies were carried out in waters containing each metal separately (monometallic aqueous systems) and in mixtures (trimetallic aqueous systems). First, the adaptation of Chenopodium album to different concentrations of Hoagland's nutrient solution (HNS) was evaluated, then, a phytotoxicity study was carried out to determine the appropriate concentrations of each metal to test the tolerance of the plant during the accumulation study, and finally, the bioaccumulation capacity of Chenopodium album for Cd, Pb, and Hg was evaluated. Chenopodium album showed tolerance to levels of 5 mg/L Hg and 10 mg/L Cd and Pb in 25% HNS. The bioaccumulation tests showed that Chenopodium album can remediate Cd, Pb, and Hg contaminated waters in both monometallic and trimetallic aqueous systems. These findings suggest important future applications in the food industry for the production of Chenopodium album as we demonstrate that this species adapts and grows in hydroponic media. In particular, the ability of Chenopodium album to adapt to extreme conditions could be exploited for further studies on phytoremediation of heavy metals in river water, irrigation water, wastewater, effluents, and mine tailings.
Collapse
Affiliation(s)
- Susan S. Flores-Calla
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - José A. Villanueva-Salas
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Karla Diaz-Rodriguez
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Elvis G. Gonzales-Condori
- Grupo de Investigación en Biotecnología y Ciencia de Los Alimentos, Universidad Tecnológica del Perú, Av. Tacna y Arica 160, Arequipa, Peru
| |
Collapse
|
4
|
Rani S, Kumar P, Kumar V. Removal of organic pollutants from paper mill effluent using Taro (Colocasia esculenta L. Schott) in an electro-assisted horizontal subsurface flow constructed wetland: Experimental and kinetic studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:48. [PMID: 39658739 DOI: 10.1007/s10661-024-13523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
In this study, the phytoremediation potential of Taro (Colocasia esculenta L. Schott) plant was examined, utilizing horizontal subsurface flow constructed wetlands with and without an electric current supply for the purpose of removing pollutants from paper mill effluent. For this, different wetlands were set up with varying concentrations of effluent: CW (Control), CW1 (25%), CW2 (50%), CW3 (75%), CW4 (100%). After 45 days, the highest plant height (85.13 ± 4.24 cm), leaf area index( 250.83 ± 10.14), fresh biomass (565.30 ± 6 .10 g), root biomass (392.85 ± 4.34 g), root-to-shoot ratio (2.41 ± 2.10), relative growth rate (0.044 ± 0.002 gg-1d-1), and chlorophyll content (3.29 ± 0.07 mg/g fwt) was observed in CW2 with current supply, along with significant removal of pollutants (pH: 7.13 ± 0.15, EC: 2.33 ± 0.07 dS/m, TDS: 192.52 ± 6.12 mg/L, COD: 490.17 ± 5.01 mg/L, BOD: 206.74 ± 5.92 mg/L, potassium: 73.27 ± 4.11 mg/L, sodium: 46.62 ± 2.27 mg/L, phosphate phosphorus: 34.08 ± 1.43 mg/L, and nitrate nitrogen: 104.85 ± 5.94 mg/L) and highest first-order rate constant (k) values. Furthermore, the microbial community assessment of constructed wetlands using V3-V4 16S rRNA sequence data was prepared on the Illumina MiSeq framework. The major phyla identified were Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Chloroflexi, Acidobacteria, Nitrospirae, Planctomycetes, and others. The findings offer innovative insights for sustainable wastewater treatment strategies through phytoremediation of paper mill effluent using Taro plants in modified constructed wetlands and highlight the role of diverse microbial communities capable of degrading various pollutants in wastewater.
Collapse
Affiliation(s)
- Sheetal Rani
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
- Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun, 248007, India
| | - Vinod Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.
| |
Collapse
|
5
|
Kara Z. Assessment of heavy metal pollution in soil-parent material relationship across ecosystems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1131. [PMID: 39476266 DOI: 10.1007/s10661-024-13312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/25/2024] [Indexed: 11/14/2024]
Abstract
The works of assessing the pollution posed by metals in agricultural areas in developing countries are limited. This study aims to assess metal concentrations and pollution indices of parent materials and soils representing the mantle and oceanic crust units of the ophiolite in the Eastern Mediterranean region, specifically in Kahramanmaraş Province. A total of 88 samples, comprising 44 soil (0-30 cm) and 44 parent material (90 + cm), were collected from the study area. Arsenic (As), mercury (Hg), selenium (Se), uranium (U), molybdenum (Mo), tin (Sn), and cesium (Cs) concentrations were analyzed in these samples, along with the reference metal, iron (Fe). Pollution levels were assessed using enrichment factor (EF) and contamination factor (CF) calculations. Results showed that elemental concentrations (Hg, Se, U, Mo, Sn, and Cs) in soils from the mantle and oceanic crust generally reflected those of the parent material. However, the average As concentration in soils from oceanic crust and mantle units was notably elevated, showing a 3 to fourfold increase compared to the parent material. Based on pollution index values, soils from these units demonstrated a moderate level of enrichment (2 < EF < 5) for As, while other elements (Hg, Se, U, Mo, Sn, and Cs) fell into the low enrichment class (EF < 2). Furthermore, the CF index indicated significant contamination (3 < CF < 6) for As. These findings suggest As contamination in soils from different units of the ophiolite (mantle and oceanic crust), potentially resulting from agricultural chemicals like pesticides and fertilizers.
Collapse
Affiliation(s)
- Zekeriya Kara
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Kahramanmaras Sütçü İmam University, 46100, Kahramanmaraş, Turkey.
| |
Collapse
|
6
|
Bashir SK, Irshad M, Bacha AUR, An P, Faridullah F, Ullah Z. Investigation of heavy metals uptake in root-shoot of native plant species adjoining wastewater channels. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:541. [PMID: 38735978 DOI: 10.1007/s10661-024-12714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Metal pollution in water, soil, and vegetation is an emerging environmental issue. Therefore, this study investigated the abundance of heavy metals (HMs) within roots and shoots of native plant species i.e., Bromus pectinatus, Cynodon dactylon, Poa annua, Euphorbia heliscopa, Anagallis arvensis, and Stellaria media grown in the adjoining area of municipal wastewater channels of a Pakistani city of Abbottabad. HMs concentrations (mg L-1) in municipal wastewater were: chromium (Cr) (0.55) > nickel (Ni) (0.09) > lead (Pb) (0.07) > cadmium (Cd) (0.03). Accumulation of HMs in both roots and shoots of plant species varied as B. pectinatus > C. dactylon > P. annua > E. heliscopa > A. arvensis > S. media. Irrespective of the plant species, roots exhibited higher concentrations of HMs than shoots. Higher amount of Cr (131.70 mg kg-1) was detected in the roots of B. pectinatus and the lowest amount (81 mg kg-1) in A. arvensis, Highest Cd concentration was found in the shoot of B. pectinatus and the lowest in the E. heliscopa. The highest concentration of Ni was found in the roots of S. media (37.40 mg kg-1) and the shoot of C. dactylon (15.70 mg kg-1) whereas the lowest Ni concentration was achieved in the roots of A. arvensis (12.10 mg kg-1) and the shoot of E. heliscopa (5.90 mg kg-1). The concentration of HMs in individual plant species was less than 1000 mg kg-1. Considering the higher values (> 1) of biological concentration factor (BCF), biological accumulation co-efficient (BAC), and translocation factor (TF), B. pectinatus and S. media species showed greater potential for HMs accumulation than other species. Therefore, these plants might be helpful for the remediation of HM-contaminated soil.
Collapse
Affiliation(s)
- Sardar Khyzer Bashir
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China.
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Ping An
- Arid Land Research Center, Tottori University, 1390 Hamasaka cho, Tottori City, 680-0001, Japan
| | - Faridullah Faridullah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
7
|
Khan SN, Nafees M, Imtiaz M. Assessment of industrial effluents for heavy metals concentration and evaluation of grass ( Phalaris minor) as a pollution indicator. Heliyon 2023; 9:e20299. [PMID: 37809466 PMCID: PMC10560060 DOI: 10.1016/j.heliyon.2023.e20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
This study was conducted to investigate the impact of industrial activities on heavy metals status in wastewater, sludge and flora on the bank of selected main drains of the Hayatabad Industrial estate, Peshawar. Plants, sludge and wastewater samples of selected sites were collected and analyzed for heavy metals distribution; cadmium (Cd), chromium (Cr), lead (Pb) and zinc (Zn) levels. Bioconcentration factor (BCF) values were calculated for plants (Phalaris minor) grass species found naturally at all sites. The results showed that the levels of metals in wastewater were lower than permissible limits except Cd and the concentration of metals in plants and sludge were within permissible limits when compared to their respective standards. Metal distribution was in the following order; sludge > plants > wastewater and the concentration of metals varied according to the distance from the source with no specific pattern. Sludge samples for all sites showed a high concentration of metals as compared to plants and wastewater samples. In grass samples, Zn was highest and Cd was low for all sites. Metals accumulation in plants was in order of; roots > shoot. Pearson's coefficient correlation showed that Cr in plant roots and Zn in shoots showed significantly high correlation with Cd in sludge while Pb in roots showed significant negative correlation with Zn in sludge. BCF values for Cr, Pb and Zn were >1, showing the phytoremediation potential of plants.
Collapse
Affiliation(s)
- Sara Nawaz Khan
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Sciences Division, Nuclear Institute for Food and Agriculture (NIFA), Tarnab, Peshawar, Pakistan
| |
Collapse
|
8
|
Singh K, Tripathi S, Chandra R. Bacterial assisted phytoremediation of heavy metals and organic pollutants by Cannabis sativa as accumulator plants growing on distillery sludge for ecorestoration of polluted site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117294. [PMID: 36708597 DOI: 10.1016/j.jenvman.2023.117294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The aim of the study is to explore the potential rhizospheric bacterial communities associated with Cannabis sativa L. (Cannabis); growing on the complex pollutant-rich distillery sludge. Seven bacterial species were isolated, among which four potential bacterial species were characterized based on the 16s rRNA sequencing from the rhizosphere sludge of C. sativa; they are Bacillus thuringiensis (MW887525), Bacillus cereus (MW887524), Achromobacter denitrificans (MW886333), Bacillus subtilis (MW886231). The isolated bacteria showed PGPR attributes and potential for ligninolytic enzyme activity. Further, to correlate these bacteria with organic pollutants of sludge, the GC-MS analysis of fresh disposed distillery sludge and after growth of 30 and 60 days C. sativa was also analysed, which showed the conversion and disappearance of compounds by the activity of rhizospheric bacterial communities. Additionally, C. sativa showed a higher metal accumulation pattern of Fe (801.81 ± 0.123)> Cu (275.086 ± 0.069)> Zn (162.15 ± 0.085)> Mn (63.92 ± 0.093)> Pb (28.619 ± 0.192)> Ni (5.02 ± 0.078)> Cd (2.53 ± 0.085)> Cr (1.87 ± 0.079) mg kg -1 in their shoot, root followed by leaf. The plant also showed BCF >1 and TF > 1 for most of the metals. Thus, this showed the phytoextraction properties of C. sativa from distillery sludge polluted sites. The findings of this study will enable to understand the functional role of rhizospheric bacterial community for the detoxification and degradation of complex organometallic waste, and will thus aid in the development of adequate phytoremediation techniques for the eco-restoration of polluted industrial sites for sustainable development.
Collapse
Affiliation(s)
- Kshitij Singh
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
9
|
Wen Z, Liu Q, Yu C, Huang L, Liu Y, Xu S, Li Z, Liu C, Feng Y. The Difference between Rhizosphere and Endophytic Bacteria on the Safe Cultivation of Lettuce in Cr-Contaminated Farmland. TOXICS 2023; 11:371. [PMID: 37112598 PMCID: PMC10146757 DOI: 10.3390/toxics11040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is a major pollutant affecting the environment and human health and microbial remediation is considered to be the most promising technology for the restoration of the heavily metal-polluted soil. However, the difference between rhizosphere and endophytic bacteria on the potential of crop safety production in Cr-contaminated farmland is not clearly elucidated. Therefore, eight Cr-tolerant endophytic strains of three species: Serratia (SR-1~2), Lysinebacillus (LB-1~5) and Pseudomonas (PA-1) were isolated from rice and maize. Additionally, one Cr-tolerant strain of Alcaligenes faecalis (AF-1) was isolated from the rhizosphere of maize. A randomized group pot experiment with heavily Cr-contaminated (a total Cr concentration of 1020.18 mg kg-1) paddy clay soil was conducted and the effects of different bacteria on plant growth, absorption and accumulation of Cr in lettuce (Lactuca sativa var. Hort) were compared. The results show that: (i) the addition of SR-2, PA-1 and LB-5 could promote the accumulation of plant fresh weight by 10.3%, 13.5% and 14.2%, respectively; (ii) most of the bacteria could significantly increase the activities of rhizosphere soil catalase and sucrase, among which LB-1 promotes catalase activity by 224.60% and PA-1 increases sucrase activity by 247%; (iii) AF-1, SR-1, LB-1, SR-2, LB-2, LB-3, LB-4 and LB-5 strains could significantly decrease shoot the Cr concentration by 19.2-83.6%. The results reveal that Cr-tolerant bacteria have good potential to reduce shoot Cr concentration at the heavily contaminated soil and endophytic bacteria have the same or even better effects than rhizosphere bacteria; this suggests that bacteria in plants are more ecological friendly than bacteria in soil, thus aiming to safely produce crops in Cr-polluted farmland and alleviate Cr contamination from the food chain.
Collapse
Affiliation(s)
- Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shaoxing 312400, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun’an Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhesi Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Waris M, Baig JA, Talpur FN, Kazi TG, Afridi HI, Shakeel S. Estimation of phytoextraction potential of selected halophytes for accumulation of heavy metals from wetland saline soil. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-023-01147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Sharma P, Singh SP, Tripathi RD, Tong YW. Chromium toxicity and tolerance mechanisms in plants through cross-talk of secondary messengers: An overview of pathways and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121049. [PMID: 36627046 DOI: 10.1016/j.envpol.2023.121049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Environmental sources of chromium (Cr) such as solid waste, battery chemicals, industrial /waste, automotive exhaust emissions, mineral mining, fertilizers, and pesticides, have detrimental effects on plants. An excessive amount of Cr exposure can lead to toxic accumulations in human, animal, and plant tissues. In plants, diverse signaling molecules like hydrogen sulfide (H2S) and nitric oxide (NO) play multiple roles during Cr stress. Consequently, the molecular mechanisms of Cr toxicity in plants, such as metal binding, modifying enzyme activity, and damaging cells are examined by several studies. The reactive oxygen species (ROS) that are formed when Cr reacts with lipids, membranes, DNA, proteins, and carbohydrates are all responsible for damage caused by Cr. ROS regulate plant growth, programmed cell death (PCD), cell cycle, pathogen defense, systemic communication, abiotic stress responses, and growth. Plants accumulate Cr mostly through the root system, with very little movement to the shoots. The characterization of stress-inducible proteins and metabolites involved in Cr tolerance and cross-talk messengers has been made possible due to recent advances in metabolomics, transcriptomics, and proteomics. This review discusses Cr absorption, translocation, subcellular distribution, and cross-talk between secondary messengers as mechanisms responsible for Cr toxicity and tolerance in plants. To mitigate this problem, soil-plant systems need to be monitored for the biogeochemical behavior of Cr and the identification of secondary messengers in plants.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226 001, India
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| |
Collapse
|
12
|
Perlein A, Bert V, de Souza MF, Papin A, Meers E. Field evaluation of industrial non-food crops for phytomanaging a metal-contaminated dredged sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44963-44984. [PMID: 36701059 DOI: 10.1007/s11356-022-24964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Phytomanagement is a concept fit for a bio-based circular economy that combines phytotechnologies and biomass production for non-food purposes. Here, ten annual and perennial industrial non-food crops (Sorghum Biomass 133, Sorghum Santa Fe red, Linum usitatissimum L., Eucalyptus sp., Salix Inger, Salix Tordis, Beta vulgaris L., Phacelia tanacetifolia Benth., Malva sylvestris L., and Chenopodium album L.) were studied under field conditions for phytomanaging a metal (Cd, Cu, Pb, and Zn)-contaminated dredged sediment in the North of France. The crops were selected according to their relevance to pedoclimatic and future climatic conditions, and one or more non-food end-products were proposed for each plant part collected, such as biogas, bioethanol, compost, natural dye, ecocatalyst, and fiber. Based on the soil-plant transfer of metals, eight out of the crops cultivated on field plots exhibited an excluder behavior (bioconcentration factor, BCF < 1), a trait suitable for phytostabilization. However, these crops did not change the metal mobilities in the dredged sediment. The BCF < 1 was not sufficient to characterize the excluder behavior of crops as this factor depended on the total dredged-sediment contaminant. Therefore, a BCF group ranking method was proposed accounting for metal phytotoxicity levels or yield decrease as a complemental way to discuss the crop behavior. The feasibility of the biomass-processing chains was discussed based on these results and according to a survey of available legislation in standard and scientific literature.
Collapse
Affiliation(s)
- Alexandre Perlein
- Laboratory for Bioresource Recovery, Ghent University Campus Coupure, B6, Coupure Links 653, 9000, Ghent, Belgium.
- Clean Technologies and Circular Economy, INERIS, Parc Technologique Alata, BP2, 60550, Verneuil-en-Halatte, France.
| | - Valérie Bert
- Clean Technologies and Circular Economy, INERIS, Parc Technologique Alata, BP2, 60550, Verneuil-en-Halatte, France
| | - Marcella Fernandes de Souza
- Laboratory for Bioresource Recovery, Ghent University Campus Coupure, B6, Coupure Links 653, 9000, Ghent, Belgium
| | - Arnaud Papin
- Analytical Methods and Developments for the Environment, INERIS, Parc Technologique Alata, BP2, 60550, Verneuil-en-Halatte, France
| | - Erik Meers
- Laboratory for Bioresource Recovery, Ghent University Campus Coupure, B6, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
13
|
Sarmah M, Borgohain A, Gogoi BB, Yeasin M, Paul RK, Malakar H, Handique JG, Saikia J, Deka D, Khare P, Karak T. Insights into the effects of tea pruning litter biochar on major micronutrients (Cu, Mn, and Zn) pathway from soil to tea plant: An environmental armour. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129970. [PMID: 36162303 DOI: 10.1016/j.jhazmat.2022.129970] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
A field study was conducted from 0 to 360 days to investigate the effect of tea pruning litter biochar (TPLBC) on the accumulation of major micronutrients (copper: Cu, manganese: Mn, and zinc: Zn) in soil, their uptake by tea plant (clone: S.3 A/3) and level of contamination in soil due to TPLBC. To evaluate the level of contamination due to TPLBC, a soil pollution assessment was carried out using the geo-accumulation index (Igeo), enrichment factor (EF), contamination factor (CF), potential ecological risk factor (PERF), individual contamination factor (ICF), and risk assessment code (RAC). The total content of Cu, Mn, and Zn gradually increased with increasing doses of TPLBC at 0D, and then decreased with time. The fractionation of the three micronutrients in soil changed after the application of TPLBC. The contamination risk assessment of soil for Cu, Mn, and Zn based on the Igeo, EF, CF, PERF,ICF, and RAC suggested that the application of TPLBC does not have any adverse effect on soil. Except for Mn, the bioconcentration and translocation factors were less than one for Cu and Zn. Results from this study revealed that the application of 400 kg TPLBC ha-1 is significantly better than the other treatments for Cu, Mn, and Zn at a 5% level of significance.
Collapse
Affiliation(s)
- Mridusmita Sarmah
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam 786101, India; Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Arup Borgohain
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam 786101, India; Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Bidyot Bikash Gogoi
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam 786101, India; Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India; Department of Chemistry, D.H.S.K. College, Dibrugarh, Assam 786001, India
| | - Md Yeasin
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Ranjit K Paul
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Harisadhan Malakar
- Tocklai Tea Research Institute, Tea Research Association, Cinnamara, Jorhat, Assam 785008, India
| | | | - Jiban Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Diganta Deka
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam 786101, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. -CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Tanmoy Karak
- Upper Assam Advisory Centre, Tea Research Association, Dikom, Dibrugarh, Assam 786101, India.
| |
Collapse
|
14
|
Sharma P, Bano A, Singh SP, Sharma S, Xia C, Nadda AK, Lam SS, Tong YW. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. CHEMOSPHERE 2022; 306:135538. [PMID: 35792210 DOI: 10.1016/j.chemosphere.2022.135538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, UP, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Dehua Tubao New Decoration Material Co., Ltd., Huzhou, Zhejiang 313200, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
15
|
Verma P, Tripathi S, Yadav S, Chandra R. Degradation and decolourization potential of ligninolytic enzyme producing Bacillus paramycoides BL2 and Micrococcus luteus BL3 for pulp paper industrial effluent and its toxicity evaluation. Arch Microbiol 2022; 204:642. [PMID: 36161364 DOI: 10.1007/s00203-022-03236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aim of this study was to optimize the production of Ligninolytic enzyme for the degradation of complex pollutants present in pulp paper industrial effluent (PPIE). Two ligninolytic enzyme-producing bacterial strains were isolated from PPIE and identified as Bacillus paramycoides strain BL2 (MZ676667) and Micrococcus luteus strains BL3 (MZ676668). The identified bacterial strain Bacillus paramycoides strain BL2 showed optimum production of LiP (4.30 U/ml), MnP (3.38 U/ml) at 72 h of incubation, while laccase (4.43 U/ml) at 96 h of incubation. While, Micrococcus luteus strains BL3 produced maximum LiP (3.98) and MnP (3.85 U/ml) at 96 h of incubation and maximum laccase (3.85 U/ml) at 72 h of incubation, pH 7-8, and temperatures of 30-35 °C. Furthermore, in the presence of glucose (1.0%) and peptone (0.5%) as nutrient sources, the enzyme activity of consortium leads to reduction of lignin (70%), colour (63%) along with COD (71%) and BOD (58%). The pollutants detected in control i.e. 3.6-Dioxa-2,7-disilaoctane, 2-Heptnoic acid,trimethylsilyl ester, 7-Methyldinaphtho [2,1-b,1',2'-d] silole, Hexadeconoic acid, trimethylysilyl ester, Methyl1(Z)-3,3-dipheny.1-4-hexenoale, 2,6,10,14,18,22-Tetracosahexane,2,2-dimethylpropyl(2Z,6E)-10,11epoxy5,6 Dihyrostigmasterol, acetate were completely diminished. The toxicity of PPIE was reduced up to 75%. Hence, knowledge of this study will be very useful for industrial sector for treatment of complex wastewater.
Collapse
Affiliation(s)
- Prerna Verma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
16
|
Murthy MK, Khandayataray P, Samal D. Chromium toxicity and its remediation by using endophytic bacteria and nanomaterials: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115620. [PMID: 35772275 DOI: 10.1016/j.jenvman.2022.115620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is a crucial element for all life forms. Various anthropogenic activities have been responsible for environmental contamination with Cr (VI) in recent years. For this review, articles were collected using electronic databases such as Web of Science, Pubmed, ProQuest, and Google Scholar as per the guidelines of PRISMA-2015, applying the Boolean search methods. Chromium can cause severe health complications in humans and animals and threatens the surrounding environment, with negative impacts on crop yield, development, and quality. Hence, monitoring Cr contamination is essential, and various remediation technologies have emerged in the past 50 years to reduce the amount of Cr in the environment. This review focuses on chromium exposure and the associated environmental health risks. We also reviewed sustainable remediation processes, with emphasis on nanoparticle and endophytic remediation processes.
Collapse
Affiliation(s)
| | | | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, VidyaVihar, IID Center, Khordha, Odisha, India
| |
Collapse
|
17
|
Sharma P, Singh SP, Iqbal HMN, Tong YW. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. ENVIRONMENTAL RESEARCH 2022; 211:113102. [PMID: 35300964 DOI: 10.1016/j.envres.2022.113102] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023]
Abstract
Non-degradable pollutants have emerged as a result of industrialization, population growth, and lifestyle changes, endangering human health and the environment. Bioremediation is the process of clearing hazardous contaminants with the help of microorganisms, and cost-effective approach. The low-cost and environmentally acceptable approach to removing environmental pollutants from ecosystems is microbial bioremediation. However, to execute these different bioremediation approaches successfully, this is imperative to have a complete understanding of the variables impacting the development, metabolism, dynamics, and native microbial communities' activity in polluted areas. The emergence of new technologies like next-generation sequencing, protein and metabolic profiling, and advanced bioinformatic tools have provided critical insights into microbial communities and underlying mechanisms in environmental contaminant bioremediation. These omics approaches are meta-genomics, meta-transcriptomics, meta-proteomics, and metabolomics. Moreover, the advancements in these technologies have greatly aided in determining the effectiveness and implementing microbiological bioremediation approaches. At Environmental Protection Agency (EPA)-The government placed special emphasis on exploring how molecular and "omic" technologies may be used to determine the nature, behavior, and functions of the intrinsic microbial communities present at pollution containment systems. Several omics techniques are unquestionably more informative and valuable in elucidating the mechanism of the process and identifying the essential player's involved enzymes and their regulatory elements. This review provides an overview and description of the omics platforms that have been described in recent reports on omics approaches in bioremediation and that demonstrate the effectiveness of integrated omics approaches and their novel future use.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
18
|
Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119248. [PMID: 35395353 DOI: 10.1016/j.envpol.2022.119248] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
19
|
Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 2022; 204:410. [PMID: 35729415 DOI: 10.1007/s00203-022-02978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.
Collapse
|
20
|
Sharma P, Iqbal HM, Chandra R. Evaluation of pollution parameters and toxic elements in wastewater of pulp and paper industries in India: A case study. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 5:100163. [DOI: 10.1016/j.cscee.2021.100163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Sharma P, Chaturvedi P, Chandra R, Kumar S. Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. CHEMOSPHERE 2022; 295:133823. [PMID: 35114263 DOI: 10.1016/j.chemosphere.2022.133823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals phytoremediation from pulp and paper industry (PPI) sludge was conducted by employing root-associated Brevundimonas sp (PS-4 MN238722.1) in rhizospheric zone of Saccharum munja L. for its detoxification. The study was aimed to investigate the efficiency of Saccharum munja L. for the removal of heavy metals along with physico-chemical parameters through bacterial interactions. Physico-chemical examination of PPI sludge showed biochemical oxygen demand (8357 ± 94 mg kg-1), electrical conductivity (2264 ± 49 μmhoscm-1), total phenol (521 ± 24 mg kg-1), total dissolve solid (1547 ± 23 mg kg-1), total nitrogen (264 ± 2.13 mg kg-1), pH (8.2 ± 0.11), chemical oxygen demand (34756 ± 214 mg kg-1), color (2434 ± 45 Co-Pt), total suspended solid (76 ± 0.67 mg kg-1), sulphate (2462 ± 13 mg kg-1), chlorolignin (597 ± 13.01 mg kg-1), K+ (21.04 ± 0.26 mg kg-1), total solid (1740 ± 54 mg kg-1), phosphorous, Cl-, and Na+. Heavy metals, such as Fe followed by Zn, Mn, Cd, Cu, Ni, Pb, As, Cr and Hg were above the permissible limit. Root and shoot of Saccharum munja L. revealed highest concentrations of Cd followed by Mn, Ni, Fe, Zn, Cu, As, Cr, Hg, and Pb. Tested metals (Fe, Mn, Pb, Cd, Cr, Cu, Zn, Ni, As, and Hg) bioaccumulation and translocation factors were also revealed to be < 1 and >1, respectively, demonstrating that these plants have considerable absorption and translocation abilities. Plant growth-promoting activity, such as ligninolytic enzymes, hydrolytic enzymes, indole acetic acid, and siderophore production activity of Brevundimonas sp. (PS-4 MN238722.1) were also noted to be higher. These findings support the use of Brevundimonas sp (PS-4 MN238722.1) in combination with Saccharum munja L. plant as interdisciplinary management of industrial sludge at polluted areas for the prevention of soils near the industrial site.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India; CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
22
|
Sharma P, Singh SP. Identification and profiling of microbial community from industrial sludge. Arch Microbiol 2022; 204:234. [PMID: 35362813 DOI: 10.1007/s00203-022-02831-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/03/2023]
Abstract
The purpose of this study is to identify microbial communities in pulp and paper industry sludge and their metagenomic profiling on the basis of; phylum, class, order, family, genus and species level. Results revealed that the dominant phyla in 16S rRNA Illumina Miseq analysis inside sludge were Anaerolinea, Pseudomonas, Clostridia, Bacteriodia, Gammaproteobacteria, Spirochetia, Deltaproteobacteria, Spirochaetaceae, Prolixibacteraceae and some unknown microbial strains are also dominant. Metagenomics is a molecular biology-based technology that uses bioinformatics to evaluate huge gene sequences extracted from environmental samples to assess the composition and function of microbiota. The results of metabarcoding of the V3-V4 16S rRNA regions acquired from paired-end Illumina MiSeq sequencing were used to analyze bacterial communities and structure. The present work demonstrates the potential approach to sludge treatment in the open environment via the naturally adapted microorganism, which could be an essential addition to the disposal site. In summary, these investigations indicate that the indigenous microbial community is an acceptable bioresource for remediation or detoxification following secondary treatment. This research aims at understanding the structure of microbial communities and their diversity (%) in highly contaminated sludge to perform in situ bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, 226 025, Uttar Pradesh, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
23
|
Sharma P, Nanda K, Yadav M, Shukla A, Srivastava SK, Kumar S, Singh SP. Remediation of noxious wastewater using nanohybrid adsorbent for preventing water pollution. CHEMOSPHERE 2022; 292:133380. [PMID: 34953871 DOI: 10.1016/j.chemosphere.2021.133380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Removal of toxic elements from wastewater effluent has got a lot of attention because of their severe negative effects on human and environmental health. In the past few years, rapid urbanization and industrial activities in developing countries have exacerbated the destruction of the environment. Most of the wastewater effluents are discharged untreated or inadequately treated, which has become a major concern due to its impact on sustainability and the environment. This is imperative to implement, innovative and resourceful wastewater treatment technologies requiring low investment. Among the various treatment technologies, cutting-edge processes in nano-material sciences have recently piqued the interest of scientists. Nanohybrid absorbents have the potential in improving wastewater treatment and increase water supply by utilizing unconventional water resources. Carbon nanotubes, titanium oxide, manganese oxide, activated carbon (AC), magnesium oxide, graphene, ferric oxides, and zinc oxide are examples of nano-adsorbents that are used to eliminate pollutants. This also demonstrated the effective removal of contaminants along with the harmful effects of chemicals, colorants, and metals found in wastewater. The present manuscript examines potential advances in nanotechnology in wastewater treatment for the prevention of water and soil pollution. This systematic review aims to highlight the importance of nanohybrid absorbents treatment technology for wastewater treatment and to explain how nanohybrid absorbents have the potential to revolutionize industrial pollution. There are also other published review articles on this topic but the present review covers an in-depth information on nano-adsorbents and their targeted contaminants.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Mamta Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Ashutosh Shukla
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Sudhir Kumar Srivastava
- Chemical Research Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
24
|
Sharma P, Gujjala LKS, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152417. [PMID: 34923013 DOI: 10.1016/j.scitotenv.2021.152417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Industrial wastewater treatment is of paramount importance considering the safety of the aquatic ecosystem and its associated health risk to humankind inhabiting near the water bodies. Microalgae-based technologies for remediation of environmental pollutants present avenues for bioenergy applications and production of value-added biochemicals having pharmaceutical, nutraceutical, antioxidants, carbohydrate, phenolics, long-chain multi-faceted fatty acids, enzymes, and proteins which are considered healthy supplements for human health. Such a wide range of products put up a good case for the biorefinery concept. Microalgae play a pivotal role in degrading complex pollutants, such as organic and inorganic contaminants thereby efficiently removing them from the environment. In addition, microalgal species, such as Botryococcus braunii, Tetraselmis suecica, Phaeodactylum tricornutum, Neochloris oleoabundans, Chlorella vulgaris, Arthrospira, Chlorella, and Tetraselmis sp., etc., are also reported for generation of value-added products. This review presents a holistic view of microalgae based biorefinery starting from cultivation and harvesting of microalgae, the potential for remediation of environmental pollutants, bioenergy application, and production of value-added biomolecules. Further, it summarizes the current understanding of microalgae-based technologies and discusses the risks involved, potential for bioeconomy, and outlines future research directions.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
25
|
Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022; 13:4923-4938. [PMID: 35164635 PMCID: PMC8973695 DOI: 10.1080/21655979.2022.2037273] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Industrial effluents/wastewater are the main sources of hexavalent chromium (Cr (VI)) pollutants in the environment. Cr (VI) pollution has become one of the world’s most serious environmental concerns due to its long persistence in the environment and highly deadly nature in living organisms. To its widespread use in industries Cr (VI) is highly toxic and one of the most common environmental contaminants. Cr (VI) is frequently non-biodegradable in nature, which means it stays in the environment for a long time, pollutes the soil and water, and poses substantial health risks to humans and wildlife. In living things, the hexavalent form of Cr is carcinogenic, genotoxic, and mutagenic. Physico-chemical techniques currently used for Cr (VI) removal are not environmentally friendly and use a large number of chemicals. Microbes have many natural or acquired mechanisms to combat chromium toxicity, such as biosorption, reduction, subsequent efflux, or bioaccumulation. This review focuses on microbial responses to chromium toxicity and the potential for their use in environmental remediation. Moreover, the research problem and prospects for the future are discussed in order to fill these gaps and overcome the problem associated with bacterial bioremediation’s real-time applicability.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur India
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
26
|
Okoroafor PU, Ogunkunle CO, Heilmeier H, Wiche O. Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1310-1320. [PMID: 35014898 DOI: 10.1080/15226514.2021.2025207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the possible benefits of phytoextraction, this study evaluated the potential of nine plant species for phytoaccumulation/co-accumulation of selected nutrients, rare earth elements, germanium, and potentially toxic elements. Plants were grown on 2 kg potted soils for 12 weeks in a greenhouse, followed by a measurement of dry shoot biomass. Subsequently, elemental concentrations were determined using inductively coupled mass spectrometry, followed by the determination of amounts of each element accumulated by the plant species. Results show varying accumulation behavior among plants for the different elements. Fagopyrum esculentum and Cannabis sativa were better accumulators of most elements investigated except for chromium, germanium, and silicon that were better accumulated by Zea mays, the only grass species. F. esculentum accumulated 9, 24, and 10% of Copper, Chromium, and Rare Earth Elements in the mobile/exchangeable element fraction of the soils while Z. mays and C. sativa accumulated amounts of Cr and Ge ∼58 and 17% (for Z. mays) and 20 and 9% (for C. sativa) of the mobile/exchangeable element fraction of the soils. Results revealed co-accumulation potential for some elements e.g., (1) Si, Ge, and Cr, (2) Cu and Pb, (3) P, Ca, Co, and REEs based on chemical similarities/sources of origin.
Collapse
Affiliation(s)
- Precious Uchenna Okoroafor
- Institute of Biosciences/Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | | | - Hermann Heilmeier
- Institute of Biosciences/Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Oliver Wiche
- Institute of Biosciences/Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
27
|
Tripathi S, Chandra R, Purchase D, Bilal M, Mythili R, Yadav S. Quorum sensing - a promising tool for degradation of industrial waste containing persistent organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118342. [PMID: 34653589 DOI: 10.1016/j.envpol.2021.118342] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Restoring an environment contaminated with persistent organic pollutants (POPs) is highly challenging. Biodegradation by biofilm-forming bacteria through quorum sensing (QS) is a promising treatment process to remove these pollutants and promotes eco-restoration. QS plays an important role in biofilm formation, solubilization, and biotransformation of pollutants. QS is a density-based communication between microbial cells via signalling molecules, which coordinates specific characters and helps bacteria to acclimatize against stress conditions. Genetic diversification of a biofilm offers excellent opportunities for horizontal gene transfer, improves resistance against stress, and provides a suitable environment for the metabolism of POPs. To develop this technology in industrial scale, it is important to understand the fundamentals and ubiquitous nature of QS bacteria and appreciate the role of QS in the degradation of POPs. Currently, there are knowledge gaps regarding the environmental niche, abundance, and population of QS bacteria in wastewater treatment systems. This review aims to present up-to-date and state-of-the-art information on the roles of QS and QS-mediated strategies in industrial waste treatment including biological treatments (such as activated sludge), highlighting their potentials using examples from the pulp and paper mill industry, hydrocarbon remediation and phytoremediation. The information will help to provide a throughout understanding of the potential of QS to degrade POPs and advance the use of this technology. Current knowledge of QS strategies is limited to laboratory studies, full-scale applications remain challenging and more research is need to explore QS gene expression and test in full-scale reactors for wastewater treatment.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, 226025, U.P., India.
| | - Diane Purchase
- Department of Natural Sciences, Facultyof Science and Technology, Middlesex University, The Burroughs, Hendon, London, England NW4 4BT, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Raja Mythili
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalppatti, Namakkal, 637503, Tamil Nadu, India
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, 226025, U.P., India.
| |
Collapse
|
28
|
Tripathi S, Purchase D, Al-Rashed S, Chandra R. Microbial community dynamics and their relationships with organic and metal pollutants of sugarcane molasses-based distillery wastewater sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118267. [PMID: 34601036 DOI: 10.1016/j.envpol.2021.118267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Distillery sludge is a major source of aquatic pollution, but little is known about their microbial community and their association with the organic and metal pollutants. Sugarcane molasses-based distillery is an important industry in India, although the waste is usually treated prior to disposal, the treatment is often inadequate. The adverse effects of the organic and metal pollutants in sugarcane molasses-based distillery sludge on the microbial biodiversity and abundance in the disposal site have not been elucidated. This study aims to address this gap of knowledge. Samples were collected from the discharge point, 1 and 2 km downstream (D1, D2, and D3, respectively) of a sugarcane distillery in Uttar Pradesh, India, and their physico-chemical properties characterised. Using QIIME, taxonomic assignment for the V3 and V4 hypervariable regions of 16 S rRNA was performed. The phyla Proteobacteria (28-39%), Firmicutes (20-28%), Bacteriodetes (9-10%), Actinobacteria (5-10%), Tenericutes (1-9%) and Patescibacteria (2%) were the predominant bacteria in all three sites. Euryechaeota, were detected in sites D1 and D2 (1-2%) but absent in D3. Spirochaetes (5%), Sinergistetes (2%) and Cloacimonetes (1%) were only detected in samples from site D1. Shannon, Simpson, Chao1, and Observed-species indices indicated that site D1 (10.18, 0.0013, 36706.55 and 45653.84, respectively) has higher bacterial diversity and richness than D2 (6.66, 0.0001, 25987.71 and 49655.89, respectively) and D3 (8.31, 0.002, 30345.53 and 30654.88, respectively), suggesting the organic and metal pollutants provided the stressors to favour the survival of microbial community that can biodegrade and detoxify them in the distillery sludge. This study confirmed that the treatment of the distillery waste was not sufficiently effective and provided new metagenomic information on its impact on the surrounding microbial community. It also offered new insights into potential bioremediation candidates.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O 2455, Riyadh, 11451, Saudi Arabia
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
29
|
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. BIORESOURCE TECHNOLOGY 2021; 339:125589. [PMID: 34304098 DOI: 10.1016/j.biortech.2021.125589] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Worldwide, heavy metals pollution is mostly caused by rapid population growth and industrial development which is accumulated in food webs causing a serious public health risk. Endophytic microorganisms have a variety of mechanisms for metal sequestration having metal biosorption capacities.Endophytic organisms like bacteria and fungi provide beneficial qualities that help plants to improve their health, reduce stress, and detoxify metals. Endophytes have a higher proclivity for improving metal and mineral solubility by cells that secrete low-molecular-weight organic acids and metal-specific ligands like siderophores, which change the pH of the soil and improve binding activity. Protein-related approaches like chromatin immunoprecipitation sequencing (ChIP-Seq) and modified enzyme-linked immunosorbent assay (ELISA test) can represent endophytic bacterial community and DNA-protein interactions during metal reduction. This review explored the role of endophytes in bioremediation approaches that can help in analyzing the potential and prospects in response to industrial effluents' detoxification.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
30
|
Tripathi S, Sharma P, Chandra R. Degradation of organometallic pollutants of distillery wastewater by autochthonous bacterial community in biostimulation and bioaugmentation process. BIORESOURCE TECHNOLOGY 2021; 338:125518. [PMID: 34273628 DOI: 10.1016/j.biortech.2021.125518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to detoxify and degrade the organometallic pollutants from distillery wastewater by using an autochthonous microbial community via biostimulation and bioaugmentation process. Results revealed that the wastewater contained high concentrations of the metals i.e. Fe-2403; Zn-210.15; Cr- 22.825; Cu-73.62; Mg-27.30; Ni-14.425; and Pb-17.33 (mg L-1). The biostimulation and bioaugmentation process resulted from a substantial reduction (50-70%) in the pollution load. Scanning electron microscopy analysis showed bacterial community and their relationship with complex organometallic pollutants during the chemical reactions. The major identified organic pollutants in the control (untreated) samples were acetic acid, Oxo-,trimethylsilyl ester [CAS], Hydrocinnamic acid, p-[Trimethylsiloxy]-trimethylsilyl ester and tetradecanoic acid, trimethylsilyl ester [CAS] while some new metabolic products were generated as a by-product in bioaugmentation process. Therefore, the study showed that biostimulation and bioaugmentation were successful bioremediation strategies for the detoxification of distillery wastewater and restoration of organometallic polluted sites.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
31
|
Do New-Generation Recycled Phosphorus Fertilizers Increase the Content of Potentially Toxic Elements in Soil and Plants? MINERALS 2021. [DOI: 10.3390/min11090999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phosphorus (P)-rich secondary raw materials can provide a valuable base for modern mineral fertilizers, provided that the new formulations do not load the soil–plant system with potentially toxic elements. Fertilizers from sewage sludge ash (SSA) and/or animal bones, activated by phosphorus-solubilizing bacteria (Bacillus megaterium or Acidithiobacillus ferrooxidans), were tested in field experiments in north-eastern Poland. The reference provided treatments with superphosphate and treatment without phosphorus fertilization. In one experiment, all P-fertilizers were applied at a P dose of 21 kg·ha−1, and in the other three experiments, three P doses were adopted: 17.6, 26.4, and 35.2 kg·ha−1. The effect of recycled fertilizers on the content of arsenic (As), chromium (Cr), nickel (Ni), copper (Cu), and zinc (Zn) in the soil, in wheat grain and straw (test plant), weeds, and post-harvest residues was investigated. The application of recycled fertilizers in P amounts up to 35.2 kg·ha−1 did not change the As, Cr, Ni, Cu, or Zn contents in the soil and plant biomass. The contents of these elements in soil were below the permissible levels for arable land in Poland. Their concentrations in wheat grain and straw did not exceed the permissible or suggested limits for plant material to be used for food and feed, while in the weed and post-harvest residue biomass, they usually fell within the biological plant variability ranges.
Collapse
|
32
|
Sharma P, Sirohi R, Tong YW, Kim SH, Pandey A. Metal and metal(loids) removal efficiency using genetically engineered microbes: Applications and challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125855. [PMID: 34492804 DOI: 10.1016/j.jhazmat.2021.125855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
The environment is being polluted in different many with metal and metalloid pollution, mostly due to anthropogenic activity, which is directly affecting human and environmental health. Metals and metalloids are highly toxic at low concentrations and contribute primarily to the survival equilibrium of activities in the environment. However, because of non-degradable, they persist in nature and these metal and metalloids bioaccumulate in the food chain. Genetically engineered microorganisms (GEMs) mediated techniques for the removal of metals and metalloids are considered an environmentally safe and economically feasible strategy. Various forms of GEMs, including fungi, algae, and bacteria have been produced by recombinant DNA and RNA technologies, which have been used to eliminate metal and metalloids compounds from the polluted areas. Besides, GEMs have the potentiality to produce enzymes and other metabolites that are capable of tolerating metals stress and detoxify the pollutants. Thus, the aim of this review is to discuss the use of GEMs as advanced tools to produce metabolites, signaling molecules, proteins through genetic expression during metal and metalloids interaction, which help in the breakdown of persistent pollutants in the environment.
Collapse
Affiliation(s)
- Pooja Sharma
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Sang Hyoun Kim
- Department of Chemical and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
33
|
Tripathi S, Sharma P, Purchase D, Tiwari M, Chakrabarty D, Chandra R. Biodegradation of organo-metallic pollutants in distillery wastewater employing a bioaugmentation process. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101774. [DOI: 10.1016/j.eti.2021.101774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
34
|
Tripathi S, Sharma P, Purchase D, Chandra R. Distillery wastewater detoxification and management through phytoremediation employing Ricinus communis L. BIORESOURCE TECHNOLOGY 2021; 333:125192. [PMID: 33915458 DOI: 10.1016/j.biortech.2021.125192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to assess the phytoremediation potential of Ricinus communis L. for heavy metals remediation via rhizospheric bacterial activities for distillery wastewater detoxification and management. Results revealed that distillery wastewater contained high levels of metals and other physico-chemical pollution parameters that could cause environmental pollution and aquatic toxicity. The identified bacterium produced several plant growth-promoting compounds including siderophores, ligninolytic enzymes, and indole acetic acid that resulted in nutrient enhancement and improved mineralization of metals in the plants during stress conditions. The bioconcentration factor (BCF) of all the metals examined were > 1, which showed that these metals are accumulating in the root, shoot, and leaves of Ricinus communis L. Most of the metals are stablised in the roots but Pb, Cd and Zn were translocated more to the shoorts (TC>1). The ability of Ricinus communis L. to grow in metals-containing distillery wastewater and reduce heavy metals and organic contaminants suggests that it can be used to provide an effective treatment of distillery wastewater. The use of Ricinus communis L. is an eco-friendly tool for the reduction of organometallic contamination and protecting agricultural land.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India
| | - Pooja Sharma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London NW4 4BT, UK
| | - Ram Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India.
| |
Collapse
|
35
|
Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. BIORESOURCE TECHNOLOGY 2021; 328:124835. [PMID: 33618184 DOI: 10.1016/j.biortech.2021.124835] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 05/12/2023]
Abstract
The aim of this review to address the plant-associated bacteria to enhance the phytoremediation efficiency of the heavy metals from polluted sites and it is also highlighted advances for the application in wastewater treatment. Plant-associated bacteria have potential to encourage the plant growth and resistance under stress conditions. Such bacteria could enhance plant growth by controlling growth hormone, nutrition security, producing siderophore, secondary metabolites, and improving the antioxidant enzymes system. This review also explores the concepts and applications of bacteria assisted phytoremediation, addressing aspects that affect phytoremediation and pathways for restoration. Significant review issues relating to production and application of bacteria for improvement of bioremediation were established and presented for possible future research. Bacteria assisted phytoremediation is cost-effective strategy and metal sequestration mechanism that hold high metal biosorption capacities. This also takes into consideration the current state of technology implementations and proposals for prospective clean-up studies.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| |
Collapse
|
36
|
Sharma P, Pandey AK, Udayan A, Kumar S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124750. [PMID: 33517048 DOI: 10.1016/j.biortech.2021.124750] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 05/22/2023]
Abstract
This review illustrated the role of metal-binding proteins (MBPs) and microbial interaction in assisting the phytoremediation of industrial wastewater polluted with heavy metals. MBPs are used to increase the accumulation and tolerance of metals by microorganisms via binding protein synthesis. Microbes have various protection mechanisms to heavy metals stress like compartmentalization, exclusion, complexity rendering, and the synthesis of binding proteins. MBPs include phytochelatins, metallothioneins, Cd-binding peptides (CdBPs), cysteines (gcgcpcgcg) (CP), and histidines (ghhphg)2 (HP). In comparison with other physico-chemical methods, phytoremediation is an eco-friendly and safe method for the society. The present review concentrated on the efficiency of phytoremediation strategies for the use of MBPs and microbe-assisted approaches.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Ashutosh Kumar Pandey
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
37
|
Zare K, Sheykhi V, Mokhtari Z, Zare M. Decontamination potential of five native plants in Maharlu Wetland, Iran. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1402-1411. [PMID: 33761296 DOI: 10.1080/15226514.2021.1900064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigates the level of toxic trace elements (TTE) in the rhizosphere soil and tissues of five native plants and their phytoextraction/phytostabilization potential growing in Maharlu Lake wetland, in Southern Iran. The study anticipated by determination of 11 potentially TTE concentrations (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn) in the soil, soil extract, and the plants' dry matter (root and shoot). Pollution index (PI), pollution load index (PLI), bioconcentration factor (BCF), bioaccumulation coefficient (BAC), and translocation factor (TF) were applied in the study. Two main results were pointed out in this study. Firstly, the result of pollution indexing and total and phyto-availability concentrations of TTE showed that some of them in the rhizosphere soil are problematic in the Maharlu wetland, in particular for Mo, Pb, Zn, and As. Secondly, the result of the correlation coefficients and phytoremediation indexing revealed that TTE accumulation in the plant tissues, not only depends on the concentration in the soil extract but is also plant-specific. Moreover, the results suggested that Halopeplis sp. has the potential for phytoextraction of Cd and Mo in the contaminated wetlands. Novelty statement: This manuscript addresses the toxic trace elements concentration in rhizosphere soil and tissues of five native plants and their phytoextraction/phytostabilization potential: Maharlu wetland in southern Iran.
Collapse
Affiliation(s)
- Kamran Zare
- School of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
| | - Vahideh Sheykhi
- Department of Earth Sciences, Shiraz University, Shiraz, Iran
| | - Zahra Mokhtari
- Department of Geology Faculty of Sciences, University of Neyshabur, Neyshabur, Iran
| | - Mohammad Zare
- Department of Earth Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
38
|
Sharma P, Tripathi S, Chandra R. Metagenomic analysis for profiling of microbial communities and tolerance in metal-polluted pulp and paper industry wastewater. BIORESOURCE TECHNOLOGY 2021; 324:124681. [PMID: 33454444 DOI: 10.1016/j.biortech.2021.124681] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to study the profiling and efficiency of microbial communities and their abundance in the pulp and paper industry wastewater, which contained toxic metals, high biological oxygen demands, chemical oxygen demand, and ions contents. Sequence alignment of the 16S rRNA V3-V4 variable region zone with the Illumina MiSeq framework revealed 25356 operating taxonomical units (OTUs) derived from the wastewater sample. The major phyla identified in wastewater were Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Actinobacteria, Spirochetes, Patesibacteria, Acidobacteria, and others including unknown microbes. The study showed the function of microbial communities essential for the oxidation and detoxifying of complex contaminants and design of effective remediation techniques for the re-use of polluted wastewater. Findings demonstrated that the ability of different classes of microbes to adapt and survive in metal-polluted wastewater irrespective of their relative distribution, as well as further attention can be provided to its use in the bioremediation process.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India.
| |
Collapse
|
39
|
Jaiswal S, Kumar Gupta G, Panchal K, Mandeep, Shukla P. Synthetic Organic Compounds From Paper Industry Wastes: Integrated Biotechnological Interventions. Front Bioeng Biotechnol 2021; 8:592939. [PMID: 33490048 PMCID: PMC7820897 DOI: 10.3389/fbioe.2020.592939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Synthetic organic compounds (SOCs) are reported as xenobiotics compounds contaminating the environment from various sources including waste from the pulp and paper industries: Since the demand and production of paper is growing increasingly, the release of paper and pulp industrial waste consisting of SOCs is also increasing the SOCs' pollution in natural reservoirs to create environmental pollution. In pulp and paper industries, the SOCs viz. phenol compounds, furans, dioxins, benzene compounds etc. are produced during bleaching phase of pulp treatment and they are principal components of industrial discharge. This review gives an overview of various biotechnological interventions for paper mill waste effluent management and elimination strategies. Further, the review also gives the insight overview of various ways to restrict SOCs release in natural reservoirs, its limitations and integrated approaches for SOCs bioremediation using engineered microbial approaches. Furthermore, it gives a brief overview of the sustainable remediation of SOCs via genetically modified biological agents, including bioengineering system innovation at industry level before waste discharge.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Guddu Kumar Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Kusum Panchal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|